Commit e3ae2cfb52

Andrew Kelley <superjoe30@gmail.com>
2018-08-01 22:26:37
add std.event.RwLock and a few more std changes
* add std.event.RwLock and std.event.RwLocked * std.debug.warn does its printing locked * add std.Mutex, however it's currently implemented as a spinlock * rename std.event.Group.cancelAll to std.event.Group.deinit and change the docs and assumptions. * add std.HashMap.clone
1 parent 3c8d4e0
std/debug/index.zig
@@ -23,7 +23,10 @@ pub const runtime_safety = switch (builtin.mode) {
 var stderr_file: os.File = undefined;
 var stderr_file_out_stream: io.FileOutStream = undefined;
 var stderr_stream: ?*io.OutStream(io.FileOutStream.Error) = null;
+var stderr_mutex = std.Mutex.init();
 pub fn warn(comptime fmt: []const u8, args: ...) void {
+    const held = stderr_mutex.acquire();
+    defer held.release();
     const stderr = getStderrStream() catch return;
     stderr.print(fmt, args) catch return;
 }
std/event/channel.zig
@@ -116,6 +116,10 @@ pub fn Channel(comptime T: type) type {
             return result;
         }
 
+        fn getOrNull(self: *SelfChannel) ?T {
+            TODO();
+        }
+
         fn dispatch(self: *SelfChannel) void {
             // set the "need dispatch" flag
             _ = @atomicRmw(u8, &self.need_dispatch, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
std/event/fs.zig
@@ -253,7 +253,9 @@ pub async fn openReadWrite(
 }
 
 /// This abstraction helps to close file handles in defer expressions
-/// without suspending. Start a CloseOperation before opening a file.
+/// without the possibility of failure and without the use of suspend points.
+/// Start a `CloseOperation` before opening a file, so that you can defer
+/// `CloseOperation.deinit`.
 pub const CloseOperation = struct {
     loop: *event.Loop,
     have_fd: bool,
std/event/group.zig
@@ -29,6 +29,17 @@ pub fn Group(comptime ReturnType: type) type {
             };
         }
 
+        /// Cancel all the outstanding promises. Can be called even if wait was already called.
+        pub fn deinit(self: *Self) void {
+            while (self.coro_stack.pop()) |node| {
+                cancel node.data;
+            }
+            while (self.alloc_stack.pop()) |node| {
+                cancel node.data;
+                self.lock.loop.allocator.destroy(node);
+            }
+        }
+
         /// Add a promise to the group. Thread-safe.
         pub fn add(self: *Self, handle: promise->ReturnType) (error{OutOfMemory}!void) {
             const node = try self.lock.loop.allocator.create(Stack.Node{
@@ -88,7 +99,7 @@ pub fn Group(comptime ReturnType: type) type {
                     await node.data;
                 } else {
                     (await node.data) catch |err| {
-                        self.cancelAll();
+                        self.deinit();
                         return err;
                     };
                 }
@@ -100,25 +111,12 @@ pub fn Group(comptime ReturnType: type) type {
                     await handle;
                 } else {
                     (await handle) catch |err| {
-                        self.cancelAll();
+                        self.deinit();
                         return err;
                     };
                 }
             }
         }
-
-        /// Cancel all the outstanding promises. May only be called if wait was never called.
-        /// TODO These should be `cancelasync` not `cancel`.
-        /// See https://github.com/ziglang/zig/issues/1261
-        pub fn cancelAll(self: *Self) void {
-            while (self.coro_stack.pop()) |node| {
-                cancel node.data;
-            }
-            while (self.alloc_stack.pop()) |node| {
-                cancel node.data;
-                self.lock.loop.allocator.destroy(node);
-            }
-        }
     };
 }
 
