Commit bb3b5d09cc
Changed files (4)
lib
lib/std/crypto/benchmark.zig
@@ -30,7 +30,6 @@ const hashes = [_]Crypto{
Crypto{ .ty = crypto.hash.sha3.Shake256, .name = "shake-256" },
Crypto{ .ty = crypto.hash.sha3.TurboShake128(null), .name = "turboshake-128" },
Crypto{ .ty = crypto.hash.sha3.TurboShake256(null), .name = "turboshake-256" },
- Crypto{ .ty = crypto.hash.sha3.KT128, .name = "kt128" },
Crypto{ .ty = crypto.hash.blake2.Blake2s256, .name = "blake2s" },
Crypto{ .ty = crypto.hash.blake2.Blake2b512, .name = "blake2b" },
Crypto{ .ty = crypto.hash.Blake3, .name = "blake3" },
@@ -38,7 +37,6 @@ const hashes = [_]Crypto{
const parallel_hashes = [_]Crypto{
Crypto{ .ty = crypto.hash.Blake3, .name = "blake3-parallel" },
- Crypto{ .ty = crypto.hash.sha3.KT128, .name = "kt128-parallel" },
};
const block_size: usize = 8 * 8192;
lib/std/crypto/blake3.zig
@@ -12,8 +12,8 @@ const Vec16 = @Vector(16, u32);
const chunk_length = 1024;
const max_depth = 54;
-const simd_degree = std.simd.suggestVectorLength(u32) orelse 1;
-const max_simd_degree = simd_degree;
+pub const simd_degree = std.simd.suggestVectorLength(u32) orelse 1;
+pub const max_simd_degree = simd_degree;
const max_simd_degree_or_2 = if (max_simd_degree > 2) max_simd_degree else 2;
/// Threshold for switching to parallel processing.
@@ -502,7 +502,9 @@ fn hashManySimd(
var out_ptr = out.ptr;
var cnt = counter;
- if (simd_degree >= 16) {
+ const simd_deg = comptime simd_degree;
+
+ if (comptime simd_deg >= 16) {
while (remaining >= 16) {
const sixteen_inputs = [16][*]const u8{
inp[0], inp[1], inp[2], inp[3],
@@ -523,7 +525,7 @@ fn hashManySimd(
}
}
- if (simd_degree >= 8) {
+ if (comptime simd_deg >= 8) {
while (remaining >= 8) {
const eight_inputs = [8][*]const u8{
inp[0], inp[1], inp[2], inp[3],
@@ -542,7 +544,7 @@ fn hashManySimd(
}
}
- if (simd_degree >= 4) {
+ if (comptime simd_deg >= 4) {
while (remaining >= 4) {
const four_inputs = [4][*]const u8{
inp[0],
@@ -569,7 +571,7 @@ fn hashManySimd(
}
fn hashMany(inputs: [][*]const u8, num_inputs: usize, blocks: usize, key: [8]u32, counter: u64, increment_counter: bool, flags: Flags, flags_start: Flags, flags_end: Flags, out: []u8) void {
- if (max_simd_degree >= 4) {
+ if (comptime max_simd_degree >= 4) {
hashManySimd(inputs, num_inputs, blocks, key, counter, increment_counter, flags, flags_start, flags_end, out);
} else {
hashManyPortable(inputs, num_inputs, blocks, key, counter, increment_counter, flags, flags_start, flags_end, out);
@@ -907,7 +909,7 @@ pub const Blake3 = struct {
pub const digest_length = 32;
pub const key_length = 32;
- pub const Options = struct { key: ?[key_length]u8 = null };
+ pub const Options = struct { key: ?[digest_length]u8 = null };
pub const KdfOptions = struct {};
key: [8]u32,
lib/std/crypto/kangarootwelve.zig
@@ -1,1967 +0,0 @@
-const std = @import("std");
-const builtin = @import("builtin");
-const crypto = std.crypto;
-const Allocator = std.mem.Allocator;
-const Io = std.Io;
-const Thread = std.Thread;
-
-const TurboSHAKE128State = crypto.hash.sha3.TurboShake128(0x06);
-const TurboSHAKE256State = crypto.hash.sha3.TurboShake256(0x06);
-
-const chunk_size: usize = 8192; // Chunk size for tree hashing (8 KiB)
-const cache_line_size = std.atomic.cache_line;
-
-// Optimal SIMD vector length for u64 on this target platform
-const optimal_vector_len = std.simd.suggestVectorLength(u64) orelse 1;
-
-// Multi-threading threshold: inputs larger than this will use parallel processing.
-// Benchmarked optimal value for ReleaseFast mode.
-const large_file_threshold: usize = 2 * 1024 * 1024; // 2 MB
-
-// Round constants for Keccak-p[1600,12]
-const RC = [12]u64{
- 0x000000008000808B,
- 0x800000000000008B,
- 0x8000000000008089,
- 0x8000000000008003,
- 0x8000000000008002,
- 0x8000000000000080,
- 0x000000000000800A,
- 0x800000008000000A,
- 0x8000000080008081,
- 0x8000000000008080,
- 0x0000000080000001,
- 0x8000000080008008,
-};
-
-/// Generic KangarooTwelve variant builder.
-/// Creates a variant type with specific cryptographic parameters.
-fn KangarooVariant(
- comptime security_level_bits: comptime_int,
- comptime rate_bytes: usize,
- comptime cv_size_bytes: usize,
- comptime StateTypeParam: type,
- comptime sep_x: usize,
- comptime sep_y: usize,
- comptime pad_x: usize,
- comptime pad_y: usize,
- comptime toBufferFn: fn (*const MultiSliceView, u8, []u8) void,
- comptime allocFn: fn (Allocator, *const MultiSliceView, u8, usize) anyerror![]u8,
-) type {
- return struct {
- const security_level = security_level_bits;
- const rate = rate_bytes;
- const rate_in_lanes = rate_bytes / 8;
- const cv_size = cv_size_bytes;
- const StateType = StateTypeParam;
- const separation_byte_pos = .{ .x = sep_x, .y = sep_y };
- const padding_pos = .{ .x = pad_x, .y = pad_y };
-
- inline fn turboSHAKEToBuffer(view: *const MultiSliceView, separation_byte: u8, output: []u8) void {
- toBufferFn(view, separation_byte, output);
- }
-
- inline fn turboSHAKEMultiSliceAlloc(
- allocator: Allocator,
- view: *const MultiSliceView,
- separation_byte: u8,
- output_len: usize,
- ) ![]u8 {
- return allocFn(allocator, view, separation_byte, output_len);
- }
- };
-}
-
-/// KangarooTwelve with 128-bit security parameters
-const KT128Variant = KangarooVariant(
- 128, // Security level in bits
- 168, // TurboSHAKE128 rate in bytes
- 32, // Chaining value size in bytes
- TurboSHAKE128State,
- 1, // separation_byte_pos.x (lane 11: 88 bytes into 168-byte rate)
- 3, // separation_byte_pos.y
- 0, // padding_pos.x (lane 20: last lane of 168-byte rate)
- 4, // padding_pos.y
- turboSHAKE128MultiSliceToBuffer,
- turboSHAKE128MultiSlice,
-);
-
-/// KangarooTwelve with 256-bit security parameters
-const KT256Variant = KangarooVariant(
- 256, // Security level in bits
- 136, // TurboSHAKE256 rate in bytes
- 64, // Chaining value size in bytes
- TurboSHAKE256State,
- 4, // separation_byte_pos.x (lane 4: 32 bytes into 136-byte rate)
- 0, // separation_byte_pos.y
- 1, // padding_pos.x (lane 16: last lane of 136-byte rate)
- 3, // padding_pos.y
- turboSHAKE256MultiSliceToBuffer,
- turboSHAKE256MultiSlice,
-);
-
-/// Rotate left for u64 vector
-inline fn rol64Vec(comptime N: usize, v: @Vector(N, u64), comptime n: u6) @Vector(N, u64) {
- if (n == 0) return v;
- const left: @Vector(N, u64) = @splat(n);
- const right_shift: u64 = 64 - @as(u64, n);
- const right: @Vector(N, u64) = @splat(right_shift);
- return (v << left) | (v >> right);
-}
-
-/// Load a 64-bit little-endian value
-inline fn load64(bytes: []const u8) u64 {
- return std.mem.readInt(u64, bytes[0..8], .little);
-}
-
-/// Store a 64-bit little-endian value
-inline fn store64(value: u64, bytes: []u8) void {
- std.mem.writeInt(u64, bytes[0..8], value, .little);
-}
-
-/// Right-encode result type (max 9 bytes for 64-bit usize)
-const RightEncoded = struct {
- bytes: [9]u8,
- len: u8,
-
- fn slice(self: *const RightEncoded) []const u8 {
- return self.bytes[0..self.len];
- }
-};
-
-/// Right-encode: encodes a number as bytes with length suffix (no allocation)
-fn rightEncode(x: usize) RightEncoded {
- var result: RightEncoded = undefined;
-
- if (x == 0) {
- result.bytes[0] = 0;
- result.len = 1;
- return result;
- }
-
- var temp: [9]u8 = undefined;
- var len: usize = 0;
- var val = x;
-
- while (val > 0) : (val /= 256) {
- temp[len] = @intCast(val % 256);
- len += 1;
- }
-
- // Reverse bytes (MSB first)
- for (0..len) |i| {
- result.bytes[i] = temp[len - 1 - i];
- }
- result.bytes[len] = @intCast(len);
