Commit ae3fb6df00

Benjamin Feng <benjamin.feng@glassdoor.com>
2020-02-29 18:56:21
Copy fmtstream
1 parent 895f67c
Changed files (2)
lib/std/fmtstream.zig
@@ -0,0 +1,1754 @@
+const std = @import("std.zig");
+const math = std.math;
+const assert = std.debug.assert;
+const mem = std.mem;
+const builtin = @import("builtin");
+const errol = @import("fmt/errol.zig");
+const lossyCast = std.math.lossyCast;
+
+pub const default_max_depth = 3;
+
+pub const Alignment = enum {
+    Left,
+    Center,
+    Right,
+};
+
+pub const FormatOptions = struct {
+    precision: ?usize = null,
+    width: ?usize = null,
+    alignment: ?Alignment = null,
+    fill: u8 = ' ',
+};
+
+fn peekIsAlign(comptime fmt: []const u8) bool {
+    // Should only be called during a state transition to the format segment.
+    comptime assert(fmt[0] == ':');
+
+    inline for (([_]u8{ 1, 2 })[0..]) |i| {
+        if (fmt.len > i and (fmt[i] == '<' or fmt[i] == '^' or fmt[i] == '>')) {
+            return true;
+        }
+    }
+    return false;
+}
+
+/// Renders fmt string with args, calling output with slices of bytes.
+/// If `output` returns an error, the error is returned from `format` and
+/// `output` is not called again.
+///
+/// The format string must be comptime known and may contain placeholders following
+/// this format:
+/// `{[position][specifier]:[fill][alignment][width].[precision]}`
+///
+/// Each word between `[` and `]` is a parameter you have to replace with something:
+///
+/// - *position* is the index of the argument that should be inserted
+/// - *specifier* is a type-dependent formatting option that determines how a type should formatted (see below)
+/// - *fill* is a single character which is used to pad the formatted text
+/// - *alignment* is one of the three characters `<`, `^` or `>`. they define if the text is *left*, *center*, or *right* aligned
+/// - *width* is the total width of the field in characters
+/// - *precision* specifies how many decimals a formatted number should have
+///
+/// Note that most of the parameters are optional and may be omitted. Also you can leave out separators like `:` and `.` when
+/// all parameters after the separator are omitted.
+/// Only exception is the *fill* parameter. If *fill* is required, one has to specify *alignment* as well, as otherwise
+/// the digits after `:` is interpreted as *width*, not *fill*.
+///
+/// The *specifier* has several options for types:
+/// - `x` and `X`:
+///   - format the non-numeric value as a string of bytes in hexadecimal notation ("binary dump") in either lower case or upper case
+///   - output numeric value in hexadecimal notation
+/// - `s`: print a pointer-to-many as a c-string, use zero-termination
+/// - `B` and `Bi`: output a memory size in either metric (1000) or power-of-two (1024) based notation. works for both float and integer values.
+/// - `e`: output floating point value in scientific notation
+/// - `d`: output numeric value in decimal notation
+/// - `b`: output integer value in binary notation
+/// - `c`: output integer as an ASCII character. Integer type must have 8 bits at max.
+/// - `*`: output the address of the value instead of the value itself.
+///
+/// If a formatted user type contains a function of the type
+/// ```
+/// fn format(value: ?, comptime fmt: []const u8, options: std.fmt.FormatOptions, context: var, comptime Errors: type, comptime output: fn (@TypeOf(context), []const u8) Errors!void) Errors!void
+/// ```
+/// with `?` being the type formatted, this function will be called instead of the default implementation.
+/// This allows user types to be formatted in a logical manner instead of dumping all fields of the type.
+///
+/// A user type may be a `struct`, `vector`, `union` or `enum` type.
+pub fn format(
+    context: var,
+    comptime Errors: type,
+    comptime output: fn (@TypeOf(context), []const u8) Errors!void,
+    comptime fmt: []const u8,
+    args: var,
+) Errors!void {
+    const ArgSetType = u32;
+    if (@typeInfo(@TypeOf(args)) != .Struct) {
+        @compileError("Expected tuple or struct argument, found " ++ @typeName(@TypeOf(args)));
+    }
+    if (args.len > ArgSetType.bit_count) {
+        @compileError("32 arguments max are supported per format call");
+    }
+
+    const State = enum {
+        Start,
+        Positional,
+        CloseBrace,
+        Specifier,
+        FormatFillAndAlign,
+        FormatWidth,
+        FormatPrecision,
+    };
+
+    comptime var start_index = 0;
+    comptime var state = State.Start;
+    comptime var maybe_pos_arg: ?comptime_int = null;
+    comptime var specifier_start = 0;
+    comptime var specifier_end = 0;
+    comptime var options = FormatOptions{};
+    comptime var arg_state: struct {
+        next_arg: usize = 0,
+        used_args: ArgSetType = 0,
+        args_len: usize = args.len,
+
+        fn hasUnusedArgs(comptime self: *@This()) bool {
+            return (@popCount(ArgSetType, self.used_args) != self.args_len);
+        }
+
+        fn nextArg(comptime self: *@This(), comptime pos_arg: ?comptime_int) comptime_int {
+            const next_idx = pos_arg orelse blk: {
+                const arg = self.next_arg;
+                self.next_arg += 1;
+                break :blk arg;
+            };
+
+            if (next_idx >= self.args_len) {
+                @compileError("Too few arguments");
+            }
+
+            // Mark this argument as used
+            self.used_args |= 1 << next_idx;
+
+            return next_idx;
+        }
+    } = .{};
+
+    inline for (fmt) |c, i| {
+        switch (state) {
+            .Start => switch (c) {
+                '{' => {
+                    if (start_index < i) {
+                        try output(context, fmt[start_index..i]);
+                    }
+
+                    start_index = i;
+                    specifier_start = i + 1;
+                    specifier_end = i + 1;
+                    maybe_pos_arg = null;
+                    state = .Positional;
+                    options = FormatOptions{};
+                },
+                '}' => {
+                    if (start_index < i) {
+                        try output(context, fmt[start_index..i]);
+                    }
+                    state = .CloseBrace;
+                },
+                else => {},
+            },
+            .Positional => switch (c) {
+                '{' => {
+                    state = .Start;
+                    start_index = i;
+                },
+                ':' => {
+                    state = if (comptime peekIsAlign(fmt[i..])) State.FormatFillAndAlign else State.FormatWidth;
+                    specifier_end = i;
+                },
+                '0'...'9' => {
+                    if (maybe_pos_arg == null) {
+                        maybe_pos_arg = 0;
+                    }
+
+                    maybe_pos_arg.? *= 10;
+                    maybe_pos_arg.? += c - '0';
+                    specifier_start = i + 1;
+
+                    if (maybe_pos_arg.? >= args.len) {
+                        @compileError("Positional value refers to non-existent argument");
+                    }
+                },
+                '}' => {
+                    const arg_to_print = comptime arg_state.nextArg(maybe_pos_arg);
+
+                    try formatType(
+                        args[arg_to_print],
+                        fmt[0..0],
+                        options,
+                        context,
+                        Errors,
+                        output,
+                        default_max_depth,
+                    );
+
+                    state = .Start;
+                    start_index = i + 1;
+                },
+                else => {
+                    state = .Specifier;
+                    specifier_start = i;
+                },
+            },
+            .CloseBrace => switch (c) {
+                '}' => {
+                    state = .Start;
+                    start_index = i;
+                },
+                else => @compileError("Single '}' encountered in format string"),
+            },
+            .Specifier => switch (c) {
+                ':' => {
+                    specifier_end = i;
+                    state = if (comptime peekIsAlign(fmt[i..])) State.FormatFillAndAlign else State.FormatWidth;
+                },
+                '}' => {
+                    const arg_to_print = comptime arg_state.nextArg(maybe_pos_arg);
+
+                    try formatType(
+                        args[arg_to_print],
+                        fmt[specifier_start..i],
+                        options,
+                        context,
+                        Errors,
+                        output,
+                        default_max_depth,
+                    );
+                    state = .Start;
+                    start_index = i + 1;
+                },
+                else => {},
+            },
+            // Only entered if the format string contains a fill/align segment.
