Commit cc774c603b

LemonBoy <thatlemon@gmail.com>
2020-03-24 11:09:47
compiler-rt: Add __divtf3
1 parent 4e95662
Changed files (4)
lib/std/special/compiler_rt/divdf3.zig
@@ -203,7 +203,7 @@ pub fn __divdf3(a: f64, b: f64) callconv(.C) f64 {
     }
 }
 
-fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void {
+pub fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void {
     @setRuntimeSafety(builtin.is_test);
     switch (Z) {
         u32 => {
@@ -312,7 +312,7 @@ fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void {
     }
 }
 
-fn normalize(comptime T: type, significand: *std.meta.IntType(false, T.bit_count)) i32 {
+pub fn normalize(comptime T: type, significand: *std.meta.IntType(false, T.bit_count)) i32 {
     @setRuntimeSafety(builtin.is_test);
     const Z = std.meta.IntType(false, T.bit_count);
     const significandBits = std.math.floatMantissaBits(T);
lib/std/special/compiler_rt/divtf3.zig
@@ -0,0 +1,228 @@
+const std = @import("std");
+const builtin = @import("builtin");
+
+const normalize = @import("divdf3.zig").normalize;
+const wideMultiply = @import("divdf3.zig").wideMultiply;
+
+pub fn __divtf3(a: f128, b: f128) callconv(.C) f128 {
+    @setRuntimeSafety(builtin.is_test);
+    const Z = std.meta.IntType(false, f128.bit_count);
+    const SignedZ = std.meta.IntType(true, f128.bit_count);
+
+    const typeWidth = f128.bit_count;
+    const significandBits = std.math.floatMantissaBits(f128);
+    const exponentBits = std.math.floatExponentBits(f128);
+
+    const signBit = (@as(Z, 1) << (significandBits + exponentBits));
+    const maxExponent = ((1 << exponentBits) - 1);
+    const exponentBias = (maxExponent >> 1);
+
+    const implicitBit = (@as(Z, 1) << significandBits);
+    const quietBit = implicitBit >> 1;
+    const significandMask = implicitBit - 1;
+
+    const absMask = signBit - 1;
+    const exponentMask = absMask ^ significandMask;
+    const qnanRep = exponentMask | quietBit;
+    const infRep = @bitCast(Z, std.math.inf(f128));
+
+    const aExponent = @truncate(u32, (@bitCast(Z, a) >> significandBits) & maxExponent);
+    const bExponent = @truncate(u32, (@bitCast(Z, b) >> significandBits) & maxExponent);
+    const quotientSign: Z = (@bitCast(Z, a) ^ @bitCast(Z, b)) & signBit;
+
+    var aSignificand: Z = @bitCast(Z, a) & significandMask;
+    var bSignificand: Z = @bitCast(Z, b) & significandMask;
+    var scale: i32 = 0;
+
+    // Detect if a or b is zero, denormal, infinity, or NaN.
+    if (aExponent -% 1 >= maxExponent -% 1 or bExponent -% 1 >= maxExponent -% 1) {
+        const aAbs: Z = @bitCast(Z, a) & absMask;
+        const bAbs: Z = @bitCast(Z, b) & absMask;
+
+        // NaN / anything = qNaN
+        if (aAbs > infRep) return @bitCast(f128, @bitCast(Z, a) | quietBit);
+        // anything / NaN = qNaN
+        if (bAbs > infRep) return @bitCast(f128, @bitCast(Z, b) | quietBit);
+
+        if (aAbs == infRep) {
+            // infinity / infinity = NaN
+            if (bAbs == infRep) {
+                return @bitCast(f128, qnanRep);
+            }
+            // infinity / anything else = +/- infinity
+            else {
+                return @bitCast(f128, aAbs | quotientSign);
+            }
+        }
+
+        // anything else / infinity = +/- 0
+        if (bAbs == infRep) return @bitCast(f128, quotientSign);
+
+        if (aAbs == 0) {
+            // zero / zero = NaN
+            if (bAbs == 0) {
+                return @bitCast(f128, qnanRep);
+            }
+            // zero / anything else = +/- zero
+            else {
+                return @bitCast(f128, quotientSign);
+            }
+        }
+        // anything else / zero = +/- infinity
+        if (bAbs == 0) return @bitCast(f128, infRep | quotientSign);
+
+        // one or both of a or b is denormal, the other (if applicable) is a
+        // normal number.  Renormalize one or both of a and b, and set scale to
+        // include the necessary exponent adjustment.
+        if (aAbs < implicitBit) scale +%= normalize(f128, &aSignificand);
+        if (bAbs < implicitBit) scale -%= normalize(f128, &bSignificand);
+    }
+
+    // Set the implicit significand bit.  If we fell through from the
+    // denormal path it was already set by normalize( ), but setting it twice
+    // won't hurt anything.
+    aSignificand |= implicitBit;
+    bSignificand |= implicitBit;