- result.len = @intCast(len + 1);
-
- return result;
-}
-
-/// Virtual contiguous view over multiple slices (zero-copy)
-const MultiSliceView = struct {
- slices: [3][]const u8,
- offsets: [4]usize,
-
- fn init(s1: []const u8, s2: []const u8, s3: []const u8) MultiSliceView {
- return .{
- .slices = .{ s1, s2, s3 },
- .offsets = .{
- 0,
- s1.len,
- s1.len + s2.len,
- s1.len + s2.len + s3.len,
- },
- };
- }
-
- fn totalLen(self: *const MultiSliceView) usize {
- return self.offsets[3];
- }
-
- /// Get byte at position (zero-copy)
- fn getByte(self: *const MultiSliceView, pos: usize) u8 {
- for (0..3) |i| {
- if (pos >= self.offsets[i] and pos < self.offsets[i + 1]) {
- return self.slices[i][pos - self.offsets[i]];
- }
- }
- unreachable;
- }
-
- /// Try to get a contiguous slice [start..end) - returns null if spans boundaries
- fn tryGetSlice(self: *const MultiSliceView, start: usize, end: usize) ?[]const u8 {
- for (0..3) |i| {
- if (start >= self.offsets[i] and end <= self.offsets[i + 1]) {
- const local_start = start - self.offsets[i];
- const local_end = end - self.offsets[i];
- return self.slices[i][local_start..local_end];
- }
- }
- return null;
- }
-
- /// Copy range [start..end) to buffer (used when slice spans boundaries)
- fn copyRange(self: *const MultiSliceView, start: usize, end: usize, buffer: []u8) void {
- var pos: usize = 0;
- for (start..end) |i| {
- buffer[pos] = self.getByte(i);
- pos += 1;
- }
- }
-};
-
-/// Apply Keccak-p[1600,12] to N states in parallel
-fn keccakP1600timesN(comptime N: usize, states: *[5][5]@Vector(N, u64)) void {
- @setEvalBranchQuota(10000);
-
- // Pre-computed rotation offsets for rho-pi step
- const rho_offsets = comptime blk: {
- var offsets: [24]u6 = undefined;
- var px: usize = 1;
- var py: usize = 0;
- for (0..24) |t| {
- const rot_amount = ((t + 1) * (t + 2) / 2) % 64;
- offsets[t] = @intCast(rot_amount);
- const temp_x = py;
- py = (2 * px + 3 * py) % 5;
- px = temp_x;
- }
- break :blk offsets;
- };
-
- var round: usize = 0;
- while (round < 12) : (round += 2) {
- inline for (0..2) |i| {
- // θ (theta)
- var C: [5]@Vector(N, u64) = undefined;
- inline for (0..5) |x| {
- C[x] = states[x][0] ^ states[x][1] ^ states[x][2] ^ states[x][3] ^ states[x][4];
- }
-
- var D: [5]@Vector(N, u64) = undefined;
- inline for (0..5) |x| {
- D[x] = C[(x + 4) % 5] ^ rol64Vec(N, C[(x + 1) % 5], 1);
- }
-
- // Apply D to all lanes
- inline for (0..5) |x| {
- states[x][0] ^= D[x];
- states[x][1] ^= D[x];
- states[x][2] ^= D[x];
- states[x][3] ^= D[x];
- states[x][4] ^= D[x];
- }
-
- // ρ (rho) and π (pi) - optimized with pre-computed offsets
- var current = states[1][0];
- var px: usize = 1;
- var py: usize = 0;
- inline for (rho_offsets) |rot| {
- const next_y = (2 * px + 3 * py) % 5;
- const next = states[py][next_y];
- states[py][next_y] = rol64Vec(N, current, rot);
- current = next;
- px = py;
- py = next_y;
- }
-
- // χ (chi) - optimized with better register usage
- inline for (0..5) |y| {
- const t0 = states[0][y];
- const t1 = states[1][y];
- const t2 = states[2][y];
- const t3 = states[3][y];
- const t4 = states[4][y];
-
- states[0][y] = t0 ^ (~t1 & t2);
- states[1][y] = t1 ^ (~t2 & t3);
- states[2][y] = t2 ^ (~t3 & t4);
- states[3][y] = t3 ^ (~t4 & t0);
- states[4][y] = t4 ^ (~t0 & t1);
- }
-
- // ι (iota)
- const rc_splat: @Vector(N, u64) = @splat(RC[round + i]);
- states[0][0] ^= rc_splat;
- }
- }
-}
-
-/// Add lanes from data to N states in parallel with stride - optimized version
-fn addLanesAll(
- comptime N: usize,
- states: *[5][5]@Vector(N, u64),
- data: []const u8,
- lane_count: usize,
- lane_offset: usize,
-) void {
-
- // Process lanes (at most 25 lanes in Keccak state)
- inline for (0..25) |xy| {
- if (xy < lane_count) {
- const x = xy % 5;
- const y = xy / 5;
-
- // Load N lanes with stride - optimized memory access pattern
- var loaded_data: @Vector(N, u64) = undefined;
- inline for (0..N) |i| {
- loaded_data[i] = load64(data[8 * (i * lane_offset + xy) ..]);
- }
- states[x][y] ^= loaded_data;
- }
- }
-}
-
-/// Apply Keccak-p[1600,12] to a single state (byte representation)
-fn keccakP(state: *[200]u8) void {
- @setEvalBranchQuota(10000);
- var lanes: [5][5]u64 = undefined;
-
- // Load state into lanes
- inline for (0..5) |x| {
- inline for (0..5) |y| {
- lanes[x][y] = load64(state[8 * (x + 5 * y) ..]);
- }
- }
-
- // Apply 12 rounds
- var round: usize = 0;
- while (round < 12) : (round += 2) {
- inline for (0..2) |i| {
- // θ
- var C: [5]u64 = undefined;
- inline for (0..5) |x| {
- C[x] = lanes[x][0] ^ lanes[x][1] ^ lanes[x][2] ^ lanes[x][3] ^ lanes[x][4];
- }
- var D: [5]u64 = undefined;
- inline for (0..5) |x| {
- D[x] = C[(x + 4) % 5] ^ std.math.rotl(u64, C[(x + 1) % 5], 1);
- }
- inline for (0..5) |x| {
- inline for (0..5) |y| {
- lanes[x][y] ^= D[x];
- }
- }
-
- // ρ and π
- var current = lanes[1][0];
- var px: usize = 1;
- var py: usize = 0;
- inline for (0..24) |t| {
- const temp = lanes[py][(2 * px + 3 * py) % 5];
- const rot_amount = ((t + 1) * (t + 2) / 2) % 64;
- lanes[py][(2 * px + 3 * py) % 5] = std.math.rotl(u64, current, @as(u6, @intCast(rot_amount)));
- current = temp;
- const temp_x = py;
- py = (2 * px + 3 * py) % 5;
- px = temp_x;
- }
-
- // χ
- inline for (0..5) |y| {
- const T = [5]u64{ lanes[0][y], lanes[1][y], lanes[2][y], lanes[3][y], lanes[4][y] };
- inline for (0..5) |x| {
- lanes[x][y] = T[x] ^ (~T[(x + 1) % 5] & T[(x + 2) % 5]);
- }
- }
-
- // ι
- lanes[0][0] ^= RC[round + i];
- }
- }
-
- // Store lanes back to state
- inline for (0..5) |x| {
- inline for (0..5) |y| {
- store64(lanes[x][y], state[8 * (x + 5 * y) ..]);
- }
- }
-}
-
-/// Apply Keccak-p[1600,12] to a single state (u64 lane representation)
-fn keccakPLanes(lanes: *[25]u64) void {
- @setEvalBranchQuota(10000);
-
- // Apply 12 rounds
- inline for (RC) |rc| {
- // θ
- var C: [5]u64 = undefined;
- inline for (0..5) |x| {
- C[x] = lanes[x] ^ lanes[x + 5] ^ lanes[x + 10] ^ lanes[x + 15] ^ lanes[x + 20];
- }
- var D: [5]u64 = undefined;
- inline for (0..5) |x| {
- D[x] = C[(x + 4) % 5] ^ std.math.rotl(u64, C[(x + 1) % 5], 1);
- }
- inline for (0..5) |x| {
- inline for (0..5) |y| {
- lanes[x + 5 * y] ^= D[x];
- }
- }
-
- // ρ and π
- var current = lanes[1];
- var px: usize = 1;
- var py: usize = 0;
- inline for (0..24) |t| {
- const next_y = (2 * px + 3 * py) % 5;
- const next_idx = py + 5 * next_y;
- const temp = lanes[next_idx];
- const rot_amount = ((t + 1) * (t + 2) / 2) % 64;
- lanes[next_idx] = std.math.rotl(u64, current, @as(u6, @intCast(rot_amount)));
- current = temp;
- px = py;
- py = next_y;
- }
-
- // χ
- inline for (0..5) |y| {
- const idx = 5 * y;
- const T = [5]u64{ lanes[idx], lanes[idx + 1], lanes[idx + 2], lanes[idx + 3], lanes[idx + 4] };
- inline for (0..5) |x| {
- lanes[idx + x] = T[x] ^ (~T[(x + 1) % 5] & T[(x + 2) % 5]);
- }
- }
-
- // ι
- lanes[0] ^= rc;
- }
-}
-
-/// Generic non-allocating TurboSHAKE: write output to provided buffer
-fn turboSHAKEMultiSliceToBuffer(
- comptime rate: usize,
- view: *const MultiSliceView,
- separation_byte: u8,
- output: []u8,
-) void {
- var state: [200]u8 = @splat(0);
- var state_pos: usize = 0;
-
- // Absorb all bytes from the multi-slice view
- const total = view.totalLen();
- var pos: usize = 0;
- while (pos < total) {
- state[state_pos] ^= view.getByte(pos);
- state_pos += 1;
- pos += 1;
-
- if (state_pos == rate) {
- keccakP(&state);
- state_pos = 0;
- }
- }
-
- // Add separation byte and padding