+            .FormatFillAndAlign => switch (c) {
+                '<' => {
+                    options.alignment = Alignment.Left;
+                    state = .FormatWidth;
+                },
+                '^' => {
+                    options.alignment = Alignment.Center;
+                    state = .FormatWidth;
+                },
+                '>' => {
+                    options.alignment = Alignment.Right;
+                    state = .FormatWidth;
+                },
+                else => {
+                    options.fill = c;
+                },
+            },
+            .FormatWidth => switch (c) {
+                '0'...'9' => {
+                    if (options.width == null) {
+                        options.width = 0;
+                    }
+
+                    options.width.? *= 10;
+                    options.width.? += c - '0';
+                },
+                '.' => {
+                    state = .FormatPrecision;
+                },
+                '}' => {
+                    const arg_to_print = comptime arg_state.nextArg(maybe_pos_arg);
+
+                    try formatType(
+                        args[arg_to_print],
+                        fmt[specifier_start..specifier_end],
+                        options,
+                        context,
+                        Errors,
+                        output,
+                        default_max_depth,
+                    );
+                    state = .Start;
+                    start_index = i + 1;
+                },
+                else => {
+                    @compileError("Unexpected character in width value: " ++ [_]u8{c});
+                },
+            },
+            .FormatPrecision => switch (c) {
+                '0'...'9' => {
+                    if (options.precision == null) {
+                        options.precision = 0;
+                    }
+
+                    options.precision.? *= 10;
+                    options.precision.? += c - '0';
+                },
+                '}' => {
+                    const arg_to_print = comptime arg_state.nextArg(maybe_pos_arg);
+
+                    try formatType(
+                        args[arg_to_print],
+                        fmt[specifier_start..specifier_end],
+                        options,
+                        context,
+                        Errors,
+                        output,
+                        default_max_depth,
+                    );
+                    state = .Start;
+                    start_index = i + 1;
+                },
+                else => {
+                    @compileError("Unexpected character in precision value: " ++ [_]u8{c});
+                },
+            },
+        }
+    }
+    comptime {
+        if (comptime arg_state.hasUnusedArgs()) {
+            @compileError("Unused arguments");
+        }
+        if (state != State.Start) {
+            @compileError("Incomplete format string: " ++ fmt);
+        }
+    }
+    if (start_index < fmt.len) {
+        try output(context, fmt[start_index..]);
+    }
+}
+
+pub fn formatType(
+    value: var,
+    comptime fmt: []const u8,
+    options: FormatOptions,
+    context: var,
+    comptime Errors: type,
+    comptime output: fn (@TypeOf(context), []const u8) Errors!void,
+    max_depth: usize,
+) Errors!void {
+    if (comptime std.mem.eql(u8, fmt, "*")) {
+        try output(context, @typeName(@TypeOf(value).Child));
+        try output(context, "@");
+        try formatInt(@ptrToInt(value), 16, false, FormatOptions{}, context, Errors, output);
+        return;
+    }
+
+    const T = @TypeOf(value);
+    switch (@typeInfo(T)) {
+        .ComptimeInt, .Int, .Float => {
+            return formatValue(value, fmt, options, context, Errors, output);
+        },
+        .Void => {
+            return output(context, "void");
+        },
+        .Bool => {
+            return output(context, if (value) "true" else "false");
+        },
+        .Optional => {
+            if (value) |payload| {
+                return formatType(payload, fmt, options, context, Errors, output, max_depth);
+            } else {
+                return output(context, "null");
+            }
+        },
+        .ErrorUnion => {
+            if (value) |payload| {
+                return formatType(payload, fmt, options, context, Errors, output, max_depth);
+            } else |err| {
+                return formatType(err, fmt, options, context, Errors, output, max_depth);
+            }
+        },
+        .ErrorSet => {
+            try output(context, "error.");
+            return output(context, @errorName(value));
+        },
+        .Enum => |enumInfo| {
+            if (comptime std.meta.trait.hasFn("format")(T)) {
+                return value.format(fmt, options, context, Errors, output);
+            }
+
+            try output(context, @typeName(T));
+            if (enumInfo.is_exhaustive) {
+                try output(context, ".");
+                try output(context, @tagName(value));
+            } else {
+                // TODO: when @tagName works on exhaustive enums print known enum strings
+                try output(context, "(");
+                try formatType(@enumToInt(value), fmt, options, context, Errors, output, max_depth);
+                try output(context, ")");
+            }
+        },
+        .Union => {
+            if (comptime std.meta.trait.hasFn("format")(T)) {
+                return value.format(fmt, options, context, Errors, output);
+            }
+
+            try output(context, @typeName(T));
+            if (max_depth == 0) {
+                return output(context, "{ ... }");
+            }
+            const info = @typeInfo(T).Union;
+            if (info.tag_type) |UnionTagType| {
+                try output(context, "{ .");
+                try output(context, @tagName(@as(UnionTagType, value)));
+                try output(context, " = ");
+                inline for (info.fields) |u_field| {
+                    if (@enumToInt(@as(UnionTagType, value)) == u_field.enum_field.?.value) {
+                        try formatType(@field(value, u_field.name), fmt, options, context, Errors, output, max_depth - 1);
+                    }
+                }
+                try output(context, " }");
+            } else {
+                try format(context, Errors, output, "@{x}", .{@ptrToInt(&value)});
+            }
+        },
+        .Struct => |StructT| {
+            if (comptime std.meta.trait.hasFn("format")(T)) {
