Commit f94964cd05

Marc Tiehuis <marctiehuis@gmail.com>
2019-05-01 08:12:16
std.math: Add upstream changes/fixes and simplify go derived code
This also starts the documentation effort for the math/ subdirectory. The intent is to use this as a somewhat representative test-case for any work on the documentation generator.
1 parent 7bbc8eb
Changed files (5)
std/math/cos.zig
@@ -1,18 +1,23 @@
-// Special Cases:
+// Ported from go, which is licensed under a BSD-3 license.
+// https://golang.org/LICENSE
 //
-// - cos(+-inf) = nan
-// - cos(nan)   = nan
+// https://golang.org/src/math/sin.go
 
 const builtin = @import("builtin");
 const std = @import("../std.zig");
 const math = std.math;
 const expect = std.testing.expect;
 
+/// Returns the cosine of the radian value x.
+///
+/// Special Cases:
+///  - cos(+-inf) = nan
+///  - cos(nan)   = nan
 pub fn cos(x: var) @typeOf(x) {
     const T = @typeOf(x);
     return switch (T) {
-        f32 => cos32(x),
-        f64 => cos64(x),
+        f32 => cos_(f32, x),
+        f64 => cos_(f64, x),
         else => @compileError("cos not implemented for " ++ @typeName(T)),
     };
 }
@@ -33,78 +38,24 @@ const C3 = 2.48015872888517045348E-5;
 const C4 = -1.38888888888730564116E-3;
 const C5 = 4.16666666666665929218E-2;
 
-// NOTE: This is taken from the go stdlib. The musl implementation is much more complex.
-//
-// This may have slight differences on some edge cases and may need to replaced if so.
-fn cos32(x_: f32) f32 {
-    const pi4a = 7.85398125648498535156e-1;
-    const pi4b = 3.77489470793079817668E-8;
-    const pi4c = 2.69515142907905952645E-15;
-    const m4pi = 1.273239544735162542821171882678754627704620361328125;
-
-    var x = x_;
-    if (math.isNan(x) or math.isInf(x)) {
-        return math.nan(f32);
-    }
+const pi4a = 7.85398125648498535156e-1;
+const pi4b = 3.77489470793079817668E-8;
+const pi4c = 2.69515142907905952645E-15;
+const m4pi = 1.273239544735162542821171882678754627704620361328125;
 
-    var sign = false;
-    if (x < 0) {
-        x = -x;
-    }
-
-    var y = math.floor(x * m4pi);
-    var j = @floatToInt(i64, y);
-
-    if (j & 1 == 1) {
-        j += 1;
-        y += 1;
-    }
-
-    j &= 7;
-    if (j > 3) {
-        j -= 4;
-        sign = !sign;
-    }
-    if (j > 1) {
-        sign = !sign;
-    }
-
-    const z = ((x - y * pi4a) - y * pi4b) - y * pi4c;
-    const w = z * z;
-
-    const r = r: {
-        if (j == 1 or j == 2) {
-            break :r z + z * w * (S5 + w * (S4 + w * (S3 + w * (S2 + w * (S1 + w * S0)))));
-        } else {
-            break :r 1.0 - 0.5 * w + w * w * (C5 + w * (C4 + w * (C3 + w * (C2 + w * (C1 + w * C0)))));
-        }
-    };
-
-    if (sign) {
-        return -r;
-    } else {
-        return r;
-    }
-}
-
-fn cos64(x_: f64) f64 {
-    const pi4a = 7.85398125648498535156e-1;
-    const pi4b = 3.77489470793079817668E-8;
-    const pi4c = 2.69515142907905952645E-15;
-    const m4pi = 1.273239544735162542821171882678754627704620361328125;
+fn cos_(comptime T: type, x_: T) T {
+    const I = @IntType(true, T.bit_count);
 
     var x = x_;
     if (math.isNan(x) or math.isInf(x)) {
-        return math.nan(f64);
+        return math.nan(f32);
     }
 
     var sign = false;
-    if (x < 0) {
-        x = -x;
-    }
+    x = math.fabs(x);
 
     var y = math.floor(x * m4pi);
-    var j = @floatToInt(i64, y);
+    var j = @floatToInt(I, y);
 
     if (j & 1 == 1) {
         j += 1;
@@ -123,56 +74,51 @@ fn cos64(x_: f64) f64 {
     const z = ((x - y * pi4a) - y * pi4b) - y * pi4c;
     const w = z * z;
 