- state[state_pos] ^= separation_byte;
- state[rate - 1] ^= 0x80;
- keccakP(&state);
-
- // Squeeze
- var out_offset: usize = 0;
- while (out_offset < output.len) {
- const chunk = @min(rate, output.len - out_offset);
- @memcpy(output[out_offset..][0..chunk], state[0..chunk]);
- out_offset += chunk;
- if (out_offset < output.len) {
- keccakP(&state);
- }
- }
-}
-
-/// Generic allocating TurboSHAKE
-fn turboSHAKEMultiSlice(
- comptime rate: usize,
- allocator: Allocator,
- view: *const MultiSliceView,
- separation_byte: u8,
- output_len: usize,
-) ![]u8 {
- const output = try allocator.alloc(u8, output_len);
- turboSHAKEMultiSliceToBuffer(rate, view, separation_byte, output);
- return output;
-}
-
-/// Non-allocating TurboSHAKE128: write output to provided buffer
-fn turboSHAKE128MultiSliceToBuffer(
- view: *const MultiSliceView,
- separation_byte: u8,
- output: []u8,
-) void {
- turboSHAKEMultiSliceToBuffer(168, view, separation_byte, output);
-}
-
-/// Allocating TurboSHAKE128
-fn turboSHAKE128MultiSlice(
- allocator: Allocator,
- view: *const MultiSliceView,
- separation_byte: u8,
- output_len: usize,
-) ![]u8 {
- return turboSHAKEMultiSlice(168, allocator, view, separation_byte, output_len);
-}
-
-/// Non-allocating TurboSHAKE256: write output to provided buffer
-fn turboSHAKE256MultiSliceToBuffer(
- view: *const MultiSliceView,
- separation_byte: u8,
- output: []u8,
-) void {
- turboSHAKEMultiSliceToBuffer(136, view, separation_byte, output);
-}
-
-/// Allocating TurboSHAKE256
-fn turboSHAKE256MultiSlice(
- allocator: Allocator,
- view: *const MultiSliceView,
- separation_byte: u8,
- output_len: usize,
-) ![]u8 {
- return turboSHAKEMultiSlice(136, allocator, view, separation_byte, output_len);
-}
-
-/// Process N leaves (8KiB chunks) in parallel - generic version
-fn processLeaves(
- comptime Variant: type,
- comptime N: usize,
- data: []const u8,
- result: *[N * Variant.cv_size]u8,
-) void {
- const rate_in_lanes: usize = Variant.rate_in_lanes;
- const rate_in_bytes: usize = rate_in_lanes * 8;
- const cv_size: usize = Variant.cv_size;
-
- // Initialize N all-zero states with cache alignment
- var states: [5][5]@Vector(N, u64) align(cache_line_size) = undefined;
- inline for (0..5) |x| {
- inline for (0..5) |y| {
- states[x][y] = @splat(0);
- }
- }
-
- // Process complete blocks
- var j: usize = 0;
- while (j + rate_in_bytes <= chunk_size) : (j += rate_in_bytes) {
- addLanesAll(N, &states, data[j..], rate_in_lanes, chunk_size / 8);
- keccakP1600timesN(N, &states);
- }
-
- // Process last incomplete block
- const remaining_lanes = (chunk_size - j) / 8;
- if (remaining_lanes > 0) {
- addLanesAll(N, &states, data[j..], remaining_lanes, chunk_size / 8);
- }
-
- // Add suffix 0x0B and padding
- const suffix_pos = Variant.separation_byte_pos;
- const padding_pos = Variant.padding_pos;
-
- const suffix_splat: @Vector(N, u64) = @splat(0x0B);
- states[suffix_pos.x][suffix_pos.y] ^= suffix_splat;
- const padding_splat: @Vector(N, u64) = @splat(0x8000000000000000);
- states[padding_pos.x][padding_pos.y] ^= padding_splat;
-
- keccakP1600timesN(N, &states);
-
- // Extract chaining values from each state
- const lanes_to_extract = cv_size / 8;
- comptime var lane_idx: usize = 0;
- inline while (lane_idx < lanes_to_extract) : (lane_idx += 1) {
- const x = lane_idx % 5;
- const y = lane_idx / 5;
- inline for (0..N) |i| {
- store64(states[x][y][i], result[i * cv_size + lane_idx * 8 ..]);
- }
- }
-}
-
-/// Context for processing a batch of leaves in a thread
-const LeafBatchContext = struct {
- output_cvs: []u8,
- batch_start: usize,
- batch_count: usize,
- view: *const MultiSliceView,
- scratch_buffer: []u8, // Pre-allocated scratch space (no allocations in worker)
- total_len: usize, // Total length of input data (for boundary checking)
-};
-
-/// Helper function to process N leaves in parallel, reducing code duplication
-inline fn processNLeaves(
- comptime Variant: type,
- comptime N: usize,
- view: *const MultiSliceView,
- j: usize,
- leaf_buffer: []u8,
- output: []u8,
-) void {
- const cv_size = Variant.cv_size;
- if (view.tryGetSlice(j, j + N * chunk_size)) |leaf_data| {
- var leaf_cvs: [N * cv_size]u8 = undefined;
- processLeaves(Variant, N, leaf_data, &leaf_cvs);
- @memcpy(output[0..leaf_cvs.len], &leaf_cvs);
- } else {
- view.copyRange(j, j + N * chunk_size, leaf_buffer[0 .. N * chunk_size]);
- var leaf_cvs: [N * cv_size]u8 = undefined;
- processLeaves(Variant, N, leaf_buffer[0 .. N * chunk_size], &leaf_cvs);
- @memcpy(output[0..leaf_cvs.len], &leaf_cvs);
- }
-}
-
-/// Process a batch of leaves in a single thread using SIMD
-fn processLeafBatch(comptime Variant: type, ctx: LeafBatchContext) void {
- const cv_size = Variant.cv_size;
- const leaf_buffer = ctx.scratch_buffer[0 .. 8 * chunk_size];
- const cv_scratch = ctx.scratch_buffer[8 * chunk_size .. 8 * chunk_size + cv_size];
-
- var cvs_offset: usize = 0;
- var j: usize = ctx.batch_start;
- const batch_end = @min(ctx.batch_start + ctx.batch_count * chunk_size, ctx.total_len);
-
- // Process leaves using SIMD (8x, 4x, 2x) based on optimal vector length
- inline for ([_]usize{ 8, 4, 2 }) |batch_size| {
- while (optimal_vector_len >= batch_size and j + batch_size * chunk_size <= batch_end) {
- processNLeaves(Variant, batch_size, ctx.view, j, leaf_buffer, ctx.output_cvs[cvs_offset..]);
- cvs_offset += batch_size * cv_size;
- j += batch_size * chunk_size;
- }
- }
-
- // Process remaining single leaves
- while (j < batch_end) {
- const chunk_len = @min(chunk_size, batch_end - j);
- if (ctx.view.tryGetSlice(j, j + chunk_len)) |leaf_data| {
- const cv_slice = MultiSliceView.init(leaf_data, &[_]u8{}, &[_]u8{});
- Variant.turboSHAKEToBuffer(&cv_slice, 0x0B, cv_scratch[0..cv_size]);
- @memcpy(ctx.output_cvs[cvs_offset..][0..cv_size], cv_scratch[0..cv_size]);
- } else {
- ctx.view.copyRange(j, j + chunk_len, leaf_buffer[0..chunk_len]);
- const cv_slice = MultiSliceView.init(leaf_buffer[0..chunk_len], &[_]u8{}, &[_]u8{});
- Variant.turboSHAKEToBuffer(&cv_slice, 0x0B, cv_scratch[0..cv_size]);
- @memcpy(ctx.output_cvs[cvs_offset..][0..cv_size], cv_scratch[0..cv_size]);
- }
- cvs_offset += cv_size;
- j += chunk_size;
- }
-}
-
-/// Helper to process N leaves in SIMD and absorb CVs into state
-inline fn processAndAbsorbNLeaves(
- comptime Variant: type,
- comptime N: usize,
- view: *const MultiSliceView,
- j: usize,
- leaf_buffer: []u8,
- final_state: anytype,
-) void {
- const cv_size = Variant.cv_size;
- if (view.tryGetSlice(j, j + N * chunk_size)) |leaf_data| {
- var leaf_cvs: [N * cv_size]u8 align(cache_line_size) = undefined;
- processLeaves(Variant, N, leaf_data, &leaf_cvs);
- final_state.update(&leaf_cvs);
- } else {
- view.copyRange(j, j + N * chunk_size, leaf_buffer[0 .. N * chunk_size]);
- var leaf_cvs: [N * cv_size]u8 align(cache_line_size) = undefined;
- processLeaves(Variant, N, leaf_buffer[0 .. N * chunk_size], &leaf_cvs);
- final_state.update(&leaf_cvs);
- }
-}
-
-/// Generic single-threaded implementation
-fn ktSingleThreaded(comptime Variant: type, view: *const MultiSliceView, total_len: usize, output: []u8) void {
- const cv_size = Variant.cv_size;
- const StateType = Variant.StateType;
-
- // Initialize streaming TurboSHAKE state for final node (delimiter 0x06 is set in the type)
- var final_state = StateType.init(.{});
-
- // Absorb first B bytes from input
- var first_b_buffer: [chunk_size]u8 = undefined;
- if (view.tryGetSlice(0, chunk_size)) |first_chunk| {