+                return value.format(fmt, options, context, Errors, output);
+            }
+
+            try output(context, @typeName(T));
+            if (max_depth == 0) {
+                return output(context, "{ ... }");
+            }
+            try output(context, "{");
+            inline for (StructT.fields) |f, i| {
+                if (i == 0) {
+                    try output(context, " .");
+                } else {
+                    try output(context, ", .");
+                }
+                try output(context, f.name);
+                try output(context, " = ");
+                try formatType(@field(value, f.name), fmt, options, context, Errors, output, max_depth - 1);
+            }
+            try output(context, " }");
+        },
+        .Pointer => |ptr_info| switch (ptr_info.size) {
+            .One => switch (@typeInfo(ptr_info.child)) {
+                .Array => |info| {
+                    if (info.child == u8) {
+                        return formatText(value, fmt, options, context, Errors, output);
+                    }
+                    return format(context, Errors, output, "{}@{x}", .{ @typeName(T.Child), @ptrToInt(value) });
+                },
+                .Enum, .Union, .Struct => {
+                    return formatType(value.*, fmt, options, context, Errors, output, max_depth);
+                },
+                else => return format(context, Errors, output, "{}@{x}", .{ @typeName(T.Child), @ptrToInt(value) }),
+            },
+            .Many, .C => {
+                if (ptr_info.sentinel) |sentinel| {
+                    return formatType(mem.span(value), fmt, options, context, Errors, output, max_depth);
+                }
+                if (ptr_info.child == u8) {
+                    if (fmt.len > 0 and fmt[0] == 's') {
+                        return formatText(mem.span(value), fmt, options, context, Errors, output);
+                    }
+                }
+                return format(context, Errors, output, "{}@{x}", .{ @typeName(T.Child), @ptrToInt(value) });
+            },
+            .Slice => {
+                if (fmt.len > 0 and ((fmt[0] == 'x') or (fmt[0] == 'X'))) {
+                    return formatText(value, fmt, options, context, Errors, output);
+                }
+                if (ptr_info.child == u8) {
+                    return formatText(value, fmt, options, context, Errors, output);
+                }
+                return format(context, Errors, output, "{}@{x}", .{ @typeName(ptr_info.child), @ptrToInt(value.ptr) });
+            },
+        },
+        .Array => |info| {
+            const Slice = @Type(builtin.TypeInfo{
+                .Pointer = .{
+                    .size = .Slice,
+                    .is_const = true,
+                    .is_volatile = false,
+                    .is_allowzero = false,
+                    .alignment = @alignOf(info.child),
+                    .child = info.child,
+                    .sentinel = null,
+                },
+            });
+            return formatType(@as(Slice, &value), fmt, options, context, Errors, output, max_depth);
+        },
+        .Vector => {
+            const len = @typeInfo(T).Vector.len;
+            try output(context, "{ ");
+            var i: usize = 0;
+            while (i < len) : (i += 1) {
+                try formatValue(value[i], fmt, options, context, Errors, output);
+                if (i < len - 1) {
+                    try output(context, ", ");
+                }
+            }
+            try output(context, " }");
+        },
+        .Fn => {
+            return format(context, Errors, output, "{}@{x}", .{ @typeName(T), @ptrToInt(value) });
+        },
+        .Type => return output(context, @typeName(T)),
+        .EnumLiteral => {
+            const buffer = [_]u8{'.'} ++ @tagName(value);
+            return formatType(buffer, fmt, options, context, Errors, output, max_depth);
+        },
+        else => @compileError("Unable to format type '" ++ @typeName(T) ++ "'"),
+    }
+}
+
+fn formatValue(
+    value: var,
+    comptime fmt: []const u8,
+    options: FormatOptions,
+    context: var,
+    comptime Errors: type,
+    comptime output: fn (@TypeOf(context), []const u8) Errors!void,
+) Errors!void {
+    if (comptime std.mem.eql(u8, fmt, "B")) {
+        return formatBytes(value, options, 1000, context, Errors, output);
+    } else if (comptime std.mem.eql(u8, fmt, "Bi")) {
+        return formatBytes(value, options, 1024, context, Errors, output);
+    }
+
+    const T = @TypeOf(value);
+    switch (@typeInfo(T)) {
+        .Float => return formatFloatValue(value, fmt, options, context, Errors, output),
+        .Int, .ComptimeInt => return formatIntValue(value, fmt, options, context, Errors, output),
+        .Bool => return output(context, if (value) "true" else "false"),
+        else => comptime unreachable,
+    }
+}
+
+pub fn formatIntValue(
+    value: var,
+    comptime fmt: []const u8,
+    options: FormatOptions,
+    context: var,
+    comptime Errors: type,
+    comptime output: fn (@TypeOf(context), []const u8) Errors!void,
+) Errors!void {
+    comptime var radix = 10;
+    comptime var uppercase = false;
+
+    const int_value = if (@TypeOf(value) == comptime_int) blk: {
+        const Int = math.IntFittingRange(value, value);
+        break :blk @as(Int, value);
+    } else
+        value;
+
+    if (fmt.len == 0 or comptime std.mem.eql(u8, fmt, "d")) {
+        radix = 10;
+        uppercase = false;
+    } else if (comptime std.mem.eql(u8, fmt, "c")) {
+        if (@TypeOf(int_value).bit_count <= 8) {
+            return formatAsciiChar(@as(u8, int_value), options, context, Errors, output);
+        } else {
+            @compileError("Cannot print integer that is larger than 8 bits as a ascii");
+        }
+    } else if (comptime std.mem.eql(u8, fmt, "b")) {
+        radix = 2;
+        uppercase = false;
+    } else if (comptime std.mem.eql(u8, fmt, "x")) {
+        radix = 16;
+        uppercase = false;
+    } else if (comptime std.mem.eql(u8, fmt, "X")) {
+        radix = 16;
+        uppercase = true;
+    } else {
+        @compileError("Unknown format string: '" ++ fmt ++ "'");
+    }
+
+    return formatInt(int_value, radix, uppercase, options, context, Errors, output);
+}
+
+fn formatFloatValue(
+    value: var,
+    comptime fmt: []const u8,
+    options: FormatOptions,
+    context: var,
+    comptime Errors: type,
+    comptime output: fn (@TypeOf(context), []const u8) Errors!void,