-    const r = r: {
-        if (j == 1 or j == 2) {
-            break :r z + z * w * (S5 + w * (S4 + w * (S3 + w * (S2 + w * (S1 + w * S0)))));
-        } else {
-            break :r 1.0 - 0.5 * w + w * w * (C5 + w * (C4 + w * (C3 + w * (C2 + w * (C1 + w * C0)))));
-        }
-    };
+    const r = if (j == 1 or j == 2)
+        z + z * w * (S5 + w * (S4 + w * (S3 + w * (S2 + w * (S1 + w * S0)))))
+    else
+        1.0 - 0.5 * w + w * w * (C5 + w * (C4 + w * (C3 + w * (C2 + w * (C1 + w * C0)))));
 
-    if (sign) {
-        return -r;
-    } else {
-        return r;
-    }
+    return if (sign) -r else r;
 }
 
 test "math.cos" {
-    expect(cos(f32(0.0)) == cos32(0.0));
-    expect(cos(f64(0.0)) == cos64(0.0));
+    expect(cos(f32(0.0)) == cos_(f32, 0.0));
+    expect(cos(f64(0.0)) == cos_(f64, 0.0));
 }
 
 test "math.cos32" {
     const epsilon = 0.000001;
 
-    expect(math.approxEq(f32, cos32(0.0), 1.0, epsilon));
-    expect(math.approxEq(f32, cos32(0.2), 0.980067, epsilon));
-    expect(math.approxEq(f32, cos32(0.8923), 0.627623, epsilon));
-    expect(math.approxEq(f32, cos32(1.5), 0.070737, epsilon));
-    expect(math.approxEq(f32, cos32(37.45), 0.969132, epsilon));
-    expect(math.approxEq(f32, cos32(89.123), 0.400798, epsilon));
+    expect(math.approxEq(f32, cos_(f32, 0.0), 1.0, epsilon));
+    expect(math.approxEq(f32, cos_(f32, 0.2), 0.980067, epsilon));
+    expect(math.approxEq(f32, cos_(f32, 0.8923), 0.627623, epsilon));
+    expect(math.approxEq(f32, cos_(f32, 1.5), 0.070737, epsilon));
+    expect(math.approxEq(f32, cos_(f32, -1.5), 0.070737, epsilon));
+    expect(math.approxEq(f32, cos_(f32, 37.45), 0.969132, epsilon));
+    expect(math.approxEq(f32, cos_(f32, 89.123), 0.400798, epsilon));
 }
 
 test "math.cos64" {
     const epsilon = 0.000001;
 
-    expect(math.approxEq(f64, cos64(0.0), 1.0, epsilon));
-    expect(math.approxEq(f64, cos64(0.2), 0.980067, epsilon));
-    expect(math.approxEq(f64, cos64(0.8923), 0.627623, epsilon));
-    expect(math.approxEq(f64, cos64(1.5), 0.070737, epsilon));
-    expect(math.approxEq(f64, cos64(37.45), 0.969132, epsilon));
-    expect(math.approxEq(f64, cos64(89.123), 0.40080, epsilon));
+    expect(math.approxEq(f64, cos_(f64, 0.0), 1.0, epsilon));
+    expect(math.approxEq(f64, cos_(f64, 0.2), 0.980067, epsilon));
+    expect(math.approxEq(f64, cos_(f64, 0.8923), 0.627623, epsilon));
+    expect(math.approxEq(f64, cos_(f64, 1.5), 0.070737, epsilon));
+    expect(math.approxEq(f64, cos_(f64, -1.5), 0.070737, epsilon));
+    expect(math.approxEq(f64, cos_(f64, 37.45), 0.969132, epsilon));
+    expect(math.approxEq(f64, cos_(f64, 89.123), 0.40080, epsilon));
 }
 
 test "math.cos32.special" {
-    expect(math.isNan(cos32(math.inf(f32))));
-    expect(math.isNan(cos32(-math.inf(f32))));
-    expect(math.isNan(cos32(math.nan(f32))));
+    expect(math.isNan(cos_(f32, math.inf(f32))));
+    expect(math.isNan(cos_(f32, -math.inf(f32))));
+    expect(math.isNan(cos_(f32, math.nan(f32))));
 }
 
 test "math.cos64.special" {
-    expect(math.isNan(cos64(math.inf(f64))));
-    expect(math.isNan(cos64(-math.inf(f64))));
-    expect(math.isNan(cos64(math.nan(f64))));
+    expect(math.isNan(cos_(f64, math.inf(f64))));
+    expect(math.isNan(cos_(f64, -math.inf(f64))));
+    expect(math.isNan(cos_(f64, math.nan(f64))));
 }
std/math/fma.zig
@@ -1,7 +1,14 @@
+// Ported from musl, which is licensed under the MIT license:
+// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
+//
+// https://git.musl-libc.org/cgit/musl/tree/src/math/fmaf.c
+// https://git.musl-libc.org/cgit/musl/tree/src/math/fma.c
+
 const std = @import("../std.zig");
 const math = std.math;
 const expect = std.testing.expect;
 