- final_state.update(first_chunk);
- } else {
- view.copyRange(0, chunk_size, &first_b_buffer);
- final_state.update(&first_b_buffer);
- }
-
- // Absorb padding bytes (8 bytes: 0x03 followed by 7 zeros)
- const padding = [_]u8{ 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- final_state.update(&padding);
-
- var j: usize = chunk_size;
- var n: usize = 0;
-
- // Temporary buffers for boundary-spanning leaves and CV computation
- var leaf_buffer: [chunk_size * 8]u8 align(cache_line_size) = undefined;
- var cv_buffer: [64]u8 = undefined; // Max CV size is 64 bytes
-
- // Process leaves in SIMD batches (8x, 4x, 2x)
- inline for ([_]usize{ 8, 4, 2 }) |batch_size| {
- while (optimal_vector_len >= batch_size and j + batch_size * chunk_size <= total_len) {
- processAndAbsorbNLeaves(Variant, batch_size, view, j, &leaf_buffer, &final_state);
- j += batch_size * chunk_size;
- n += batch_size;
- }
- }
-
- // Process remaining leaves one at a time
- while (j < total_len) {
- const chunk_len = @min(chunk_size, total_len - j);
- if (view.tryGetSlice(j, j + chunk_len)) |leaf_data| {
- const cv_slice = MultiSliceView.init(leaf_data, &[_]u8{}, &[_]u8{});
- Variant.turboSHAKEToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
- final_state.update(cv_buffer[0..cv_size]); // Absorb CV immediately
- } else {
- view.copyRange(j, j + chunk_len, leaf_buffer[0..chunk_len]);
- const cv_slice = MultiSliceView.init(leaf_buffer[0..chunk_len], &[_]u8{}, &[_]u8{});
- Variant.turboSHAKEToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
- final_state.update(cv_buffer[0..cv_size]);
- }
- j += chunk_size;
- n += 1;
- }
-
- // Absorb right_encode(n) and terminator
- const n_enc = rightEncode(n);
- final_state.update(n_enc.slice());
- const terminator = [_]u8{ 0xFF, 0xFF };
- final_state.update(&terminator);
-
- // Finalize and squeeze output
- final_state.final(output);
-}
-
-/// Generic multi-threaded implementation
-fn ktMultiThreaded(
- comptime Variant: type,
- allocator: Allocator,
- io: Io,
- view: *const MultiSliceView,
- total_len: usize,
- output: []u8,
-) !void {
- const cv_size = Variant.cv_size;
-
- // Calculate total number of leaves
- const total_leaves: usize = (total_len - 1) / chunk_size;
-
- // Check if we have enough threads to benefit from parallelization
- const thread_count = Thread.getCpuCount() catch 1;
- if (thread_count <= 1) {
- // Single-threaded fallback - more efficient than using group.async
- ktSingleThreaded(Variant, view, total_len, output);
- return;
- }
-
- // Allocate buffer for all chaining values
- const cvs = try allocator.alloc(u8, total_leaves * cv_size);
- defer allocator.free(cvs);
-
- // Divide work among threads
- const leaves_per_thread = (total_leaves + thread_count - 1) / thread_count;
-
- // Pre-allocate scratch buffers for all threads (8 leaves + CV size)
- const scratch_size = 8 * chunk_size + cv_size;
- const all_scratch = try allocator.alloc(u8, thread_count * scratch_size);
- defer allocator.free(all_scratch);
-
- const contexts = try allocator.alloc(LeafBatchContext, thread_count);
- defer allocator.free(contexts);
-
- var leaves_assigned: usize = 0;
- var context_count: usize = 0;
-
- while (leaves_assigned < total_leaves) {
- const batch_count = @min(leaves_per_thread, total_leaves - leaves_assigned);
- const batch_start = chunk_size + leaves_assigned * chunk_size;
- const cvs_offset = leaves_assigned * cv_size;
-
- contexts[context_count] = LeafBatchContext{
- .output_cvs = cvs[cvs_offset .. cvs_offset + batch_count * cv_size],
- .batch_start = batch_start,
- .batch_count = batch_count,
- .view = view,
- .scratch_buffer = all_scratch[context_count * scratch_size .. (context_count + 1) * scratch_size],
- .total_len = total_len,
- };
-
- leaves_assigned += batch_count;
- context_count += 1;
- }
-
- var group: Io.Group = .init;
- for (contexts[0..context_count]) |ctx| {
- group.async(io, struct {
- fn process(c: LeafBatchContext) void {
- processLeafBatch(Variant, c);
- }
- }.process, .{ctx});
- }
-
- // Wait for all threads to complete
- group.wait(io);
-
- // Build final node
- const n_enc = rightEncode(total_leaves);
- const final_node_len = chunk_size + 8 + total_leaves * cv_size + n_enc.len + 2;
- const final_node = try allocator.alloc(u8, final_node_len);
- defer allocator.free(final_node);
-
- // Copy first B bytes
- if (view.tryGetSlice(0, chunk_size)) |first_chunk| {
- @memcpy(final_node[0..chunk_size], first_chunk);
- } else {
- view.copyRange(0, chunk_size, final_node[0..chunk_size]);
- }
-
- @memset(final_node[chunk_size..][0..8], 0);
- final_node[chunk_size] = 0x03;
- @memcpy(final_node[chunk_size + 8 ..][0 .. total_leaves * cv_size], cvs);
- @memcpy(final_node[chunk_size + 8 + total_leaves * cv_size ..][0..n_enc.len], n_enc.slice());
- final_node[final_node_len - 2] = 0xFF;
- final_node[final_node_len - 1] = 0xFF;
-
- const final_view = MultiSliceView.init(final_node, &[_]u8{}, &[_]u8{});
- Variant.turboSHAKEToBuffer(&final_view, 0x06, output);
-}
-
-/// Generic KangarooTwelve hash function builder.
-/// Creates a public API type with hash and hashParallel methods for a specific variant.
-fn KTHash(
- comptime Variant: type,
- comptime singleChunkFn: fn (*const MultiSliceView, u8, []u8) void,
-) type {
- return struct {
- const Self = @This();
- const StateType = Variant.StateType;
-
- /// The recommended output length, in bytes.
- pub const digest_length = Variant.security_level / 8 * 2;
- /// The block length, or rate, in bytes.
- pub const block_length = Variant.rate;
-
- /// Configuration options for KangarooTwelve hashing.
- ///
- /// Options include an optional customization string that provides domain separation,
- /// ensuring that identical inputs with different customization strings
- /// produce completely distinct hash outputs.
- ///
- /// This prevents hash collisions when the same data is hashed in different contexts.
- ///
- /// Customization strings can be of any length.
- ///
- /// Common options for customization::
- ///
- /// - Key derivation or MAC: 16-byte secret for KT128, 32-byte secret for KT256
- /// - Context Separation: domain-specific strings (e.g., "email", "password", "session")
- /// - Composite Keys: concatenation of secret key + context string
- pub const Options = struct {
- customization: ?[]const u8 = null,
- };
-
- // Message buffer (accumulates message data only, not customization)
- buffer: [chunk_size]u8,
- buffer_len: usize,
- message_len: usize,
-
- // Customization string (fixed at init)
- customization: []const u8,
- custom_len_enc: RightEncoded,
-
- // Tree mode state (lazy initialization when buffer overflows first time)
- first_chunk: ?[chunk_size]u8, // Saved first chunk for tree mode
- final_state: ?StateType, // Running TurboSHAKE state for final node
- num_leaves: usize, // Count of leaves processed (after first chunk)
-
- // SIMD chunk batching
- pending_chunks: [8 * chunk_size]u8 align(cache_line_size), // Buffer for up to 8 chunks
- pending_count: usize, // Number of complete chunks in pending_chunks
-
- /// Initialize a KangarooTwelve hashing context.
- ///
- /// Options include an optional customization string that provides domain separation,
- /// ensuring that identical inputs with different customization strings
- /// produce completely distinct hash outputs.
- ///
- /// This prevents hash collisions when the same data is hashed in different contexts.
- ///
- /// Customization strings can be of any length.