+) Errors!void {
+    if (fmt.len == 0 or comptime std.mem.eql(u8, fmt, "e")) {
+        return formatFloatScientific(value, options, context, Errors, output);
+    } else if (comptime std.mem.eql(u8, fmt, "d")) {
+        return formatFloatDecimal(value, options, context, Errors, output);
+    } else {
+        @compileError("Unknown format string: '" ++ fmt ++ "'");
+    }
+}
+
+pub fn formatText(
+    bytes: []const u8,
+    comptime fmt: []const u8,
+    options: FormatOptions,
+    context: var,
+    comptime Errors: type,
+    comptime output: fn (@TypeOf(context), []const u8) Errors!void,
+) Errors!void {
+    if (fmt.len == 0) {
+        return output(context, bytes);
+    } else if (comptime std.mem.eql(u8, fmt, "s")) {
+        return formatBuf(bytes, options, context, Errors, output);
+    } else if (comptime (std.mem.eql(u8, fmt, "x") or std.mem.eql(u8, fmt, "X"))) {
+        for (bytes) |c| {
+            try formatInt(c, 16, fmt[0] == 'X', FormatOptions{ .width = 2, .fill = '0' }, context, Errors, output);
+        }
+        return;
+    } else {
+        @compileError("Unknown format string: '" ++ fmt ++ "'");
+    }
+}
+
+pub fn formatAsciiChar(
+    c: u8,
+    options: FormatOptions,
+    context: var,
+    comptime Errors: type,
+    comptime output: fn (@TypeOf(context), []const u8) Errors!void,
+) Errors!void {
+    return output(context, @as(*const [1]u8, &c)[0..]);
+}
+
+pub fn formatBuf(
+    buf: []const u8,
+    options: FormatOptions,
+    context: var,
+    comptime Errors: type,
+    comptime output: fn (@TypeOf(context), []const u8) Errors!void,
+) Errors!void {
+    try output(context, buf);
+
+    const width = options.width orelse 0;
+    var leftover_padding = if (width > buf.len) (width - buf.len) else return;
+    const pad_byte: u8 = options.fill;
+    while (leftover_padding > 0) : (leftover_padding -= 1) {
+        try output(context, @as(*const [1]u8, &pad_byte)[0..1]);
+    }
+}
+
+// Print a float in scientific notation to the specified precision. Null uses full precision.
+// It should be the case that every full precision, printed value can be re-parsed back to the
+// same type unambiguously.
+pub fn formatFloatScientific(
+    value: var,
+    options: FormatOptions,
+    context: var,
+    comptime Errors: type,
+    comptime output: fn (@TypeOf(context), []const u8) Errors!void,
+) Errors!void {
+    var x = @floatCast(f64, value);
+
+    // Errol doesn't handle these special cases.
+    if (math.signbit(x)) {
+        try output(context, "-");
+        x = -x;
+    }
+
+    if (math.isNan(x)) {
+        return output(context, "nan");
+    }
+    if (math.isPositiveInf(x)) {
+        return output(context, "inf");
+    }
+    if (x == 0.0) {
+        try output(context, "0");
+
+        if (options.precision) |precision| {
+            if (precision != 0) {
+                try output(context, ".");
+                var i: usize = 0;
+                while (i < precision) : (i += 1) {
+                    try output(context, "0");
+                }
+            }
+        } else {
+            try output(context, ".0");
+        }
+
+        try output(context, "e+00");
+        return;
+    }
+
+    var buffer: [32]u8 = undefined;
+    var float_decimal = errol.errol3(x, buffer[0..]);
+
+    if (options.precision) |precision| {
+        errol.roundToPrecision(&float_decimal, precision, errol.RoundMode.Scientific);
+
+        try output(context, float_decimal.digits[0..1]);
+
+        // {e0} case prints no `.`
+        if (precision != 0) {
+            try output(context, ".");
+
+            var printed: usize = 0;
+            if (float_decimal.digits.len > 1) {
+                const num_digits = math.min(float_decimal.digits.len, precision + 1);
+                try output(context, float_decimal.digits[1..num_digits]);
+                printed += num_digits - 1;
+            }
+
+            while (printed < precision) : (printed += 1) {
+                try output(context, "0");
+            }
+        }
+    } else {
+        try output(context, float_decimal.digits[0..1]);
+        try output(context, ".");
+        if (float_decimal.digits.len > 1) {
+            const num_digits = if (@TypeOf(value) == f32) math.min(@as(usize, 9), float_decimal.digits.len) else float_decimal.digits.len;
+
+            try output(context, float_decimal.digits[1..num_digits]);
+        } else {
+            try output(context, "0");
+        }
+    }
+
+    try output(context, "e");
+    const exp = float_decimal.exp - 1;
+
+    if (exp >= 0) {
+        try output(context, "+");
+        if (exp > -10 and exp < 10) {
+            try output(context, "0");
+        }
+        try formatInt(exp, 10, false, FormatOptions{ .width = 0 }, context, Errors, output);
+    } else {
+        try output(context, "-");
+        if (exp > -10 and exp < 10) {
+            try output(context, "0");
+        }
+        try formatInt(-exp, 10, false, FormatOptions{ .width = 0 }, context, Errors, output);
+    }
+}
+
+// Print a float of the format x.yyyyy where the number of y is specified by the precision argument.
+// By default floats are printed at full precision (no rounding).
+pub fn formatFloatDecimal(
+    value: var,
+    options: FormatOptions,
+    context: var,
+    comptime Errors: type,
+    comptime output: fn (@TypeOf(context), []const u8) Errors!void,
+) Errors!void {
+    var x = @as(f64, value);
+
+    // Errol doesn't handle these special cases.
+    if (math.signbit(x)) {
+        try output(context, "-");
+        x = -x;
+    }
+
+    if (math.isNan(x)) {
+        return output(context, "nan");
+    }
+    if (math.isPositiveInf(x)) {
+        return output(context, "inf");
+    }
+    if (x == 0.0) {
+        try output(context, "0");
+
+        if (options.precision) |precision| {
+            if (precision != 0) {
+                try output(context, ".");
+                var i: usize = 0;
+                while (i < precision) : (i += 1) {
+                    try output(context, "0");
+                }
+            } else {
+                try output(context, ".0");
+            }
+        }
+
+        return;
+    }
+
+    // non-special case, use errol3
+    var buffer: [32]u8 = undefined;
+    var float_decimal = errol.errol3(x, buffer[0..]);
+
+    if (options.precision) |precision| {
+        errol.roundToPrecision(&float_decimal, precision, errol.RoundMode.Decimal);
+
+        // exp < 0 means the leading is always 0 as errol result is normalized.