+/// Returns x * y + z with a single rounding error.
 pub fn fma(comptime T: type, x: T, y: T, z: T) T {
     return switch (T) {
         f32 => fma32(x, y, z),
@@ -16,7 +23,7 @@ fn fma32(x: f32, y: f32, z: f32) f32 {
     const u = @bitCast(u64, xy_z);
     const e = (u >> 52) & 0x7FF;
 
-    if ((u & 0x1FFFFFFF) != 0x10000000 or e == 0x7FF or xy_z - xy == z) {
+    if ((u & 0x1FFFFFFF) != 0x10000000 or e == 0x7FF or (xy_z - xy == z and xy_z - z == xy)) {
         return @floatCast(f32, xy_z);
     } else {
         // TODO: Handle inexact case with double-rounding
@@ -24,6 +31,7 @@ fn fma32(x: f32, y: f32, z: f32) f32 {
     }
 }
 
+// NOTE: Upstream fma.c has been rewritten completely to raise fp exceptions more accurately.
 fn fma64(x: f64, y: f64, z: f64) f64 {
     if (!math.isFinite(x) or !math.isFinite(y)) {
         return x * y + z;
std/math/pow.zig
@@ -1,32 +1,36 @@
-// Special Cases:
+// Ported from go, which is licensed under a BSD-3 license.
+// https://golang.org/LICENSE
 //
-//  pow(x, +-0)    = 1 for any x
-//  pow(1, y)      = 1 for any y
-//  pow(x, 1)      = x for any x
-//  pow(nan, y)    = nan
-//  pow(x, nan)    = nan
-//  pow(+-0, y)    = +-inf for y an odd integer < 0
-//  pow(+-0, -inf) = +inf
-//  pow(+-0, +inf) = +0
-//  pow(+-0, y)    = +inf for finite y < 0 and not an odd integer
-//  pow(+-0, y)    = +-0 for y an odd integer > 0
-//  pow(+-0, y)    = +0 for finite y > 0 and not an odd integer
-//  pow(-1, +-inf) = 1
-//  pow(x, +inf)   = +inf for |x| > 1
-//  pow(x, -inf)   = +0 for |x| > 1
-//  pow(x, +inf)   = +0 for |x| < 1
-//  pow(x, -inf)   = +inf for |x| < 1
-//  pow(+inf, y)   = +inf for y > 0
-//  pow(+inf, y)   = +0 for y < 0
-//  pow(-inf, y)   = pow(-0, -y)
-//  pow(x, y)      = nan for finite x < 0 and finite non-integer y
+// https://golang.org/src/math/pow.go
 
 const builtin = @import("builtin");
 const std = @import("../std.zig");
 const math = std.math;
 const expect = std.testing.expect;
 
-// This implementation is taken from the go stlib, musl is a bit more complex.
+/// Returns x raised to the power of y (x^y).
+///
+/// Special Cases:
+///  - pow(x, +-0)    = 1 for any x
+///  - pow(1, y)      = 1 for any y
+///  - pow(x, 1)      = x for any x
+///  - pow(nan, y)    = nan
+///  - pow(x, nan)    = nan
+///  - pow(+-0, y)    = +-inf for y an odd integer < 0
+///  - pow(+-0, -inf) = +inf
+///  - pow(+-0, +inf) = +0
+///  - pow(+-0, y)    = +inf for finite y < 0 and not an odd integer
+///  - pow(+-0, y)    = +-0 for y an odd integer > 0
+///  - pow(+-0, y)    = +0 for finite y > 0 and not an odd integer
+///  - pow(-1, +-inf) = 1
+///  - pow(x, +inf)   = +inf for |x| > 1
+///  - pow(x, -inf)   = +0 for |x| > 1
+///  - pow(x, +inf)   = +0 for |x| < 1
+///  - pow(x, -inf)   = +inf for |x| < 1
+///  - pow(+inf, y)   = +inf for y > 0
+///  - pow(+inf, y)   = +0 for y < 0
+///  - pow(-inf, y)   = pow(-0, -y)
+///  - pow(x, y)      = nan for finite x < 0 and finite non-integer y
 pub fn pow(comptime T: type, x: T, y: T) T {
     if (@typeInfo(T) == builtin.TypeId.Int) {
         return math.powi(T, x, y) catch unreachable;
@@ -53,15 +57,6 @@ pub fn pow(comptime T: type, x: T, y: T) T {
         return x;
     }
 