- ///
- /// Common options for customization::
- ///
- /// - Key derivation or MAC: 16-byte secret for KT128, 32-byte secret for KT256
- /// - Context Separation: domain-specific strings (e.g., "email", "password", "session")
- /// - Composite Keys: concatenation of secret key + context string
- pub fn init(options: Options) Self {
- const custom = options.customization orelse &[_]u8{};
- return .{
- .buffer = undefined,
- .buffer_len = 0,
- .message_len = 0,
- .customization = custom,
- .custom_len_enc = rightEncode(custom.len),
- .first_chunk = null,
- .final_state = null,
- .num_leaves = 0,
- .pending_chunks = undefined,
- .pending_count = 0,
- };
- }
-
- /// Flush all pending chunks using SIMD when possible
- fn flushPendingChunks(self: *Self) void {
- const cv_size = Variant.cv_size;
-
- // Process all pending chunks using the largest SIMD batch sizes possible
- while (self.pending_count > 0) {
- // Try SIMD batches in decreasing size order
- inline for ([_]usize{ 8, 4, 2 }) |batch_size| {
- if (optimal_vector_len >= batch_size and self.pending_count >= batch_size) {
- var leaf_cvs: [batch_size * cv_size]u8 align(cache_line_size) = undefined;
- processLeaves(Variant, batch_size, self.pending_chunks[0 .. batch_size * chunk_size], &leaf_cvs);
- self.final_state.?.update(&leaf_cvs);
- self.num_leaves += batch_size;
- self.pending_count -= batch_size;
-
- // Shift remaining chunks to the front
- if (self.pending_count > 0) {
- const remaining_bytes = self.pending_count * chunk_size;
- @memcpy(self.pending_chunks[0..remaining_bytes], self.pending_chunks[batch_size * chunk_size ..][0..remaining_bytes]);
- }
- break; // Continue outer loop to try next batch
- }
- }
-
- // If no SIMD batch was possible, process one chunk with scalar code
- if (self.pending_count > 0 and self.pending_count < 2) {
- var cv_buffer: [64]u8 = undefined;
- const cv_slice = MultiSliceView.init(self.pending_chunks[0..chunk_size], &[_]u8{}, &[_]u8{});
- Variant.turboSHAKEToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
- self.final_state.?.update(cv_buffer[0..cv_size]);
- self.num_leaves += 1;
- self.pending_count -= 1;
- break; // No more chunks to process
- }
- }
- }
-
- /// Absorb data into the hash state.
- /// Can be called multiple times to incrementally add data.
- pub fn update(self: *Self, data: []const u8) void {
- if (data.len == 0) return;
-
- var remaining = data;
-
- while (remaining.len > 0) {
- const space_in_buffer = chunk_size - self.buffer_len;
- const to_copy = @min(space_in_buffer, remaining.len);
-
- // Copy data into buffer
- @memcpy(self.buffer[self.buffer_len..][0..to_copy], remaining[0..to_copy]);
- self.buffer_len += to_copy;
- self.message_len += to_copy;
- remaining = remaining[to_copy..];
-
- // If buffer is full, process it
- if (self.buffer_len == chunk_size) {
- if (self.first_chunk == null) {
- // First time buffer fills - initialize tree mode
- self.first_chunk = self.buffer;
- self.final_state = StateType.init(.{});
-
- // Absorb first chunk into final state
- self.final_state.?.update(&self.buffer);
-
- // Absorb padding (8 bytes: 0x03 followed by 7 zeros)
- const padding = [_]u8{ 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- self.final_state.?.update(&padding);
- } else {
- // Add chunk to pending buffer for SIMD batch processing
- @memcpy(self.pending_chunks[self.pending_count * chunk_size ..][0..chunk_size], &self.buffer);
- self.pending_count += 1;
-
- // Flush when we have enough chunks for optimal SIMD batch
- // Determine best batch size for this architecture
- const optimal_batch_size = comptime blk: {
- if (optimal_vector_len >= 8) break :blk 8;
- if (optimal_vector_len >= 4) break :blk 4;
- if (optimal_vector_len >= 2) break :blk 2;
- break :blk 1;
- };
- if (self.pending_count >= optimal_batch_size) {
- self.flushPendingChunks();
- }
- }
- self.buffer_len = 0;
- }
- }
- }
-
- /// Finalize the hash and produce output.
- ///
- /// Unlike traditional hash functions, the output can be of any length.
- ///
- /// When using as a regular hash function, use the recommended `digest_length` value (32 bytes for KT128, 64 bytes for KT256).
- ///
- /// After calling this method, the context should not be reused. However, the structure can be cloned before finalizing
- /// to compute multiple hashes with the same prefix.
- pub fn final(self: *Self, out: []u8) void {
- const cv_size = Variant.cv_size;
-
- // Calculate total length: message + customization + right_encode(customization.len)
- const total_len = self.message_len + self.customization.len + self.custom_len_enc.len;
-
- // Single chunk mode: total data fits in one chunk
- if (total_len <= chunk_size) {
- // Build the complete input: buffer + customization + encoded length
- var single_chunk: [chunk_size]u8 = undefined;
- @memcpy(single_chunk[0..self.buffer_len], self.buffer[0..self.buffer_len]);
- @memcpy(single_chunk[self.buffer_len..][0..self.customization.len], self.customization);
- @memcpy(single_chunk[self.buffer_len + self.customization.len ..][0..self.custom_len_enc.len], self.custom_len_enc.slice());
-
- const view = MultiSliceView.init(single_chunk[0..total_len], &[_]u8{}, &[_]u8{});
- singleChunkFn(&view, 0x07, out);
- return;
- }
-
- // Flush any pending chunks with SIMD
- self.flushPendingChunks();
-
- // Build view over remaining data (buffer + customization + encoding)
- const remaining_view = MultiSliceView.init(
- self.buffer[0..self.buffer_len],
- self.customization,
- self.custom_len_enc.slice(),
- );
- const remaining_len = remaining_view.totalLen();
-
- var final_leaves = self.num_leaves;
- var leaf_start: usize = 0;
-
- // Tree mode: initialize if not already done (lazy initialization)
- if (self.final_state == null and remaining_len > 0) {
- self.final_state = StateType.init(.{});
-
- // Absorb first chunk (up to chunk_size bytes from remaining data)
- const first_chunk_len = @min(chunk_size, remaining_len);
- if (remaining_view.tryGetSlice(0, first_chunk_len)) |first_chunk| {
- // Data is contiguous, use it directly
- self.final_state.?.update(first_chunk);
- } else {
- // Data spans boundaries, copy to buffer
- var first_chunk_buf: [chunk_size]u8 = undefined;
- remaining_view.copyRange(0, first_chunk_len, first_chunk_buf[0..first_chunk_len]);
- self.final_state.?.update(first_chunk_buf[0..first_chunk_len]);
- }
-
- // Absorb padding (8 bytes: 0x03 followed by 7 zeros)
- const padding = [_]u8{ 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- self.final_state.?.update(&padding);
-
- // Process remaining data as leaves
- leaf_start = first_chunk_len;
- }
-
- // Process all remaining data as leaves (starting from leaf_start)
- var offset = leaf_start;
- while (offset < remaining_len) {
- const leaf_end = @min(offset + chunk_size, remaining_len);
- const leaf_size = leaf_end - offset;
-
- var cv_buffer: [64]u8 = undefined;
- if (remaining_view.tryGetSlice(offset, leaf_end)) |leaf_data| {
- // Data is contiguous, use it directly
- const cv_slice = MultiSliceView.init(leaf_data, &[_]u8{}, &[_]u8{});
- Variant.turboSHAKEToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
- } else {
- // Data spans boundaries, copy to buffer
- var leaf_buf: [chunk_size]u8 = undefined;
- remaining_view.copyRange(offset, leaf_end, leaf_buf[0..leaf_size]);
- const cv_slice = MultiSliceView.init(leaf_buf[0..leaf_size], &[_]u8{}, &[_]u8{});
- Variant.turboSHAKEToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
- }
- self.final_state.?.update(cv_buffer[0..cv_size]);
- final_leaves += 1;
- offset = leaf_end;
- }
-
- // Absorb right_encode(num_leaves) and terminator
- const n_enc = rightEncode(final_leaves);
- self.final_state.?.update(n_enc.slice());
- const terminator = [_]u8{ 0xFF, 0xFF };
- self.final_state.?.update(&terminator);
-
- // Squeeze output
- self.final_state.?.final(out);
- }
-
- /// Hash a message using sequential processing with SIMD acceleration.
- ///
- /// Parameters:
- /// - message: Input data to hash (any length)
- /// - out: Output buffer (any length, arbitrary output sizes supported, `digest_length` recommended for standard use)
- /// - options: Optional settings to include a secret key or a context separation string
- pub fn hash(message: []const u8, out: []u8, options: Options) !void {
- const custom = options.customization orelse &[_]u8{};
-
- // Right-encode customization length
- const custom_len_enc = rightEncode(custom.len);
-
- // Create zero-copy multi-slice view (no concatenation)
- const view = MultiSliceView.init(message, custom, custom_len_enc.slice());
- const total_len = view.totalLen();
-
- // Single chunk case - zero-copy absorption!
- if (total_len <= chunk_size) {
- singleChunkFn(&view, 0x07, out);
- return;
- }
-
- // Tree mode - single-threaded SIMD processing
- ktSingleThreaded(Variant, &view, total_len, out);
- }
-
- /// Hash with automatic parallelization for large inputs (>2MB).
- /// Automatically uses sequential processing for smaller inputs to avoid thread overhead.
- /// Allocator required for temporary buffers. IO object required for thread management.
- pub fn hashParallel(message: []const u8, out: []u8, options: Options, allocator: Allocator, io: Io) !void {
- const custom = options.customization orelse &[_]u8{};
-
- const custom_len_enc = rightEncode(custom.len);
- const view = MultiSliceView.init(message, custom, custom_len_enc.slice());
- const total_len = view.totalLen();
-
- // Single chunk case
- if (total_len <= chunk_size) {
- singleChunkFn(&view, 0x07, out);
- return;
- }
-
- // Use single-threaded processing if below threshold
- if (total_len < large_file_threshold) {
- ktSingleThreaded(Variant, &view, total_len, out);
- return;
- }
-
- // Tree mode - multi-threaded processing
- try ktMultiThreaded(Variant, allocator, io, &view, total_len, out);
- }
- };
-}
-
-/// KangarooTwelve is a fast, secure cryptographic hash function that uses tree-hashing
-/// on top of TurboSHAKE. It is built on the Keccak permutation, the same primitive
-/// underlying SHA-3, which has undergone over 15 years of intensive cryptanalysis
-/// since the SHA-3 competition (2008-2012) and remains secure.