+        var num_digits_whole = if (float_decimal.exp > 0) @intCast(usize, float_decimal.exp) else 0;
+
+        // the actual slice into the buffer, we may need to zero-pad between num_digits_whole and this.
+        var num_digits_whole_no_pad = math.min(num_digits_whole, float_decimal.digits.len);
+
+        if (num_digits_whole > 0) {
+            // We may have to zero pad, for instance 1e4 requires zero padding.
+            try output(context, float_decimal.digits[0..num_digits_whole_no_pad]);
+
+            var i = num_digits_whole_no_pad;
+            while (i < num_digits_whole) : (i += 1) {
+                try output(context, "0");
+            }
+        } else {
+            try output(context, "0");
+        }
+
+        // {.0} special case doesn't want a trailing '.'
+        if (precision == 0) {
+            return;
+        }
+
+        try output(context, ".");
+
+        // Keep track of fractional count printed for case where we pre-pad then post-pad with 0's.
+        var printed: usize = 0;
+
+        // Zero-fill until we reach significant digits or run out of precision.
+        if (float_decimal.exp <= 0) {
+            const zero_digit_count = @intCast(usize, -float_decimal.exp);
+            const zeros_to_print = math.min(zero_digit_count, precision);
+
+            var i: usize = 0;
+            while (i < zeros_to_print) : (i += 1) {
+                try output(context, "0");
+                printed += 1;
+            }
+
+            if (printed >= precision) {
+                return;
+            }
+        }
+
+        // Remaining fractional portion, zero-padding if insufficient.
+        assert(precision >= printed);
+        if (num_digits_whole_no_pad + precision - printed < float_decimal.digits.len) {
+            try output(context, float_decimal.digits[num_digits_whole_no_pad .. num_digits_whole_no_pad + precision - printed]);
+            return;
+        } else {
+            try output(context, float_decimal.digits[num_digits_whole_no_pad..]);
+            printed += float_decimal.digits.len - num_digits_whole_no_pad;
+
+            while (printed < precision) : (printed += 1) {
+                try output(context, "0");
+            }
+        }
+    } else {
+        // exp < 0 means the leading is always 0 as errol result is normalized.
+        var num_digits_whole = if (float_decimal.exp > 0) @intCast(usize, float_decimal.exp) else 0;
+
+        // the actual slice into the buffer, we may need to zero-pad between num_digits_whole and this.
+        var num_digits_whole_no_pad = math.min(num_digits_whole, float_decimal.digits.len);
+
+        if (num_digits_whole > 0) {
+            // We may have to zero pad, for instance 1e4 requires zero padding.
+            try output(context, float_decimal.digits[0..num_digits_whole_no_pad]);
+
+            var i = num_digits_whole_no_pad;
+            while (i < num_digits_whole) : (i += 1) {
+                try output(context, "0");
+            }
+        } else {
+            try output(context, "0");
+        }
+
+        // Omit `.` if no fractional portion
+        if (float_decimal.exp >= 0 and num_digits_whole_no_pad == float_decimal.digits.len) {
+            return;
+        }
+
+        try output(context, ".");
+
+        // Zero-fill until we reach significant digits or run out of precision.
+        if (float_decimal.exp < 0) {
+            const zero_digit_count = @intCast(usize, -float_decimal.exp);
+
+            var i: usize = 0;
+            while (i < zero_digit_count) : (i += 1) {
+                try output(context, "0");
+            }
+        }
+
+        try output(context, float_decimal.digits[num_digits_whole_no_pad..]);
+    }
+}
+
+pub fn formatBytes(
+    value: var,
+    options: FormatOptions,
+    comptime radix: usize,
+    context: var,
+    comptime Errors: type,
+    comptime output: fn (@TypeOf(context), []const u8) Errors!void,
+) Errors!void {
+    if (value == 0) {
+        return output(context, "0B");
+    }
+
+    const mags_si = " kMGTPEZY";
+    const mags_iec = " KMGTPEZY";
+    const magnitude = switch (radix) {
+        1000 => math.min(math.log2(value) / comptime math.log2(1000), mags_si.len - 1),
+        1024 => math.min(math.log2(value) / 10, mags_iec.len - 1),
+        else => unreachable,
+    };
+    const new_value = lossyCast(f64, value) / math.pow(f64, lossyCast(f64, radix), lossyCast(f64, magnitude));
+    const suffix = switch (radix) {
+        1000 => mags_si[magnitude],
+        1024 => mags_iec[magnitude],
+        else => unreachable,
+    };
+
+    try formatFloatDecimal(new_value, options, context, Errors, output);
+
+    if (suffix == ' ') {
+        return output(context, "B");
+    }
+
+    const buf = switch (radix) {
+        1000 => &[_]u8{ suffix, 'B' },
+        1024 => &[_]u8{ suffix, 'i', 'B' },
+        else => unreachable,
+    };
+    return output(context, buf);
+}
+
+pub fn formatInt(
+    value: var,
+    base: u8,
+    uppercase: bool,
+    options: FormatOptions,
+    context: var,
+    comptime Errors: type,
+    comptime output: fn (@TypeOf(context), []const u8) Errors!void,
+) Errors!void {
+    const int_value = if (@TypeOf(value) == comptime_int) blk: {
+        const Int = math.IntFittingRange(value, value);
+        break :blk @as(Int, value);
+    } else
+        value;
+
+    if (@TypeOf(int_value).is_signed) {
+        return formatIntSigned(int_value, base, uppercase, options, context, Errors, output);
+    } else {
+        return formatIntUnsigned(int_value, base, uppercase, options, context, Errors, output);
+    }
+}
+
+fn formatIntSigned(
+    value: var,
+    base: u8,
+    uppercase: bool,
+    options: FormatOptions,
+    context: var,
+    comptime Errors: type,
+    comptime output: fn (@TypeOf(context), []const u8) Errors!void,
+) Errors!void {
+    const new_options = FormatOptions{
+        .width = if (options.width) |w| (if (w == 0) 0 else w - 1) else null,
+        .precision = options.precision,
+        .fill = options.fill,
+    };
+    const bit_count = @typeInfo(@TypeOf(value)).Int.bits;
+    const Uint = std.meta.IntType(false, bit_count);
+    if (value < 0) {
+        try output(context, "-");
+        const new_value = math.absCast(value);
+        return formatIntUnsigned(new_value, base, uppercase, new_options, context, Errors, output);
+    } else if (options.width == null or options.width.? == 0) {
+        return formatIntUnsigned(@intCast(Uint, value), base, uppercase, options, context, Errors, output);
+    } else {
+        try output(context, "+");