std/event/lock.zig
@@ -9,6 +9,7 @@ const Loop = std.event.Loop;
 /// Thread-safe async/await lock.
 /// Does not make any syscalls - coroutines which are waiting for the lock are suspended, and
 /// are resumed when the lock is released, in order.
+/// Allows only one actor to hold the lock.
 pub const Lock = struct {
     loop: *Loop,
     shared_bit: u8, // TODO make this a bool
std/event/rwlock.zig
@@ -0,0 +1,292 @@
+const std = @import("../index.zig");
+const builtin = @import("builtin");
+const assert = std.debug.assert;
+const mem = std.mem;
+const AtomicRmwOp = builtin.AtomicRmwOp;
+const AtomicOrder = builtin.AtomicOrder;
+const Loop = std.event.Loop;
+
+/// Thread-safe async/await lock.
+/// Does not make any syscalls - coroutines which are waiting for the lock are suspended, and
+/// are resumed when the lock is released, in order.
+/// Many readers can hold the lock at the same time; however locking for writing is exclusive.
+pub const RwLock = struct {
+    loop: *Loop,
+    shared_state: u8, // TODO make this an enum
+    writer_queue: Queue,
+    reader_queue: Queue,
+    writer_queue_empty_bit: u8, // TODO make this a bool
+    reader_queue_empty_bit: u8, // TODO make this a bool
+    reader_lock_count: usize,
+
+    const State = struct {
+        const Unlocked = 0;
+        const WriteLock = 1;
+        const ReadLock = 2;
+    };
+
+    const Queue = std.atomic.Queue(promise);
+
+    pub const HeldRead = struct {
+        lock: *RwLock,
+
+        pub fn release(self: HeldRead) void {
+            // If other readers still hold the lock, we're done.
+            if (@atomicRmw(usize, &self.lock.reader_lock_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst) != 1) {
+                return;
+            }
+
+            _ = @atomicRmw(u8, &self.lock.reader_queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
+            if (@cmpxchgStrong(u8, &self.lock.shared_state, State.ReadLock, State.Unlocked, AtomicOrder.SeqCst, AtomicOrder.SeqCst) != null) {
+                // Didn't unlock. Someone else's problem.
+                return;
+            }
+
+            self.lock.commonPostUnlock();
+        }
+    };
+
+    pub const HeldWrite = struct {
+        lock: *RwLock,
+
+        pub fn release(self: HeldWrite) void {
+            // See if we can leave it locked for writing, and pass the lock to the next writer
+            // in the queue to grab the lock.
+            if (self.lock.writer_queue.get()) |node| {
+                self.lock.loop.onNextTick(node);
+                return;
+            }
+
+            // We need to release the write lock. Check if any readers are waiting to grab the lock.
+            if (@atomicLoad(u8, &self.lock.reader_queue_empty_bit, AtomicOrder.SeqCst) == 0) {
+                // Switch to a read lock.
+                _ = @atomicRmw(u8, &self.lock.shared_state, AtomicRmwOp.Xchg, State.ReadLock, AtomicOrder.SeqCst);
+                while (self.lock.reader_queue.get()) |node| {
+                    self.lock.loop.onNextTick(node);
+                }
+                return;
+            }
+
+            _ = @atomicRmw(u8, &self.lock.writer_queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
+            _ = @atomicRmw(u8, &self.lock.shared_state, AtomicRmwOp.Xchg, State.Unlocked, AtomicOrder.SeqCst);
+
+            self.lock.commonPostUnlock();
+        }
+    };
+
+    pub fn init(loop: *Loop) RwLock {
+        return RwLock{
+            .loop = loop,
+            .shared_state = State.Unlocked,
+            .writer_queue = Queue.init(),
+            .writer_queue_empty_bit = 1,
+            .reader_queue = Queue.init(),
+            .reader_queue_empty_bit = 1,
+            .reader_lock_count = 0,
+        };
+    }
+
+    /// Must be called when not locked. Not thread safe.
+    /// All calls to acquire() and release() must complete before calling deinit().
+    pub fn deinit(self: *RwLock) void {
+        assert(self.shared_state == State.Unlocked);
+        while (self.writer_queue.get()) |node| cancel node.data;
+        while (self.reader_queue.get()) |node| cancel node.data;
+    }
+
+    pub async fn acquireRead(self: *RwLock) HeldRead {
+        _ = @atomicRmw(usize, &self.reader_lock_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
+
+        suspend |handle| {
+            // TODO explicitly put this memory in the coroutine frame #1194
+            var my_tick_node = Loop.NextTickNode{
+                .data = handle,
+                .next = undefined,
+            };
+
+            self.reader_queue.put(&my_tick_node);
+
+            // At this point, we are in the reader_queue, so we might have already been resumed and this coroutine
+            // frame might be destroyed. For the rest of the suspend block we cannot access the coroutine frame.