+    var quotientExponent: i32 = @bitCast(i32, aExponent -% bExponent) +% scale;
+
+    // Align the significand of b as a Q63 fixed-point number in the range
+    // [1, 2.0) and get a Q64 approximate reciprocal using a small minimax
+    // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
+    // is accurate to about 3.5 binary digits.
+    const q63b = @truncate(u64, bSignificand >> 49);
+    var recip64 = @as(u64, 0x7504f333F9DE6484) -% q63b;
+    // 0x7504f333F9DE6484 / 2^64 + 1 = 3/4 + 1/sqrt(2)
+
+    // Now refine the reciprocal estimate using a Newton-Raphson iteration:
+    //
+    //     x1 = x0 * (2 - x0 * b)
+    //
+    // This doubles the number of correct binary digits in the approximation
+    // with each iteration.
+    var correction64: u64 = undefined;
+    correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
+    recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
+    correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
+    recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
+    correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
+    recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
+    correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
+    recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
+    correction64 = @truncate(u64, ~(@as(u128, recip64) *% q63b >> 64) +% 1);
+    recip64 = @truncate(u64, @as(u128, recip64) *% correction64 >> 63);
+
+    // The reciprocal may have overflowed to zero if the upper half of b is
+    // exactly 1.0.  This would sabatoge the full-width final stage of the
+    // computation that follows, so we adjust the reciprocal down by one bit.
+    recip64 -%= 1;
+
+    // We need to perform one more iteration to get us to 112 binary digits;
+    // The last iteration needs to happen with extra precision.
+    const q127blo: u64 = @truncate(u64, bSignificand << 15);
+    var correction: u128 = undefined;
+    var reciprocal: u128 = undefined;
+
+    // NOTE: This operation is equivalent to __multi3, which is not implemented
+    //       in some architechure
+    var r64q63: u128 = undefined;
+    var r64q127: u128 = undefined;
+    var r64cH: u128 = undefined;
+    var r64cL: u128 = undefined;
+    var dummy: u128 = undefined;
+    wideMultiply(u128, recip64, q63b, &dummy, &r64q63);
+    wideMultiply(u128, recip64, q127blo, &dummy, &r64q127);
+
+    correction = -%(r64q63 + (r64q127 >> 64));
+
+    const cHi = @truncate(u64, correction >> 64);
+    const cLo = @truncate(u64, correction);
+
+    wideMultiply(u128, recip64, cHi, &dummy, &r64cH);
+    wideMultiply(u128, recip64, cLo, &dummy, &r64cL);
+
+    reciprocal = r64cH + (r64cL >> 64);
+
+    // Adjust the final 128-bit reciprocal estimate downward to ensure that it
+    // is strictly smaller than the infinitely precise exact reciprocal. Because
+    // the computation of the Newton-Raphson step is truncating at every step,
+    // this adjustment is small; most of the work is already done.
+    reciprocal -%= 2;
+
+    // The numerical reciprocal is accurate to within 2^-112, lies in the
+    // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
+    // of b.  Multiplying a by this reciprocal thus gives a numerical q = a/b
+    // in Q127 with the following properties:
+    //
+    //    1. q < a/b
+    //    2. q is in the interval [0.5, 2.0)
+    //    3. The error in q is bounded away from 2^-113 (actually, we have a
+    //       couple of bits to spare, but this is all we need).
+
+    // We need a 128 x 128 multiply high to compute q.
+    var quotient: u128 = undefined;
+    var quotientLo: u128 = undefined;
+    wideMultiply(u128, aSignificand << 2, reciprocal, &quotient, &quotientLo);
+
+    // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
+    // In either case, we are going to compute a residual of the form
+    //
+    //     r = a - q*b
+    //
+    // We know from the construction of q that r satisfies:
+    //
+    //     0 <= r < ulp(q)*b
+    //
+    // If r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
+    // already have the correct result.  The exact halfway case cannot occur.
+    // We also take this time to right shift quotient if it falls in the [1,2)
+    // range and adjust the exponent accordingly.
+    var residual: u128 = undefined;
+    var qb: u128 = undefined;
+
+    if (quotient < (implicitBit << 1)) {
+        wideMultiply(u128, quotient, bSignificand, &dummy, &qb);