+        const new_value = @intCast(Uint, value);
+        return formatIntUnsigned(new_value, base, uppercase, new_options, context, Errors, output);
+    }
+}
+
+fn formatIntUnsigned(
+    value: var,
+    base: u8,
+    uppercase: bool,
+    options: FormatOptions,
+    context: var,
+    comptime Errors: type,
+    comptime output: fn (@TypeOf(context), []const u8) Errors!void,
+) Errors!void {
+    assert(base >= 2);
+    var buf: [math.max(@TypeOf(value).bit_count, 1)]u8 = undefined;
+    const min_int_bits = comptime math.max(@TypeOf(value).bit_count, @TypeOf(base).bit_count);
+    const MinInt = std.meta.IntType(@TypeOf(value).is_signed, min_int_bits);
+    var a: MinInt = value;
+    var index: usize = buf.len;
+
+    while (true) {
+        const digit = a % base;
+        index -= 1;
+        buf[index] = digitToChar(@intCast(u8, digit), uppercase);
+        a /= base;
+        if (a == 0) break;
+    }
+
+    const digits_buf = buf[index..];
+    const width = options.width orelse 0;
+    const padding = if (width > digits_buf.len) (width - digits_buf.len) else 0;
+
+    if (padding > index) {
+        const zero_byte: u8 = options.fill;
+        var leftover_padding = padding - index;
+        while (true) {
+            try output(context, @as(*const [1]u8, &zero_byte)[0..]);
+            leftover_padding -= 1;
+            if (leftover_padding == 0) break;
+        }
+        mem.set(u8, buf[0..index], options.fill);
+        return output(context, &buf);
+    } else {
+        const padded_buf = buf[index - padding ..];
+        mem.set(u8, padded_buf[0..padding], options.fill);
+        return output(context, padded_buf);
+    }
+}
+
+pub fn formatIntBuf(out_buf: []u8, value: var, base: u8, uppercase: bool, options: FormatOptions) usize {
+    var context = FormatIntBuf{
+        .out_buf = out_buf,
+        .index = 0,
+    };
+    formatInt(value, base, uppercase, options, &context, error{}, formatIntCallback) catch unreachable;
+    return context.index;
+}
+const FormatIntBuf = struct {
+    out_buf: []u8,
+    index: usize,
+};
+fn formatIntCallback(context: *FormatIntBuf, bytes: []const u8) (error{}!void) {
+    mem.copy(u8, context.out_buf[context.index..], bytes);
+    context.index += bytes.len;
+}
+
+pub fn parseInt(comptime T: type, buf: []const u8, radix: u8) !T {
+    if (!T.is_signed) return parseUnsigned(T, buf, radix);
+    if (buf.len == 0) return @as(T, 0);
+    if (buf[0] == '-') {
+        return math.negate(try parseUnsigned(T, buf[1..], radix));
+    } else if (buf[0] == '+') {
+        return parseUnsigned(T, buf[1..], radix);
+    } else {
+        return parseUnsigned(T, buf, radix);
+    }
+}
+
+test "parseInt" {
+    std.testing.expect((parseInt(i32, "-10", 10) catch unreachable) == -10);
+    std.testing.expect((parseInt(i32, "+10", 10) catch unreachable) == 10);
+    std.testing.expect(if (parseInt(i32, " 10", 10)) |_| false else |err| err == error.InvalidCharacter);
+    std.testing.expect(if (parseInt(i32, "10 ", 10)) |_| false else |err| err == error.InvalidCharacter);
+    std.testing.expect(if (parseInt(u32, "-10", 10)) |_| false else |err| err == error.InvalidCharacter);
+    std.testing.expect((parseInt(u8, "255", 10) catch unreachable) == 255);
+    std.testing.expect(if (parseInt(u8, "256", 10)) |_| false else |err| err == error.Overflow);
+}
+
+pub const ParseUnsignedError = error{
+    /// The result cannot fit in the type specified
+    Overflow,
+
+    /// The input had a byte that was not a digit
+    InvalidCharacter,
+};
+
+pub fn parseUnsigned(comptime T: type, buf: []const u8, radix: u8) ParseUnsignedError!T {
+    var x: T = 0;
+
+    for (buf) |c| {
+        const digit = try charToDigit(c, radix);
+
+        if (x != 0) x = try math.mul(T, x, try math.cast(T, radix));
+        x = try math.add(T, x, try math.cast(T, digit));
+    }
+
+    return x;
+}
+
+test "parseUnsigned" {
+    std.testing.expect((try parseUnsigned(u16, "050124", 10)) == 50124);
+    std.testing.expect((try parseUnsigned(u16, "65535", 10)) == 65535);
+    std.testing.expectError(error.Overflow, parseUnsigned(u16, "65536", 10));
+
+    std.testing.expect((try parseUnsigned(u64, "0ffffffffffffffff", 16)) == 0xffffffffffffffff);
+    std.testing.expectError(error.Overflow, parseUnsigned(u64, "10000000000000000", 16));
+
+    std.testing.expect((try parseUnsigned(u32, "DeadBeef", 16)) == 0xDEADBEEF);
+
+    std.testing.expect((try parseUnsigned(u7, "1", 10)) == 1);
+    std.testing.expect((try parseUnsigned(u7, "1000", 2)) == 8);
+
+    std.testing.expectError(error.InvalidCharacter, parseUnsigned(u32, "f", 10));
+    std.testing.expectError(error.InvalidCharacter, parseUnsigned(u8, "109", 8));
+
+    std.testing.expect((try parseUnsigned(u32, "NUMBER", 36)) == 1442151747);
+
+    // these numbers should fit even though the radix itself doesn't fit in the destination type
+    std.testing.expect((try parseUnsigned(u1, "0", 10)) == 0);
+    std.testing.expect((try parseUnsigned(u1, "1", 10)) == 1);
+    std.testing.expectError(error.Overflow, parseUnsigned(u1, "2", 10));
+    std.testing.expect((try parseUnsigned(u1, "001", 16)) == 1);
+    std.testing.expect((try parseUnsigned(u2, "3", 16)) == 3);
+    std.testing.expectError(error.Overflow, parseUnsigned(u2, "4", 16));
+}
+
+pub const parseFloat = @import("fmt/parse_float.zig").parseFloat;
+
+test "parseFloat" {
+    _ = @import("fmt/parse_float.zig");
+}
+
+pub fn charToDigit(c: u8, radix: u8) (error{InvalidCharacter}!u8) {
+    const value = switch (c) {
+        '0'...'9' => c - '0',
+        'A'...'Z' => c - 'A' + 10,
+        'a'...'z' => c - 'a' + 10,
+        else => return error.InvalidCharacter,
+    };
+
+    if (value >= radix) return error.InvalidCharacter;
+
+    return value;
+}
+
+fn digitToChar(digit: u8, uppercase: bool) u8 {
+    return switch (digit) {
+        0...9 => digit + '0',
+        10...35 => digit + ((if (uppercase) @as(u8, 'A') else @as(u8, 'a')) - 10),
+        else => unreachable,
+    };
+}
+
+const BufPrintContext = struct {
+    remaining: []u8,
+};
+
+fn bufPrintWrite(context: *BufPrintContext, bytes: []const u8) !void {
+    if (context.remaining.len < bytes.len) {
+        mem.copy(u8, context.remaining, bytes[0..context.remaining.len]);
+        return error.BufferTooSmall;
+    }
+    mem.copy(u8, context.remaining, bytes);
+    context.remaining = context.remaining[bytes.len..];
+}
+
+pub const BufPrintError = error{
+    /// As much as possible was written to the buffer, but it was too small to fit all the printed bytes.