+
+            // We set this bit so that later we can rely on the fact, that if reader_queue_empty_bit is 1,
+            // some actor will attempt to grab the lock.
+            _ = @atomicRmw(u8, &self.reader_queue_empty_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
+
+            // Here we don't care if we are the one to do the locking or if it was already locked for reading.
+            const have_read_lock = if (@cmpxchgStrong(u8, &self.shared_state, State.Unlocked, State.ReadLock, AtomicOrder.SeqCst, AtomicOrder.SeqCst)) |old_state| old_state == State.ReadLock else true;
+            if (have_read_lock) {
+                // Give out all the read locks.
+                if (self.reader_queue.get()) |first_node| {
+                    while (self.reader_queue.get()) |node| {
+                        self.loop.onNextTick(node);
+                    }
+                    resume first_node.data;
+                }
+            }
+        }
+        return HeldRead{ .lock = self };
+    }
+
+    pub async fn acquireWrite(self: *RwLock) HeldWrite {
+        suspend |handle| {
+            // TODO explicitly put this memory in the coroutine frame #1194
+            var my_tick_node = Loop.NextTickNode{
+                .data = handle,
+                .next = undefined,
+            };
+
+            self.writer_queue.put(&my_tick_node);
+
+            // At this point, we are in the writer_queue, so we might have already been resumed and this coroutine
+            // frame might be destroyed. For the rest of the suspend block we cannot access the coroutine frame.
+
+            // We set this bit so that later we can rely on the fact, that if writer_queue_empty_bit is 1,
+            // some actor will attempt to grab the lock.
+            _ = @atomicRmw(u8, &self.writer_queue_empty_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
+
+            // Here we must be the one to acquire the write lock. It cannot already be locked.
+            if (@cmpxchgStrong(u8, &self.shared_state, State.Unlocked, State.WriteLock, AtomicOrder.SeqCst, AtomicOrder.SeqCst) == null) {
+                // We now have a write lock.
+                if (self.writer_queue.get()) |node| {
+                    // Whether this node is us or someone else, we tail resume it.
+                    resume node.data;
+                }
+            }
+        }
+        return HeldWrite{ .lock = self };
+    }
+
+    fn commonPostUnlock(self: *RwLock) void {
+        while (true) {
+            // There might be a writer_queue item or a reader_queue item
+            // If we check and both are empty, we can be done, because the other actors will try to
+            // obtain the lock.
+            // But if there's a writer_queue item or a reader_queue item,
+            // we are the actor which must loop and attempt to grab the lock again.
+            if (@atomicLoad(u8, &self.writer_queue_empty_bit, AtomicOrder.SeqCst) == 0) {
+                if (@cmpxchgStrong(u8, &self.shared_state, State.Unlocked, State.WriteLock, AtomicOrder.SeqCst, AtomicOrder.SeqCst) != null) {
+                    // We did not obtain the lock. Great, the queues are someone else's problem.
+                    return;
+                }
+                // If there's an item in the writer queue, give them the lock, and we're done.
+                if (self.writer_queue.get()) |node| {
+                    self.loop.onNextTick(node);
+                    return;
+                }
+                // Release the lock again.
+                _ = @atomicRmw(u8, &self.writer_queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
+                _ = @atomicRmw(u8, &self.shared_state, AtomicRmwOp.Xchg, State.Unlocked, AtomicOrder.SeqCst);
+                continue;
+            }
+
+            if (@atomicLoad(u8, &self.reader_queue_empty_bit, AtomicOrder.SeqCst) == 0) {
+                if (@cmpxchgStrong(u8, &self.shared_state, State.Unlocked, State.ReadLock, AtomicOrder.SeqCst, AtomicOrder.SeqCst) != null) {
+                    // We did not obtain the lock. Great, the queues are someone else's problem.
+                    return;
+                }
+                // If there are any items in the reader queue, give out all the reader locks, and we're done.
+                if (self.reader_queue.get()) |first_node| {
+                    self.loop.onNextTick(first_node);
+                    while (self.reader_queue.get()) |node| {
+                        self.loop.onNextTick(node);
+                    }
+                    return;
+                }
+                // Release the lock again.
+                _ = @atomicRmw(u8, &self.reader_queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