-    // special case sqrt
-    if (y == 0.5) {
-        return math.sqrt(x);
-    }
-
-    if (y == -0.5) {
-        return 1 / math.sqrt(x);
-    }
-
     if (x == 0) {
         if (y < 0) {
             // pow(+-0, y) = +- 0   for y an odd integer
@@ -112,14 +107,16 @@ pub fn pow(comptime T: type, x: T, y: T) T {
         }
     }
 
-    var ay = y;
-    var flip = false;
-    if (ay < 0) {
-        ay = -ay;
-        flip = true;
+    // special case sqrt
+    if (y == 0.5) {
+        return math.sqrt(x);
+    }
+
+    if (y == -0.5) {
+        return 1 / math.sqrt(x);
     }
 
-    const r1 = math.modf(ay);
+    const r1 = math.modf(math.fabs(y));
     var yi = r1.ipart;
     var yf = r1.fpart;
 
@@ -148,8 +145,18 @@ pub fn pow(comptime T: type, x: T, y: T) T {
     var xe = r2.exponent;
     var x1 = r2.significand;
 
-    var i = @floatToInt(i32, yi);
+    var i = @floatToInt(@IntType(true, T.bit_count), yi);
     while (i != 0) : (i >>= 1) {
+        const overflow_shift = math.floatExponentBits(T) + 1;
+        if (xe < -(1 << overflow_shift) or (1 << overflow_shift) < xe) {
+            // catch xe before it overflows the left shift below
+            // Since i != 0 it has at least one bit still set, so ae will accumulate xe
+            // on at least one more iteration, ae += xe is a lower bound on ae
+            // the lower bound on ae exceeds the size of a float exp
+            // so the final call to Ldexp will produce under/overflow (0/Inf)
+            ae += xe;
+            break;
+        }
         if (i & 1 == 1) {
             a1 *= x1;
             ae += xe;
@@ -163,7 +170,7 @@ pub fn pow(comptime T: type, x: T, y: T) T {
     }
 
     // a *= a1 * 2^ae
-    if (flip) {
+    if (y < 0) {
         a1 = 1 / a1;
         ae = -ae;
     }
@@ -202,6 +209,9 @@ test "math.pow.special" {
     expect(pow(f32, 45, 1.0) == 45);
     expect(pow(f32, -45, 1.0) == -45);
     expect(math.isNan(pow(f32, math.nan(f32), 5.0)));
+    expect(math.isPositiveInf(pow(f32, -math.inf(f32), 0.5)));
+    expect(math.isPositiveInf(pow(f32, -0, -0.5)));
+    expect(pow(f32, -0, 0.5) == 0);
     expect(math.isNan(pow(f32, 5.0, math.nan(f32))));
     expect(math.isPositiveInf(pow(f32, 0.0, -1.0)));
     //expect(math.isNegativeInf(pow(f32, -0.0, -3.0))); TODO is this required?
@@ -232,3 +242,11 @@ test "math.pow.special" {
     expect(math.isNan(pow(f32, -1.0, 1.2)));
     expect(math.isNan(pow(f32, -12.4, 78.5)));
 }
+
+test "math.pow.overflow" {
+    expect(math.isPositiveInf(pow(f64, 2, 1 << 32)));
+    expect(pow(f64, 2, -(1 << 32)) == 0);
+    expect(math.isNegativeInf(pow(f64, -2, (1 << 32) + 1)));
+    expect(pow(f64, 0.5, 1 << 45) == 0);
+    expect(math.isPositiveInf(pow(f64, 0.5, -(1 << 45))));
+}
std/math/sin.zig
@@ -1,19 +1,24 @@
-// Special Cases:
+// Ported from go, which is licensed under a BSD-3 license.
+// https://golang.org/LICENSE
 //
-// - sin(+-0)   = +-0
-// - sin(+-inf) = nan
-// - sin(nan)   = nan
+// https://golang.org/src/math/sin.go
 
 const builtin = @import("builtin");
 const std = @import("../std.zig");
 const math = std.math;
 const expect = std.testing.expect;
 