-///
-/// K12 uses Keccak-p[1600,12] with 12 rounds (half of SHA-3's 24 rounds), providing
-/// 128-bit security strength equivalent to AES-128 and SHAKE128. While this offers
-/// less conservative margin than SHA-3, current cryptanalysis reaches only 6 rounds,
-/// leaving a substantial security margin. This deliberate trade-off delivers
-/// significantly better performance while maintaining strong practical security.
-///
-/// Standardized as RFC 9861 after 8 years of public scrutiny. Supports arbitrary-length
-/// output and optional customization strings for domain separation.
-pub const KT128 = KTHash(KT128Variant, turboSHAKE128MultiSliceToBuffer);
-
-/// KangarooTwelve is a fast, secure cryptographic hash function that uses tree-hashing
-/// on top of TurboSHAKE. It is built on the Keccak permutation, the same primitive
-/// underlying SHA-3, which has undergone over 15 years of intensive cryptanalysis
-/// since the SHA-3 competition (2008-2012) and remains secure.
-///
-/// KT256 provides 256-bit security strength and achieves NIST post-quantum security
-/// level 2 when using at least 256-bit outputs. Like KT128, it uses Keccak-p[1600,12]
-/// with 12 rounds, offering a deliberate trade-off between conservative margin and
-/// significantly better performance while maintaining strong practical security.
-///
-/// Use KT256 when you need extra conservative margins.
-/// For most applications, KT128 offers better performance with adequate security.
-pub const KT256 = KTHash(KT256Variant, turboSHAKE256MultiSliceToBuffer);
-
-test "KT128 sequential and parallel produce same output for small inputs" {
- const allocator = std.testing.allocator;
- const io = std.testing.io;
-
- // Test with different small input sizes
- const test_sizes = [_]usize{ 100, 1024, 4096, 8192 }; // 100B, 1KB, 4KB, 8KB
-
- for (test_sizes) |size| {
- const input = try allocator.alloc(u8, size);
- defer allocator.free(input);
-
- // Fill with random data
- crypto.random.bytes(input);
-
- var output_seq: [32]u8 = undefined;
- var output_par: [32]u8 = undefined;
-
- // Hash with sequential method
- try KT128.hash(input, &output_seq, .{});
-
- // Hash with parallel method
- try KT128.hashParallel(input, &output_par, .{}, allocator, io);
-
- // Verify outputs match
- try std.testing.expectEqualSlices(u8, &output_seq, &output_par);
- }
-}
-
-test "KT128 sequential and parallel produce same output for large inputs" {
- const allocator = std.testing.allocator;
- const io = std.testing.io;
-
- // Test with large input sizes that trigger parallel processing
- // The threshold is 3-10MB depending on CPU count, so we test above that
- const test_sizes = [_]usize{ 11 * 1024 * 1024, 20 * 1024 * 1024 }; // 11MB, 20MB
-
- for (test_sizes) |size| {
- const input = try allocator.alloc(u8, size);
- defer allocator.free(input);
-
- // Fill with random data
- crypto.random.bytes(input);
-
- var output_seq: [64]u8 = undefined;
- var output_par: [64]u8 = undefined;
-
- // Hash with sequential method
- try KT128.hash(input, &output_seq, .{});
-
- // Hash with parallel method
- try KT128.hashParallel(input, &output_par, .{}, allocator, io);
-
- // Verify outputs match
- try std.testing.expectEqualSlices(u8, &output_seq, &output_par);
- }
-}
-
-test "KT128 sequential and parallel produce same output with customization" {
- const allocator = std.testing.allocator;
- const io = std.testing.io;
-
- const input_size = 15 * 1024 * 1024; // 15MB
- const input = try allocator.alloc(u8, input_size);
- defer allocator.free(input);
-
- // Fill with random data
- crypto.random.bytes(input);
-
- const customization = "test domain";
- var output_seq: [48]u8 = undefined;
- var output_par: [48]u8 = undefined;
-
- // Hash with sequential method
- try KT128.hash(input, &output_seq, .{ .customization = customization });
-
- // Hash with parallel method
- try KT128.hashParallel(input, &output_par, .{ .customization = customization }, allocator, io);
-
- // Verify outputs match
- try std.testing.expectEqualSlices(u8, &output_seq, &output_par);
-}
-
-test "KT256 sequential and parallel produce same output for small inputs" {
- const allocator = std.testing.allocator;
- const io = std.testing.io;
-
- // Test with different small input sizes
- const test_sizes = [_]usize{ 100, 1024, 4096, 8192 }; // 100B, 1KB, 4KB, 8KB
-
- for (test_sizes) |size| {
- const input = try allocator.alloc(u8, size);
- defer allocator.free(input);
-
- // Fill with random data
- crypto.random.bytes(input);
-
- var output_seq: [64]u8 = undefined;
- var output_par: [64]u8 = undefined;
-
- // Hash with sequential method
- try KT256.hash(input, &output_seq, .{});
-
- // Hash with parallel method
- try KT256.hashParallel(input, &output_par, .{}, allocator, io);
-
- // Verify outputs match
- try std.testing.expectEqualSlices(u8, &output_seq, &output_par);
- }
-}
-
-test "KT256 sequential and parallel produce same output for large inputs" {
- const allocator = std.testing.allocator;
- const io = std.testing.io;
-
- // Test with large input sizes that trigger parallel processing
- const test_sizes = [_]usize{ 11 * 1024 * 1024, 20 * 1024 * 1024 }; // 11MB, 20MB
-
- for (test_sizes) |size| {
- const input = try allocator.alloc(u8, size);
- defer allocator.free(input);
-
- // Fill with random data
- crypto.random.bytes(input);
-
- var output_seq: [64]u8 = undefined;
- var output_par: [64]u8 = undefined;
-
- // Hash with sequential method
- try KT256.hash(input, &output_seq, .{});
-
- // Hash with parallel method
- try KT256.hashParallel(input, &output_par, .{}, allocator, io);
-
- // Verify outputs match
- try std.testing.expectEqualSlices(u8, &output_seq, &output_par);
- }
-}
-
-test "KT256 sequential and parallel produce same output with customization" {
- const allocator = std.testing.allocator;
- const io = std.testing.io;
-
- const input_size = 15 * 1024 * 1024; // 15MB
- const input = try allocator.alloc(u8, input_size);
- defer allocator.free(input);
-
- // Fill with random data
- crypto.random.bytes(input);
-
- const customization = "test domain";
- var output_seq: [80]u8 = undefined;
- var output_par: [80]u8 = undefined;
-
- // Hash with sequential method
- try KT256.hash(input, &output_seq, .{ .customization = customization });
-
- // Hash with parallel method
- try KT256.hashParallel(input, &output_par, .{ .customization = customization }, allocator, io);
-
- // Verify outputs match
- try std.testing.expectEqualSlices(u8, &output_seq, &output_par);
-}
-
-/// Helper: Generate pattern data where data[i] = (i % 251)
-fn generatePattern(allocator: Allocator, len: usize) ![]u8 {
- const data = try allocator.alloc(u8, len);
- for (data, 0..) |*byte, i| {
- byte.* = @intCast(i % 251);
- }
- return data;
-}
-
-test "KT128: empty message, empty customization, 32 bytes" {
- var output: [32]u8 = undefined;
- try KT128.hash(&[_]u8{}, &output, .{});
-
- var expected: [32]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "1AC2D450FC3B4205D19DA7BFCA1B37513C0803577AC7167F06FE2CE1F0EF39E5");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT128: empty message, empty customization, 64 bytes" {
- var output: [64]u8 = undefined;
- try KT128.hash(&[_]u8{}, &output, .{});
-
- var expected: [64]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "1AC2D450FC3B4205D19DA7BFCA1B37513C0803577AC7167F06FE2CE1F0EF39E54269C056B8C82E48276038B6D292966CC07A3D4645272E31FF38508139EB0A71");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT128: empty message, empty customization, 10032 bytes (last 32)" {
- const allocator = std.testing.allocator;
- const output = try allocator.alloc(u8, 10032);
- defer allocator.free(output);
-
- try KT128.hash(&[_]u8{}, output, .{});
-
- var expected: [32]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "E8DC563642F7228C84684C898405D3A834799158C079B12880277A1D28E2FF6D");
- try std.testing.expectEqualSlices(u8, &expected, output[10000..]);
-}
-
-test "KT128: pattern message (1 byte), empty customization, 32 bytes" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 1);
- defer allocator.free(message);
-
- var output: [32]u8 = undefined;
- try KT128.hash(message, &output, .{});
-
- var expected: [32]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "2BDA92450E8B147F8A7CB629E784A058EFCA7CF7D8218E02D345DFAA65244A1F");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT128: pattern message (17 bytes), empty customization, 32 bytes" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 17);
- defer allocator.free(message);
-
- var output: [32]u8 = undefined;
- try KT128.hash(message, &output, .{});
-
- var expected: [32]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "6BF75FA2239198DB4772E36478F8E19B0F371205F6A9A93A273F51DF37122888");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT128: pattern message (289 bytes), empty customization, 32 bytes" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 289);
- defer allocator.free(message);
-
- var output: [32]u8 = undefined;
- try KT128.hash(message, &output, .{});
-
- var expected: [32]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "0C315EBCDEDBF61426DE7DCF8FB725D1E74675D7F5327A5067F367B108ECB67C");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT128: 0xFF message (1 byte), pattern customization (1 byte), 32 bytes" {
- const allocator = std.testing.allocator;
- const customization = try generatePattern(allocator, 1);