+        residual = (aSignificand << 113) -% qb;
+        quotientExponent -%= 1;
+    } else {
+        quotient >>= 1;
+        wideMultiply(u128, quotient, bSignificand, &dummy, &qb);
+        residual = (aSignificand << 112) -% qb;
+    }
+
+    const writtenExponent = quotientExponent +% exponentBias;
+
+    if (writtenExponent >= maxExponent) {
+        // If we have overflowed the exponent, return infinity.
+        return @bitCast(f128, infRep | quotientSign);
+    } else if (writtenExponent < 1) {
+        if (writtenExponent == 0) {
+            // Check whether the rounded result is normal.
+            const round = @boolToInt((residual << 1) > bSignificand);
+            // Clear the implicit bit.
+            var absResult = quotient & significandMask;
+            // Round.
+            absResult += round;
+            if ((absResult & ~significandMask) > 0) {
+                // The rounded result is normal; return it.
+                return @bitCast(f128, absResult | quotientSign);
+            }
+        }
+        // Flush denormals to zero.  In the future, it would be nice to add
+        // code to round them correctly.
+        return @bitCast(f128, quotientSign);
+    } else {
+        const round = @boolToInt((residual << 1) >= bSignificand);
+        // Clear the implicit bit
+        var absResult = quotient & significandMask;
+        // Insert the exponent
+        absResult |= @intCast(Z, writtenExponent) << significandBits;
+        // Round
+        absResult +%= round;
+        // Insert the sign and return
+        return @bitCast(f128, absResult | quotientSign);
+    }
+}
+
+test "import divtf3" {
+    _ = @import("divtf3_test.zig");
+}
lib/std/special/compiler_rt/divtf3_test.zig
@@ -0,0 +1,46 @@
+const std = @import("std");
+const math = std.math;
+const testing = std.testing;
+
+const __divtf3 = @import("divtf3.zig").__divtf3;
+
+fn compareResultLD(result: f128, expectedHi: u64, expectedLo: u64) bool {
+    const rep = @bitCast(u128, result);
+    const hi = @truncate(u64, rep >> 64);
+    const lo = @truncate(u64, rep);
+
+    if (hi == expectedHi and lo == expectedLo) {
+        return true;
+    }
+    // test other possible NaN representation(signal NaN)
+    else if (expectedHi == 0x7fff800000000000 and expectedLo == 0) {
+        if ((hi & 0x7fff000000000000) == 0x7fff000000000000 and
+            ((hi & 0xffffffffffff) > 0 or lo > 0))
+        {
+            return true;
+        }
+    }
+    return false;
+}
+
+fn test__divtf3(a: f128, b: f128, expectedHi: u64, expectedLo: u64) void {
+    const x = __divtf3(a, b);
+    const ret = compareResultLD(x, expectedHi, expectedLo);
+    testing.expect(ret == true);
+}
+
+test "divtf3" {
+    // qNaN / any = qNaN
+    test__divtf3(math.qnan_f128, 0x1.23456789abcdefp+5, 0x7fff800000000000, 0);
+    // NaN / any = NaN
+    test__divtf3(math.nan_f128, 0x1.23456789abcdefp+5, 0x7fff800000000000, 0);
+    // inf / any = inf
+    test__divtf3(math.inf_f128, 0x1.23456789abcdefp+5, 0x7fff000000000000, 0);
+
+    test__divtf3(0x1.a23b45362464523375893ab4cdefp+5, 0x1.eedcbaba3a94546558237654321fp-1, 0x4004b0b72924d407, 0x0717e84356c6eba2);
+    test__divtf3(0x1.a2b34c56d745382f9abf2c3dfeffp-50, 0x1.ed2c3ba15935332532287654321fp-9, 0x3fd5b2af3f828c9b, 0x40e51f64cde8b1f2);
+    test__divtf3(0x1.2345f6aaaa786555f42432abcdefp+456, 0x1.edacbba9874f765463544dd3621fp+6400, 0x28c62e15dc464466, 0xb5a07586348557ac);
+    test__divtf3(0x1.2d3456f789ba6322bc665544edefp-234, 0x1.eddcdba39f3c8b7a36564354321fp-4455, 0x507b38442b539266, 0x22ce0f1d024e1252);
+    test__divtf3(0x1.2345f6b77b7a8953365433abcdefp+234, 0x1.edcba987d6bb3aa467754354321fp-4055, 0x50bf2e02f0798d36, 0x5e6fcb6b60044078);
+    test__divtf3(6.72420628622418701252535563464350521E-4932, 2.0, 0x0001000000000000, 0);
+}
lib/std/special/compiler_rt.zig
@@ -67,6 +67,7 @@ comptime {
 
     @export(@import("compiler_rt/divsf3.zig").__divsf3, .{ .name = "__divsf3", .linkage = linkage });
     @export(@import("compiler_rt/divdf3.zig").__divdf3, .{ .name = "__divdf3", .linkage = linkage });
+    @export(@import("compiler_rt/divtf3.zig").__divtf3, .{ .name = "__divtf3", .linkage = linkage });
 
     @export(@import("compiler_rt/ashlti3.zig").__ashlti3, .{ .name = "__ashlti3", .linkage = linkage });
     @export(@import("compiler_rt/lshrti3.zig").__lshrti3, .{ .name = "__lshrti3", .linkage = linkage });