+/// Returns the sine of the radian value x.
+///
+/// Special Cases:
+///  - sin(+-0)   = +-0
+///  - sin(+-inf) = nan
+///  - sin(nan)   = nan
 pub fn sin(x: var) @typeOf(x) {
     const T = @typeOf(x);
     return switch (T) {
-        f32 => sin32(x),
-        f64 => sin64(x),
+        f32 => sin_(T, x),
+        f64 => sin_(T, x),
         else => @compileError("sin not implemented for " ++ @typeName(T)),
     };
 }
@@ -34,83 +39,27 @@ const C3 = 2.48015872888517045348E-5;
 const C4 = -1.38888888888730564116E-3;
 const C5 = 4.16666666666665929218E-2;
 
-// NOTE: This is taken from the go stdlib. The musl implementation is much more complex.
-//
-// This may have slight differences on some edge cases and may need to replaced if so.
-fn sin32(x_: f32) f32 {
-    const pi4a = 7.85398125648498535156e-1;
-    const pi4b = 3.77489470793079817668E-8;
-    const pi4c = 2.69515142907905952645E-15;
-    const m4pi = 1.273239544735162542821171882678754627704620361328125;
-
-    var x = x_;
-    if (x == 0 or math.isNan(x)) {
-        return x;
-    }
-    if (math.isInf(x)) {
-        return math.nan(f32);
-    }
-
-    var sign = false;
-    if (x < 0) {
-        x = -x;
-        sign = true;
-    }
-
-    var y = math.floor(x * m4pi);
-    var j = @floatToInt(i64, y);
-
-    if (j & 1 == 1) {
-        j += 1;
-        y += 1;
-    }
+const pi4a = 7.85398125648498535156e-1;
+const pi4b = 3.77489470793079817668E-8;
+const pi4c = 2.69515142907905952645E-15;
+const m4pi = 1.273239544735162542821171882678754627704620361328125;
 
-    j &= 7;
-    if (j > 3) {
-        j -= 4;
-        sign = !sign;
-    }
-
-    const z = ((x - y * pi4a) - y * pi4b) - y * pi4c;
-    const w = z * z;
-
-    const r = r: {
-        if (j == 1 or j == 2) {
-            break :r 1.0 - 0.5 * w + w * w * (C5 + w * (C4 + w * (C3 + w * (C2 + w * (C1 + w * C0)))));
-        } else {
-            break :r z + z * w * (S5 + w * (S4 + w * (S3 + w * (S2 + w * (S1 + w * S0)))));
-        }
-    };
-
-    if (sign) {
-        return -r;
-    } else {
-        return r;
-    }
-}
-
-fn sin64(x_: f64) f64 {
-    const pi4a = 7.85398125648498535156e-1;
-    const pi4b = 3.77489470793079817668E-8;
-    const pi4c = 2.69515142907905952645E-15;
-    const m4pi = 1.273239544735162542821171882678754627704620361328125;
+fn sin_(comptime T: type, x_: T) T {
+    const I = @IntType(true, T.bit_count);
 
     var x = x_;
     if (x == 0 or math.isNan(x)) {
         return x;
     }
     if (math.isInf(x)) {
-        return math.nan(f64);
+        return math.nan(T);
     }
 
-    var sign = false;
-    if (x < 0) {
-        x = -x;
-        sign = true;
-    }
+    var sign = x < 0;
+    x = math.fabs(x);
 
     var y = math.floor(x * m4pi);
-    var j = @floatToInt(i64, y);
+    var j = @floatToInt(I, y);
 
     if (j & 1 == 1) {
         j += 1;
@@ -126,61 +75,56 @@ fn sin64(x_: f64) f64 {
     const z = ((x - y * pi4a) - y * pi4b) - y * pi4c;
     const w = z * z;
 
-    const r = r: {
-        if (j == 1 or j == 2) {
-            break :r 1.0 - 0.5 * w + w * w * (C5 + w * (C4 + w * (C3 + w * (C2 + w * (C1 + w * C0)))));
-        } else {
-            break :r z + z * w * (S5 + w * (S4 + w * (S3 + w * (S2 + w * (S1 + w * S0)))));
-        }
-    };
+    const r = if (j == 1 or j == 2)
+        1.0 - 0.5 * w + w * w * (C5 + w * (C4 + w * (C3 + w * (C2 + w * (C1 + w * C0)))))
+    else
+        z + z * w * (S5 + w * (S4 + w * (S3 + w * (S2 + w * (S1 + w * S0)))));
 