+                if (@cmpxchgStrong(u8, &self.shared_state, State.ReadLock, State.Unlocked, AtomicOrder.SeqCst, AtomicOrder.SeqCst) != null) {
+                    // Didn't unlock. Someone else's problem.
+                    return;
+                }
+                continue;
+            }
+            return;
+        }
+    }
+};
+
+test "std.event.RwLock" {
+    var da = std.heap.DirectAllocator.init();
+    defer da.deinit();
+
+    const allocator = &da.allocator;
+
+    var loop: Loop = undefined;
+    try loop.initMultiThreaded(allocator);
+    defer loop.deinit();
+
+    var lock = RwLock.init(&loop);
+    defer lock.deinit();
+
+    const handle = try async<allocator> testLock(&loop, &lock);
+    defer cancel handle;
+    loop.run();
+
+    const expected_result = [1]i32{shared_it_count * @intCast(i32, shared_test_data.len)} ** shared_test_data.len;
+    assert(mem.eql(i32, shared_test_data, expected_result));
+}
+
+async fn testLock(loop: *Loop, lock: *RwLock) void {
+    // TODO explicitly put next tick node memory in the coroutine frame #1194
+    suspend |p| {
+        resume p;
+    }
+
+    var read_nodes: [100]Loop.NextTickNode = undefined;
+    for (read_nodes) |*read_node| {
+        read_node.data = async readRunner(lock) catch @panic("out of memory");
+        loop.onNextTick(read_node);
+    }
+
+    var write_nodes: [shared_it_count]Loop.NextTickNode = undefined;
+    for (write_nodes) |*write_node| {
+        write_node.data = async writeRunner(lock) catch @panic("out of memory");
+        loop.onNextTick(write_node);
+    }
+
+    for (write_nodes) |*write_node| {
+        await @ptrCast(promise->void, write_node.data);
+    }
+    for (read_nodes) |*read_node| {
+        await @ptrCast(promise->void, read_node.data);
+    }
+}
+
+const shared_it_count = 10;
+var shared_test_data = [1]i32{0} ** 10;
+var shared_test_index: usize = 0;
+var shared_count: usize = 0;
+
+async fn writeRunner(lock: *RwLock) void {
+    suspend; // resumed by onNextTick
+
+    var i: usize = 0;
+    while (i < shared_test_data.len) : (i += 1) {
+        std.os.time.sleep(0, 100000);
+        const lock_promise = async lock.acquireWrite() catch @panic("out of memory");
+        const handle = await lock_promise;
+        defer handle.release();
+
+        shared_count += 1;
+        while (shared_test_index < shared_test_data.len) : (shared_test_index += 1) {
+            shared_test_data[shared_test_index] = shared_test_data[shared_test_index] + 1;
+        }
+        shared_test_index = 0;
+    }
+}
+
+async fn readRunner(lock: *RwLock) void {
+    suspend; // resumed by onNextTick
+    std.os.time.sleep(0, 1);
+
+    var i: usize = 0;
+    while (i < shared_test_data.len) : (i += 1) {
+        const lock_promise = async lock.acquireRead() catch @panic("out of memory");
+        const handle = await lock_promise;
+        defer handle.release();
+
+        assert(shared_test_index == 0);
+        assert(shared_test_data[i] == @intCast(i32, shared_count));
+    }
+}
std/event/rwlocked.zig
@@ -0,0 +1,58 @@
+const std = @import("../index.zig");
+const RwLock = std.event.RwLock;
+const Loop = std.event.Loop;
+
+/// Thread-safe async/await RW lock that protects one piece of data.
+/// Does not make any syscalls - coroutines which are waiting for the lock are suspended, and
+/// are resumed when the lock is released, in order.
+pub fn RwLocked(comptime T: type) type {
+    return struct {
+        lock: RwLock,
+        locked_data: T,
+
+        const Self = this;
+
+        pub const HeldReadLock = struct {
+            value: *const T,
+            held: RwLock.HeldRead,
+
+            pub fn release(self: HeldReadLock) void {
+                self.held.release();
+            }
+        };
+
+        pub const HeldWriteLock = struct {
+            value: *T,
+            held: RwLock.HeldWrite,
+
+            pub fn release(self: HeldWriteLock) void {
+                self.held.release();
+            }
+        };
+
+        pub fn init(loop: *Loop, data: T) Self {
+            return Self{
+                .lock = RwLock.init(loop),
+                .locked_data = data,
+            };
+        }
+
+        pub fn deinit(self: *Self) void {
+            self.lock.deinit();
+        }
+
+        pub async fn acquireRead(self: *Self) HeldReadLock {
+            return HeldReadLock{
+                .held = await (async self.lock.acquireRead() catch unreachable),
+                .value = &self.locked_data,
+            };
+        }
+
+        pub async fn acquireWrite(self: *Self) HeldWriteLock {
+            return HeldWriteLock{
+                .held = await (async self.lock.acquireWrite() catch unreachable),
+                .value = &self.locked_data,
+            };
+        }
+    };
+}
std/event/tcp.zig
@@ -61,7 +61,7 @@ pub const Server = struct {
 