+    BufferTooSmall,
+};
+pub fn bufPrint(buf: []u8, comptime fmt: []const u8, args: var) BufPrintError![]u8 {
+    var context = BufPrintContext{ .remaining = buf };
+    try format(&context, BufPrintError, bufPrintWrite, fmt, args);
+    return buf[0 .. buf.len - context.remaining.len];
+}
+
+pub const AllocPrintError = error{OutOfMemory};
+
+pub fn allocPrint(allocator: *mem.Allocator, comptime fmt: []const u8, args: var) AllocPrintError![]u8 {
+    var size: usize = 0;
+    format(&size, error{}, countSize, fmt, args) catch |err| switch (err) {};
+    const buf = try allocator.alloc(u8, size);
+    return bufPrint(buf, fmt, args) catch |err| switch (err) {
+        error.BufferTooSmall => unreachable, // we just counted the size above
+    };
+}
+
+fn countSize(size: *usize, bytes: []const u8) (error{}!void) {
+    size.* += bytes.len;
+}
+
+pub fn allocPrint0(allocator: *mem.Allocator, comptime fmt: []const u8, args: var) AllocPrintError![:0]u8 {
+    const result = try allocPrint(allocator, fmt ++ "\x00", args);
+    return result[0 .. result.len - 1 :0];
+}
+
+test "bufPrintInt" {
+    var buffer: [100]u8 = undefined;
+    const buf = buffer[0..];
+
+    std.testing.expectEqualSlices(u8, "-1", bufPrintIntToSlice(buf, @as(i1, -1), 10, false, FormatOptions{}));
+
+    std.testing.expectEqualSlices(u8, "-101111000110000101001110", bufPrintIntToSlice(buf, @as(i32, -12345678), 2, false, FormatOptions{}));
+    std.testing.expectEqualSlices(u8, "-12345678", bufPrintIntToSlice(buf, @as(i32, -12345678), 10, false, FormatOptions{}));
+    std.testing.expectEqualSlices(u8, "-bc614e", bufPrintIntToSlice(buf, @as(i32, -12345678), 16, false, FormatOptions{}));
+    std.testing.expectEqualSlices(u8, "-BC614E", bufPrintIntToSlice(buf, @as(i32, -12345678), 16, true, FormatOptions{}));
+
+    std.testing.expectEqualSlices(u8, "12345678", bufPrintIntToSlice(buf, @as(u32, 12345678), 10, true, FormatOptions{}));
+
+    std.testing.expectEqualSlices(u8, "   666", bufPrintIntToSlice(buf, @as(u32, 666), 10, false, FormatOptions{ .width = 6 }));
+    std.testing.expectEqualSlices(u8, "  1234", bufPrintIntToSlice(buf, @as(u32, 0x1234), 16, false, FormatOptions{ .width = 6 }));
+    std.testing.expectEqualSlices(u8, "1234", bufPrintIntToSlice(buf, @as(u32, 0x1234), 16, false, FormatOptions{ .width = 1 }));
+
+    std.testing.expectEqualSlices(u8, "+42", bufPrintIntToSlice(buf, @as(i32, 42), 10, false, FormatOptions{ .width = 3 }));
+    std.testing.expectEqualSlices(u8, "-42", bufPrintIntToSlice(buf, @as(i32, -42), 10, false, FormatOptions{ .width = 3 }));
+}
+
+fn bufPrintIntToSlice(buf: []u8, value: var, base: u8, uppercase: bool, options: FormatOptions) []u8 {
+    return buf[0..formatIntBuf(buf, value, base, uppercase, options)];
+}
+
+test "parse u64 digit too big" {
+    _ = parseUnsigned(u64, "123a", 10) catch |err| {
+        if (err == error.InvalidCharacter) return;
+        unreachable;
+    };
+    unreachable;
+}
+
+test "parse unsigned comptime" {
+    comptime {
+        std.testing.expect((try parseUnsigned(usize, "2", 10)) == 2);
+    }
+}
+
+test "optional" {
+    {
+        const value: ?i32 = 1234;
+        try testFmt("optional: 1234\n", "optional: {}\n", .{value});
+    }
+    {
+        const value: ?i32 = null;
+        try testFmt("optional: null\n", "optional: {}\n", .{value});
+    }
+}
+
+test "error" {
+    {
+        const value: anyerror!i32 = 1234;
+        try testFmt("error union: 1234\n", "error union: {}\n", .{value});
+    }
+    {
+        const value: anyerror!i32 = error.InvalidChar;
+        try testFmt("error union: error.InvalidChar\n", "error union: {}\n", .{value});
+    }
+}
+
+test "int.small" {
+    {
+        const value: u3 = 0b101;
+        try testFmt("u3: 5\n", "u3: {}\n", .{value});
+    }
+}
+
+test "int.specifier" {
+    {
+        const value: u8 = 'a';
+        try testFmt("u8: a\n", "u8: {c}\n", .{value});
+    }
+    {
+        const value: u8 = 0b1100;
+        try testFmt("u8: 0b1100\n", "u8: 0b{b}\n", .{value});
+    }
+}
+
+test "int.padded" {
+    try testFmt("u8: '   1'", "u8: '{:4}'", .{@as(u8, 1)});
+    try testFmt("u8: 'xxx1'", "u8: '{:x<4}'", .{@as(u8, 1)});
+}
+
+test "buffer" {
+    {
+        var buf1: [32]u8 = undefined;
+        var context = BufPrintContext{ .remaining = buf1[0..] };
+        try formatType(1234, "", FormatOptions{}, &context, error{BufferTooSmall}, bufPrintWrite, default_max_depth);
+        var res = buf1[0 .. buf1.len - context.remaining.len];
+        std.testing.expect(mem.eql(u8, res, "1234"));
+
+        context = BufPrintContext{ .remaining = buf1[0..] };