-    if (sign) {
-        return -r;
-    } else {
-        return r;
-    }
+    return if (sign) -r else r;
 }
 
 test "math.sin" {
-    expect(sin(f32(0.0)) == sin32(0.0));
-    expect(sin(f64(0.0)) == sin64(0.0));
+    expect(sin(f32(0.0)) == sin_(f32, 0.0));
+    expect(sin(f64(0.0)) == sin_(f64, 0.0));
     expect(comptime (math.sin(f64(2))) == math.sin(f64(2)));
 }
 
 test "math.sin32" {
     const epsilon = 0.000001;
 
-    expect(math.approxEq(f32, sin32(0.0), 0.0, epsilon));
-    expect(math.approxEq(f32, sin32(0.2), 0.198669, epsilon));
-    expect(math.approxEq(f32, sin32(0.8923), 0.778517, epsilon));
-    expect(math.approxEq(f32, sin32(1.5), 0.997495, epsilon));
-    expect(math.approxEq(f32, sin32(37.45), -0.246544, epsilon));
-    expect(math.approxEq(f32, sin32(89.123), 0.916166, epsilon));
+    expect(math.approxEq(f32, sin_(f32, 0.0), 0.0, epsilon));
+    expect(math.approxEq(f32, sin_(f32, 0.2), 0.198669, epsilon));
+    expect(math.approxEq(f32, sin_(f32, 0.8923), 0.778517, epsilon));
+    expect(math.approxEq(f32, sin_(f32, 1.5), 0.997495, epsilon));
+    expect(math.approxEq(f32, sin_(f32, -1.5), -0.997495, epsilon));
+    expect(math.approxEq(f32, sin_(f32, 37.45), -0.246544, epsilon));
+    expect(math.approxEq(f32, sin_(f32, 89.123), 0.916166, epsilon));
 }
 
 test "math.sin64" {
     const epsilon = 0.000001;
 
-    expect(math.approxEq(f64, sin64(0.0), 0.0, epsilon));
-    expect(math.approxEq(f64, sin64(0.2), 0.198669, epsilon));
-    expect(math.approxEq(f64, sin64(0.8923), 0.778517, epsilon));
-    expect(math.approxEq(f64, sin64(1.5), 0.997495, epsilon));
-    expect(math.approxEq(f64, sin64(37.45), -0.246543, epsilon));
-    expect(math.approxEq(f64, sin64(89.123), 0.916166, epsilon));
+    expect(math.approxEq(f64, sin_(f64, 0.0), 0.0, epsilon));
+    expect(math.approxEq(f64, sin_(f64, 0.2), 0.198669, epsilon));
+    expect(math.approxEq(f64, sin_(f64, 0.8923), 0.778517, epsilon));
+    expect(math.approxEq(f64, sin_(f64, 1.5), 0.997495, epsilon));
+    expect(math.approxEq(f64, sin_(f64, -1.5), -0.997495, epsilon));
+    expect(math.approxEq(f64, sin_(f64, 37.45), -0.246543, epsilon));
+    expect(math.approxEq(f64, sin_(f64, 89.123), 0.916166, epsilon));
 }
 
 test "math.sin32.special" {
-    expect(sin32(0.0) == 0.0);
-    expect(sin32(-0.0) == -0.0);
-    expect(math.isNan(sin32(math.inf(f32))));
-    expect(math.isNan(sin32(-math.inf(f32))));
-    expect(math.isNan(sin32(math.nan(f32))));
+    expect(sin_(f32, 0.0) == 0.0);
+    expect(sin_(f32, -0.0) == -0.0);
+    expect(math.isNan(sin_(f32, math.inf(f32))));
+    expect(math.isNan(sin_(f32, -math.inf(f32))));
+    expect(math.isNan(sin_(f32, math.nan(f32))));
 }
 
 test "math.sin64.special" {
-    expect(sin64(0.0) == 0.0);
-    expect(sin64(-0.0) == -0.0);
-    expect(math.isNan(sin64(math.inf(f64))));
-    expect(math.isNan(sin64(-math.inf(f64))));
-    expect(math.isNan(sin64(math.nan(f64))));
+    expect(sin_(f64, 0.0) == 0.0);
+    expect(sin_(f64, -0.0) == -0.0);
+    expect(math.isNan(sin_(f64, math.inf(f64))));
+    expect(math.isNan(sin_(f64, -math.inf(f64))));
+    expect(math.isNan(sin_(f64, math.nan(f64))));
 }
std/math/tan.zig
@@ -1,19 +1,24 @@
-// Special Cases:
+// Ported from go, which is licensed under a BSD-3 license.
+// https://golang.org/LICENSE
 //
-// - tan(+-0)   = +-0
-// - tan(+-inf) = nan
-// - tan(nan)   = nan
+// https://golang.org/src/math/tan.go
 
 const builtin = @import("builtin");
 const std = @import("../std.zig");
 const math = std.math;
 const expect = std.testing.expect;
 