- defer allocator.free(customization);
-
- const message = [_]u8{0xFF};
- var output: [32]u8 = undefined;
- try KT128.hash(&message, &output, .{ .customization = customization });
-
- var expected: [32]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "A20B92B251E3D62443EC286E4B9B470A4E8315C156EEB24878B038ABE20650BE");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT128: pattern message (8191 bytes), empty customization, 32 bytes" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 8191);
- defer allocator.free(message);
-
- var output: [32]u8 = undefined;
- try KT128.hash(message, &output, .{});
-
- var expected: [32]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "1B577636F723643E990CC7D6A659837436FD6A103626600EB8301CD1DBE553D6");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT128: pattern message (8192 bytes), empty customization, 32 bytes" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 8192);
- defer allocator.free(message);
-
- var output: [32]u8 = undefined;
- try KT128.hash(message, &output, .{});
-
- var expected: [32]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "48F256F6772F9EDFB6A8B661EC92DC93B95EBD05A08A17B39AE3490870C926C3");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT256: empty message, empty customization, 64 bytes" {
- var output: [64]u8 = undefined;
- try KT256.hash(&[_]u8{}, &output, .{});
-
- var expected: [64]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "B23D2E9CEA9F4904E02BEC06817FC10CE38CE8E93EF4C89E6537076AF8646404E3E8B68107B8833A5D30490AA33482353FD4ADC7148ECB782855003AAEBDE4A9");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT256: empty message, empty customization, 128 bytes" {
- var output: [128]u8 = undefined;
- try KT256.hash(&[_]u8{}, &output, .{});
-
- var expected: [128]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "B23D2E9CEA9F4904E02BEC06817FC10CE38CE8E93EF4C89E6537076AF8646404E3E8B68107B8833A5D30490AA33482353FD4ADC7148ECB782855003AAEBDE4A9B0925319D8EA1E121A609821EC19EFEA89E6D08DAEE1662B69C840289F188BA860F55760B61F82114C030C97E5178449608CCD2CD2D919FC7829FF69931AC4D0");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT256: pattern message (1 byte), empty customization, 64 bytes" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 1);
- defer allocator.free(message);
-
- var output: [64]u8 = undefined;
- try KT256.hash(message, &output, .{});
-
- var expected: [64]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "0D005A194085360217128CF17F91E1F71314EFA5564539D444912E3437EFA17F82DB6F6FFE76E781EAA068BCE01F2BBF81EACB983D7230F2FB02834A21B1DDD0");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT256: pattern message (17 bytes), empty customization, 64 bytes" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 17);
- defer allocator.free(message);
-
- var output: [64]u8 = undefined;
- try KT256.hash(message, &output, .{});
-
- var expected: [64]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "1BA3C02B1FC514474F06C8979978A9056C8483F4A1B63D0DCCEFE3A28A2F323E1CDCCA40EBF006AC76EF0397152346837B1277D3E7FAA9C9653B19075098527B");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT256: pattern message (8191 bytes), empty customization, 64 bytes" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 8191);
- defer allocator.free(message);
-
- var output: [64]u8 = undefined;
- try KT256.hash(message, &output, .{});
-
- var expected: [64]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "3081434D93A4108D8D8A3305B89682CEBEDC7CA4EA8A3CE869FBB73CBE4A58EEF6F24DE38FFC170514C70E7AB2D01F03812616E863D769AFB3753193BA045B20");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT256: pattern message (8192 bytes), empty customization, 64 bytes" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 8192);
- defer allocator.free(message);
-
- var output: [64]u8 = undefined;
- try KT256.hash(message, &output, .{});
-
- var expected: [64]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "C6EE8E2AD3200C018AC87AAA031CDAC22121B412D07DC6E0DCCBB53423747E9A1C18834D99DF596CF0CF4B8DFAFB7BF02D139D0C9035725ADC1A01B7230A41FA");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT128: pattern message (8193 bytes), empty customization, 32 bytes" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 8193);
- defer allocator.free(message);
-
- var output: [32]u8 = undefined;
- try KT128.hash(message, &output, .{});
-
- var expected: [32]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "BB66FE72EAEA5179418D5295EE1344854D8AD7F3FA17EFCB467EC152341284CF");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT128: pattern message (16384 bytes), empty customization, 32 bytes" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 16384);
- defer allocator.free(message);
-
- var output: [32]u8 = undefined;
- try KT128.hash(message, &output, .{});
-
- var expected: [32]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "82778F7F7234C83352E76837B721FBDBB5270B88010D84FA5AB0B61EC8CE0956");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT128: pattern message (16385 bytes), empty customization, 32 bytes" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 16385);
- defer allocator.free(message);
-
- var output: [32]u8 = undefined;
- try KT128.hash(message, &output, .{});
-
- var expected: [32]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "5F8D2B943922B451842B4E82740D02369E2D5F9F33C5123509A53B955FE177B2");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT256: pattern message (8193 bytes), empty customization, 64 bytes" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 8193);
- defer allocator.free(message);
-
- var output: [64]u8 = undefined;
- try KT256.hash(message, &output, .{});
-
- var expected: [64]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "65FF03335900E5197ACBD5F41B797F0E7E36AD4FF7D89C09FA6F28AE58D1E8BC2DF1779B86F988C3B13690172914EA172423B23EF4057255BB0836AB3A99836E");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT256: pattern message (16384 bytes), empty customization, 64 bytes" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 16384);
- defer allocator.free(message);
-
- var output: [64]u8 = undefined;
- try KT256.hash(message, &output, .{});
-
- var expected: [64]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "74604239A14847CB79069B4FF0E51070A93034C9AC4DFF4D45E0F2C5DA81D930DE6055C2134B4DF4E49F27D1B2C66E95491858B182A924BD0504DA5976BC516D");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT256: pattern message (16385 bytes), empty customization, 64 bytes" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 16385);
- defer allocator.free(message);
-
- var output: [64]u8 = undefined;
- try KT256.hash(message, &output, .{});
-
- var expected: [64]u8 = undefined;
- _ = try std.fmt.hexToBytes(&expected, "C814F23132DADBFD55379F18CB988CB39B751F119322823FD982644A897485397B9F40EB11C6E416359B8AE695A5CE0FA79D1ADA1EEC745D82E0A5AB08A9F014");
- try std.testing.expectEqualSlices(u8, &expected, &output);
-}
-
-test "KT128 incremental: empty message matches one-shot" {
- var output_oneshot: [32]u8 = undefined;
- var output_incremental: [32]u8 = undefined;
-
- try KT128.hash(&[_]u8{}, &output_oneshot, .{});
-
- var hasher = KT128.init(.{});
- hasher.final(&output_incremental);
-
- try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
-}
-
-test "KT128 incremental: small message matches one-shot" {
- const message = "Hello, KangarooTwelve!";
-
- var output_oneshot: [32]u8 = undefined;
- var output_incremental: [32]u8 = undefined;
-
- try KT128.hash(message, &output_oneshot, .{});
-
- var hasher = KT128.init(.{});
- hasher.update(message);
- hasher.final(&output_incremental);
-
- try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
-}
-
-test "KT128 incremental: multiple updates match single update" {
- const part1 = "Hello, ";
- const part2 = "Kangaroo";
- const part3 = "Twelve!";
-
- var output_single: [32]u8 = undefined;
- var output_multi: [32]u8 = undefined;
-
- // Single update
- var hasher1 = KT128.init(.{});
- hasher1.update(part1 ++ part2 ++ part3);
- hasher1.final(&output_single);
-
- // Multiple updates
- var hasher2 = KT128.init(.{});
- hasher2.update(part1);
- hasher2.update(part2);
- hasher2.update(part3);
- hasher2.final(&output_multi);
-
- try std.testing.expectEqualSlices(u8, &output_single, &output_multi);
-}
-
-test "KT128 incremental: exactly chunk_size matches one-shot" {
- const allocator = std.testing.allocator;
- const message = try allocator.alloc(u8, 8192);
- defer allocator.free(message);
- @memset(message, 0xAB);
-
- var output_oneshot: [32]u8 = undefined;
- var output_incremental: [32]u8 = undefined;
-
- try KT128.hash(message, &output_oneshot, .{});
-
- var hasher = KT128.init(.{});
- hasher.update(message);
- hasher.final(&output_incremental);
-
- try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
-}
-
-test "KT128 incremental: larger than chunk_size matches one-shot" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 16384);
- defer allocator.free(message);
-
- var output_oneshot: [32]u8 = undefined;
- var output_incremental: [32]u8 = undefined;
-
- try KT128.hash(message, &output_oneshot, .{});
-
- var hasher = KT128.init(.{});
- hasher.update(message);
- hasher.final(&output_incremental);
-
- try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
-}
-
-test "KT128 incremental: with customization matches one-shot" {
- const message = "Test message";
- const customization = "my custom domain";