     /// Stop listening
     pub fn close(self: *Server) void {
-        self.loop.removeFd(self.sockfd.?);
+        self.loop.linuxRemoveFd(self.sockfd.?);
         std.os.close(self.sockfd.?);
     }
 
@@ -116,7 +116,7 @@ pub async fn connect(loop: *Loop, _address: *const std.net.Address) !std.os.File
     errdefer std.os.close(sockfd);
 
     try std.os.posixConnectAsync(sockfd, &address.os_addr);
-    try await try async loop.linuxWaitFd(sockfd, posix.EPOLLIN | posix.EPOLLOUT);
+    try await try async loop.linuxWaitFd(sockfd, posix.EPOLLIN | posix.EPOLLOUT | posix.EPOLLET);
     try std.os.posixGetSockOptConnectError(sockfd);
 
     return std.os.File.openHandle(sockfd);
std/event.zig
@@ -3,6 +3,8 @@ pub const Future = @import("event/future.zig").Future;
 pub const Group = @import("event/group.zig").Group;
 pub const Lock = @import("event/lock.zig").Lock;
 pub const Locked = @import("event/locked.zig").Locked;
+pub const RwLock = @import("event/rwlock.zig").Lock;
+pub const RwLocked = @import("event/rwlocked.zig").RwLocked;
 pub const Loop = @import("event/loop.zig").Loop;
 pub const fs = @import("event/fs.zig");
 pub const tcp = @import("event/tcp.zig");
@@ -14,6 +16,8 @@ test "import event tests" {
     _ = @import("event/group.zig");
     _ = @import("event/lock.zig");
     _ = @import("event/locked.zig");
+    _ = @import("event/rwlock.zig");
+    _ = @import("event/rwlocked.zig");
     _ = @import("event/loop.zig");
     _ = @import("event/tcp.zig");
 }
std/hash_map.zig
@@ -163,6 +163,16 @@ pub fn HashMap(comptime K: type, comptime V: type, comptime hash: fn (key: K) u3
             };
         }
 
+        pub fn clone(self: Self) !Self {
+            var other = Self.init(self.allocator);
+            try other.initCapacity(self.entries.len);
+            var it = self.iterator();
+            while (it.next()) |entry| {
+                try other.put(entry.key, entry.value);
+            }
+            return other;
+        }
+
         fn initCapacity(hm: *Self, capacity: usize) !void {
             hm.entries = try hm.allocator.alloc(Entry, capacity);
             hm.size = 0;
std/index.zig
@@ -9,6 +9,7 @@ pub const LinkedList = @import("linked_list.zig").LinkedList;
 pub const IntrusiveLinkedList = @import("linked_list.zig").IntrusiveLinkedList;
 pub const SegmentedList = @import("segmented_list.zig").SegmentedList;
 pub const DynLib = @import("dynamic_library.zig").DynLib;
+pub const Mutex = @import("mutex.zig").Mutex;
 
 pub const atomic = @import("atomic/index.zig");
 pub const base64 = @import("base64.zig");
@@ -48,6 +49,7 @@ test "std" {
     _ = @import("hash_map.zig");
     _ = @import("linked_list.zig");
     _ = @import("segmented_list.zig");
+    _ = @import("mutex.zig");
 
     _ = @import("base64.zig");
     _ = @import("build.zig");
std/mutex.zig
@@ -0,0 +1,27 @@
+const std = @import("index.zig");
+const builtin = @import("builtin");
+const AtomicOrder = builtin.AtomicOrder;
+const AtomicRmwOp = builtin.AtomicRmwOp;
+const assert = std.debug.assert;
+
+/// TODO use syscalls instead of a spinlock
+pub const Mutex = struct {
+    lock: u8, // TODO use a bool
+
+    pub const Held = struct {
+        mutex: *Mutex,
+
+        pub fn release(self: Held) void {
+            assert(@atomicRmw(u8, &self.mutex.lock, builtin.AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst) == 1);
+        }
+    };
+
+    pub fn init() Mutex {
+        return Mutex{ .lock = 0 };
+    }
+
+    pub fn acquire(self: *Mutex) Held {
+        while (@atomicRmw(u8, &self.lock, builtin.AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst) != 0) {}
+        return Held{ .mutex = self };
+    }
+};
CMakeLists.txt
@@ -466,6 +466,8 @@ set(ZIG_STD_FILES
     "event/lock.zig"
     "event/locked.zig"
     "event/loop.zig"
+    "event/rwlock.zig"
+    "event/rwlocked.zig"
     "event/tcp.zig"
     "fmt/errol/enum3.zig"
     "fmt/errol/index.zig"
@@ -554,6 +556,7 @@ set(ZIG_STD_FILES
     "math/tanh.zig"
     "math/trunc.zig"
     "mem.zig"
+    "mutex.zig"
     "net.zig"
     "os/child_process.zig"
     "os/darwin.zig"