+/// Returns the tangent of the radian value x.
+///
+/// Special Cases:
+///  - tan(+-0)   = +-0
+///  - tan(+-inf) = nan
+///  - tan(nan)   = nan
 pub fn tan(x: var) @typeOf(x) {
     const T = @typeOf(x);
     return switch (T) {
-        f32 => tan32(x),
-        f64 => tan64(x),
+        f32 => tan_(f32, x),
+        f64 => tan_(f64, x),
         else => @compileError("tan not implemented for " ++ @typeName(T)),
     };
 }
@@ -27,80 +32,27 @@ const Tq2 = -1.32089234440210967447E6;
 const Tq3 = 2.50083801823357915839E7;
 const Tq4 = -5.38695755929454629881E7;
 
-// NOTE: This is taken from the go stdlib. The musl implementation is much more complex.
-//
-// This may have slight differences on some edge cases and may need to replaced if so.
-fn tan32(x_: f32) f32 {
-    const pi4a = 7.85398125648498535156e-1;
-    const pi4b = 3.77489470793079817668E-8;
-    const pi4c = 2.69515142907905952645E-15;
-    const m4pi = 1.273239544735162542821171882678754627704620361328125;
-
-    var x = x_;
-    if (x == 0 or math.isNan(x)) {
-        return x;
-    }
-    if (math.isInf(x)) {
-        return math.nan(f32);
-    }
-
-    var sign = false;
-    if (x < 0) {
-        x = -x;
-        sign = true;
-    }
-
-    var y = math.floor(x * m4pi);
-    var j = @floatToInt(i64, y);
-
-    if (j & 1 == 1) {
-        j += 1;
-        y += 1;
-    }
-
-    const z = ((x - y * pi4a) - y * pi4b) - y * pi4c;
-    const w = z * z;
-
-    var r = r: {
-        if (w > 1e-14) {
-            break :r z + z * (w * ((Tp0 * w + Tp1) * w + Tp2) / ((((w + Tq1) * w + Tq2) * w + Tq3) * w + Tq4));
-        } else {
-            break :r z;
-        }
-    };
-
-    if (j & 2 == 2) {
-        r = -1 / r;
-    }
-    if (sign) {
-        r = -r;
-    }
-
-    return r;
-}
+const pi4a = 7.85398125648498535156e-1;
+const pi4b = 3.77489470793079817668E-8;
+const pi4c = 2.69515142907905952645E-15;
+const m4pi = 1.273239544735162542821171882678754627704620361328125;
 
-fn tan64(x_: f64) f64 {
-    const pi4a = 7.85398125648498535156e-1;
-    const pi4b = 3.77489470793079817668E-8;
-    const pi4c = 2.69515142907905952645E-15;
-    const m4pi = 1.273239544735162542821171882678754627704620361328125;
+fn tan_(comptime T: type, x_: T) T {
+    const I = @IntType(true, T.bit_count);
 
     var x = x_;
     if (x == 0 or math.isNan(x)) {
         return x;
     }
     if (math.isInf(x)) {
-        return math.nan(f64);
+        return math.nan(T);
     }
 
-    var sign = false;
-    if (x < 0) {
-        x = -x;
-        sign = true;
-    }
+    var sign = x < 0;
+    x = math.fabs(x);
 
     var y = math.floor(x * m4pi);
-    var j = @floatToInt(i64, y);
+    var j = @floatToInt(I, y);
 
     if (j & 1 == 1) {
         j += 1;
@@ -110,63 +62,57 @@ fn tan64(x_: f64) f64 {
     const z = ((x - y * pi4a) - y * pi4b) - y * pi4c;
     const w = z * z;
 