-
- var output_oneshot: [32]u8 = undefined;
- var output_incremental: [32]u8 = undefined;
-
- try KT128.hash(message, &output_oneshot, .{ .customization = customization });
-
- var hasher = KT128.init(.{ .customization = customization });
- hasher.update(message);
- hasher.final(&output_incremental);
-
- try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
-}
-
-test "KT128 incremental: large message with customization" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 20000);
- defer allocator.free(message);
- const customization = "test domain";
-
- var output_oneshot: [48]u8 = undefined;
- var output_incremental: [48]u8 = undefined;
-
- try KT128.hash(message, &output_oneshot, .{ .customization = customization });
-
- var hasher = KT128.init(.{ .customization = customization });
- hasher.update(message);
- hasher.final(&output_incremental);
-
- try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
-}
-
-test "KT128 incremental: streaming chunks matches one-shot" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 25000);
- defer allocator.free(message);
-
- var output_oneshot: [32]u8 = undefined;
- var output_incremental: [32]u8 = undefined;
-
- try KT128.hash(message, &output_oneshot, .{});
-
- var hasher = KT128.init(.{});
-
- // Feed in 1KB chunks
- var offset: usize = 0;
- while (offset < message.len) {
- const chunk_size_local = @min(1024, message.len - offset);
- hasher.update(message[offset..][0..chunk_size_local]);
- offset += chunk_size_local;
- }
- hasher.final(&output_incremental);
-
- try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
-}
-
-test "KT256 incremental: empty message matches one-shot" {
- var output_oneshot: [64]u8 = undefined;
- var output_incremental: [64]u8 = undefined;
-
- try KT256.hash(&[_]u8{}, &output_oneshot, .{});
-
- var hasher = KT256.init(.{});
- hasher.final(&output_incremental);
-
- try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
-}
-
-test "KT256 incremental: small message matches one-shot" {
- const message = "Hello, KangarooTwelve with 256-bit security!";
-
- var output_oneshot: [64]u8 = undefined;
- var output_incremental: [64]u8 = undefined;
-
- try KT256.hash(message, &output_oneshot, .{});
-
- var hasher = KT256.init(.{});
- hasher.update(message);
- hasher.final(&output_incremental);
-
- try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
-}
-
-test "KT256 incremental: large message matches one-shot" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 30000);
- defer allocator.free(message);
-
- var output_oneshot: [64]u8 = undefined;
- var output_incremental: [64]u8 = undefined;
-
- try KT256.hash(message, &output_oneshot, .{});
-
- var hasher = KT256.init(.{});
- hasher.update(message);
- hasher.final(&output_incremental);
-
- try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
-}
-
-test "KT256 incremental: with customization matches one-shot" {
- const allocator = std.testing.allocator;
- const message = try generatePattern(allocator, 15000);
- defer allocator.free(message);
- const customization = "KT256 custom domain";
-
- var output_oneshot: [80]u8 = undefined;
- var output_incremental: [80]u8 = undefined;
-
- try KT256.hash(message, &output_oneshot, .{ .customization = customization });
-
- var hasher = KT256.init(.{ .customization = customization });
- hasher.update(message);
- hasher.final(&output_incremental);
-
- try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
-}
-
-test "KT128 incremental: random small message with random chunk sizes" {
- const allocator = std.testing.allocator;
-
- const test_sizes = [_]usize{ 100, 500, 2000, 5000, 10000 };
-
- for (test_sizes) |total_size| {
- const message = try allocator.alloc(u8, total_size);
- defer allocator.free(message);
- crypto.random.bytes(message);
-
- var output_oneshot: [32]u8 = undefined;
- var output_incremental: [32]u8 = undefined;
-
- try KT128.hash(message, &output_oneshot, .{});
-
- var hasher = KT128.init(.{});
- var offset: usize = 0;
-
- while (offset < message.len) {
- const remaining = message.len - offset;
- const max_chunk = @min(1000, remaining);
- const chunk_size_local = if (max_chunk == 1) 1 else crypto.random.intRangeAtMost(usize, 1, max_chunk);
-
- hasher.update(message[offset..][0..chunk_size_local]);
- offset += chunk_size_local;
- }
- hasher.final(&output_incremental);
-
- try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
- }
-}
-
-test "KT128 incremental: random large message (1MB) with random chunk sizes" {
- const allocator = std.testing.allocator;
-
- const total_size: usize = 1024 * 1024; // 1 MB
- const message = try allocator.alloc(u8, total_size);
- defer allocator.free(message);
- crypto.random.bytes(message);
-
- var output_oneshot: [32]u8 = undefined;
- var output_incremental: [32]u8 = undefined;
-
- try KT128.hash(message, &output_oneshot, .{});
-
- var hasher = KT128.init(.{});
- var offset: usize = 0;
-
- while (offset < message.len) {
- const remaining = message.len - offset;
- const max_chunk = @min(10000, remaining);
- const chunk_size_local = if (max_chunk == 1) 1 else crypto.random.intRangeAtMost(usize, 1, max_chunk);
-
- hasher.update(message[offset..][0..chunk_size_local]);
- offset += chunk_size_local;
- }
- hasher.final(&output_incremental);
-
- try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
-}
-
-test "KT256 incremental: random small message with random chunk sizes" {
- const allocator = std.testing.allocator;
-
- const test_sizes = [_]usize{ 100, 500, 2000, 5000, 10000 };
-
- for (test_sizes) |total_size| {
- // Generate random message
- const message = try allocator.alloc(u8, total_size);
- defer allocator.free(message);
- crypto.random.bytes(message);
-
- var output_oneshot: [64]u8 = undefined;
- var output_incremental: [64]u8 = undefined;
-
- try KT256.hash(message, &output_oneshot, .{});
-
- var hasher = KT256.init(.{});
- var offset: usize = 0;
-
- while (offset < message.len) {
- const remaining = message.len - offset;
- const max_chunk = @min(1000, remaining);
- const chunk_size_local = if (max_chunk == 1) 1 else crypto.random.intRangeAtMost(usize, 1, max_chunk);
-
- hasher.update(message[offset..][0..chunk_size_local]);
- offset += chunk_size_local;
- }
- hasher.final(&output_incremental);
-
- try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
- }
-}
-
-test "KT256 incremental: random large message (1MB) with random chunk sizes" {
- const allocator = std.testing.allocator;
-
- const total_size: usize = 1024 * 1024; // 1 MB
- const message = try allocator.alloc(u8, total_size);
- defer allocator.free(message);
- crypto.random.bytes(message);
-
- var output_oneshot: [64]u8 = undefined;
- var output_incremental: [64]u8 = undefined;
-
- try KT256.hash(message, &output_oneshot, .{});
-
- var hasher = KT256.init(.{});
- var offset: usize = 0;
-
- while (offset < message.len) {
- const remaining = message.len - offset;
- const max_chunk = @min(10000, remaining);
- const chunk_size_local = if (max_chunk == 1) 1 else crypto.random.intRangeAtMost(usize, 1, max_chunk);
-
- hasher.update(message[offset..][0..chunk_size_local]);
- offset += chunk_size_local;
- }
- hasher.final(&output_incremental);
-
- try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
-}
-
-test "KT128 incremental: random message with customization and random chunks" {
- const allocator = std.testing.allocator;
-
- const total_size: usize = 50000;
- const message = try allocator.alloc(u8, total_size);
- defer allocator.free(message);
- crypto.random.bytes(message);
-
- const customization = "random test domain";
-
- var output_oneshot: [48]u8 = undefined;
- var output_incremental: [48]u8 = undefined;
-
- try KT128.hash(message, &output_oneshot, .{ .customization = customization });
-
- var hasher = KT128.init(.{ .customization = customization });
- var offset: usize = 0;
-
- while (offset < message.len) {
- const remaining = message.len - offset;
- const max_chunk = @min(5000, remaining);
- const chunk_size_local = if (max_chunk == 1) 1 else crypto.random.intRangeAtMost(usize, 1, max_chunk);
-
- hasher.update(message[offset..][0..chunk_size_local]);
- offset += chunk_size_local;
- }
- hasher.final(&output_incremental);
-
- try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
-}
lib/std/crypto/sha3.zig
@@ -4,8 +4,6 @@ const assert = std.debug.assert;
const math = std.math;
const mem = std.mem;
-const kangarootwelve = @import("kangarootwelve.zig");
-
const KeccakState = std.crypto.core.keccak.State;
pub const Sha3_224 = Keccak(1600, 224, 0x06, 24);
@@ -28,9 +26,6 @@ pub const KMac256 = KMac(256);
pub const TupleHash128 = TupleHash(128);
pub const TupleHash256 = TupleHash(256);
-pub const KT128 = kangarootwelve.KT128;
-pub const KT256 = kangarootwelve.KT256;
-
/// TurboSHAKE128 is a XOF (a secure hash function with a variable output length), with a 128 bit security level.
/// It is based on the same permutation as SHA3 and SHAKE128, but which much higher performance.
/// The delimiter is 0x1f by default, but can be changed for context-separation.
@@ -486,10 +481,6 @@ pub const NistLengthEncoding = enum {
const htest = @import("test.zig");
-test {
- _ = kangarootwelve;
-}
-
test "sha3-224 single" {
try htest.assertEqualHash(Sha3_224, "6b4e03423667dbb73b6e15454f0eb1abd4597f9a1b078e3f5b5a6bc7", "");
try htest.assertEqualHash(Sha3_224, "e642824c3f8cf24ad09234ee7d3c766fc9a3a5168d0c94ad73b46fdf", "abc");