-    var r = r: {
-        if (w > 1e-14) {
-            break :r z + z * (w * ((Tp0 * w + Tp1) * w + Tp2) / ((((w + Tq1) * w + Tq2) * w + Tq3) * w + Tq4));
-        } else {
-            break :r z;
-        }
-    };
+    var r = if (w > 1e-14)
+        z + z * (w * ((Tp0 * w + Tp1) * w + Tp2) / ((((w + Tq1) * w + Tq2) * w + Tq3) * w + Tq4))
+    else
+        z;
 
     if (j & 2 == 2) {
         r = -1 / r;
     }
-    if (sign) {
-        r = -r;
-    }
 
-    return r;
+    return if (sign) -r else r;
 }
 
 test "math.tan" {
-    expect(tan(f32(0.0)) == tan32(0.0));
-    expect(tan(f64(0.0)) == tan64(0.0));
+    expect(tan(f32(0.0)) == tan_(f32, 0.0));
+    expect(tan(f64(0.0)) == tan_(f64, 0.0));
 }
 
 test "math.tan32" {
     const epsilon = 0.000001;
 
-    expect(math.approxEq(f32, tan32(0.0), 0.0, epsilon));
-    expect(math.approxEq(f32, tan32(0.2), 0.202710, epsilon));
-    expect(math.approxEq(f32, tan32(0.8923), 1.240422, epsilon));
-    expect(math.approxEq(f32, tan32(1.5), 14.101420, epsilon));
-    expect(math.approxEq(f32, tan32(37.45), -0.254397, epsilon));
-    expect(math.approxEq(f32, tan32(89.123), 2.285852, epsilon));
+    expect(math.approxEq(f32, tan_(f32, 0.0), 0.0, epsilon));
+    expect(math.approxEq(f32, tan_(f32, 0.2), 0.202710, epsilon));
+    expect(math.approxEq(f32, tan_(f32, 0.8923), 1.240422, epsilon));
+    expect(math.approxEq(f32, tan_(f32, 1.5), 14.101420, epsilon));
+    expect(math.approxEq(f32, tan_(f32, 37.45), -0.254397, epsilon));
+    expect(math.approxEq(f32, tan_(f32, 89.123), 2.285852, epsilon));
 }
 
 test "math.tan64" {
     const epsilon = 0.000001;
 
-    expect(math.approxEq(f64, tan64(0.0), 0.0, epsilon));
-    expect(math.approxEq(f64, tan64(0.2), 0.202710, epsilon));
-    expect(math.approxEq(f64, tan64(0.8923), 1.240422, epsilon));
-    expect(math.approxEq(f64, tan64(1.5), 14.101420, epsilon));
-    expect(math.approxEq(f64, tan64(37.45), -0.254397, epsilon));
-    expect(math.approxEq(f64, tan64(89.123), 2.2858376, epsilon));
+    expect(math.approxEq(f64, tan_(f64, 0.0), 0.0, epsilon));
+    expect(math.approxEq(f64, tan_(f64, 0.2), 0.202710, epsilon));
+    expect(math.approxEq(f64, tan_(f64, 0.8923), 1.240422, epsilon));
+    expect(math.approxEq(f64, tan_(f64, 1.5), 14.101420, epsilon));
+    expect(math.approxEq(f64, tan_(f64, 37.45), -0.254397, epsilon));
+    expect(math.approxEq(f64, tan_(f64, 89.123), 2.2858376, epsilon));
 }
 
 test "math.tan32.special" {
-    expect(tan32(0.0) == 0.0);
-    expect(tan32(-0.0) == -0.0);
-    expect(math.isNan(tan32(math.inf(f32))));
-    expect(math.isNan(tan32(-math.inf(f32))));
-    expect(math.isNan(tan32(math.nan(f32))));
+    expect(tan_(f32, 0.0) == 0.0);
+    expect(tan_(f32, -0.0) == -0.0);
+    expect(math.isNan(tan_(f32, math.inf(f32))));
+    expect(math.isNan(tan_(f32, -math.inf(f32))));
+    expect(math.isNan(tan_(f32, math.nan(f32))));
 }
 
 test "math.tan64.special" {
-    expect(tan64(0.0) == 0.0);
-    expect(tan64(-0.0) == -0.0);
-    expect(math.isNan(tan64(math.inf(f64))));
-    expect(math.isNan(tan64(-math.inf(f64))));
-    expect(math.isNan(tan64(math.nan(f64))));
+    expect(tan_(f64, 0.0) == 0.0);
+    expect(tan_(f64, -0.0) == -0.0);
+    expect(math.isNan(tan_(f64, math.inf(f64))));
+    expect(math.isNan(tan_(f64, -math.inf(f64))));
+    expect(math.isNan(tan_(f64, math.nan(f64))));
 }