+        try formatType('a', "c", FormatOptions{}, &context, error{BufferTooSmall}, bufPrintWrite, default_max_depth);
+        res = buf1[0 .. buf1.len - context.remaining.len];
+        std.testing.expect(mem.eql(u8, res, "a"));
+
+        context = BufPrintContext{ .remaining = buf1[0..] };
+        try formatType(0b1100, "b", FormatOptions{}, &context, error{BufferTooSmall}, bufPrintWrite, default_max_depth);
+        res = buf1[0 .. buf1.len - context.remaining.len];
+        std.testing.expect(mem.eql(u8, res, "1100"));
+    }
+}
+
+test "array" {
+    {
+        const value: [3]u8 = "abc".*;
+        try testFmt("array: abc\n", "array: {}\n", .{value});
+        try testFmt("array: abc\n", "array: {}\n", .{&value});
+
+        var buf: [100]u8 = undefined;
+        try testFmt(
+            try bufPrint(buf[0..], "array: [3]u8@{x}\n", .{@ptrToInt(&value)}),
+            "array: {*}\n",
+            .{&value},
+        );
+    }
+}
+
+test "slice" {
+    {
+        const value: []const u8 = "abc";
+        try testFmt("slice: abc\n", "slice: {}\n", .{value});
+    }
+    {
+        const value = @intToPtr([*]align(1) const []const u8, 0xdeadbeef)[0..0];
+        try testFmt("slice: []const u8@deadbeef\n", "slice: {}\n", .{value});
+    }
+
+    try testFmt("buf: Test \n", "buf: {s:5}\n", .{"Test"});
+    try testFmt("buf: Test\n Other text", "buf: {s}\n Other text", .{"Test"});
+}
+
+test "pointer" {
+    {
+        const value = @intToPtr(*align(1) i32, 0xdeadbeef);
+        try testFmt("pointer: i32@deadbeef\n", "pointer: {}\n", .{value});
+        try testFmt("pointer: i32@deadbeef\n", "pointer: {*}\n", .{value});
+    }
+    {
+        const value = @intToPtr(fn () void, 0xdeadbeef);
+        try testFmt("pointer: fn() void@deadbeef\n", "pointer: {}\n", .{value});
+    }
+    {
+        const value = @intToPtr(fn () void, 0xdeadbeef);
+        try testFmt("pointer: fn() void@deadbeef\n", "pointer: {}\n", .{value});
+    }
+}
+
+test "cstr" {
+    try testFmt(
+        "cstr: Test C\n",
+        "cstr: {s}\n",
+        .{@ptrCast([*c]const u8, "Test C")},
+    );
+    try testFmt(
+        "cstr: Test C    \n",
+        "cstr: {s:10}\n",
+        .{@ptrCast([*c]const u8, "Test C")},
+    );
+}
+
+test "filesize" {
+    try testFmt("file size: 63MiB\n", "file size: {Bi}\n", .{@as(usize, 63 * 1024 * 1024)});
+    try testFmt("file size: 66.06MB\n", "file size: {B:.2}\n", .{@as(usize, 63 * 1024 * 1024)});
+}
+
+test "struct" {
+    {
+        const Struct = struct {
+            field: u8,
+        };
+        const value = Struct{ .field = 42 };
+        try testFmt("struct: Struct{ .field = 42 }\n", "struct: {}\n", .{value});
+        try testFmt("struct: Struct{ .field = 42 }\n", "struct: {}\n", .{&value});
+    }
+    {
+        const Struct = struct {
+            a: u0,
+            b: u1,
+        };
+        const value = Struct{ .a = 0, .b = 1 };
+        try testFmt("struct: Struct{ .a = 0, .b = 1 }\n", "struct: {}\n", .{value});
+    }
+}
+
+test "enum" {
+    const Enum = enum {
+        One,
+        Two,
+    };
+    const value = Enum.Two;
+    try testFmt("enum: Enum.Two\n", "enum: {}\n", .{value});
+    try testFmt("enum: Enum.Two\n", "enum: {}\n", .{&value});
+}
+
+test "non-exhaustive enum" {
+    const Enum = enum(u16) {
+        One = 0x000f,
+        Two = 0xbeef,
+        _,
+    };
+    try testFmt("enum: Enum(15)\n", "enum: {}\n", .{Enum.One});
+    try testFmt("enum: Enum(48879)\n", "enum: {}\n", .{Enum.Two});
+    try testFmt("enum: Enum(4660)\n", "enum: {}\n", .{@intToEnum(Enum, 0x1234)});
+    try testFmt("enum: Enum(f)\n", "enum: {x}\n", .{Enum.One});
+    try testFmt("enum: Enum(beef)\n", "enum: {x}\n", .{Enum.Two});
+    try testFmt("enum: Enum(1234)\n", "enum: {x}\n", .{@intToEnum(Enum, 0x1234)});
+}
+
+test "float.scientific" {
+    try testFmt("f32: 1.34000003e+00", "f32: {e}", .{@as(f32, 1.34)});
+    try testFmt("f32: 1.23400001e+01", "f32: {e}", .{@as(f32, 12.34)});
+    try testFmt("f64: -1.234e+11", "f64: {e}", .{@as(f64, -12.34e10)});
+    try testFmt("f64: 9.99996e-40", "f64: {e}", .{@as(f64, 9.999960e-40)});
+}
+
+test "float.scientific.precision" {
+    try testFmt("f64: 1.40971e-42", "f64: {e:.5}", .{@as(f64, 1.409706e-42)});
+    try testFmt("f64: 1.00000e-09", "f64: {e:.5}", .{@as(f64, @bitCast(f32, @as(u32, 814313563)))});
+    try testFmt("f64: 7.81250e-03", "f64: {e:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1006632960)))});
+    // libc rounds 1.000005e+05 to 1.00000e+05 but zig does 1.00001e+05.
+    // In fact, libc doesn't round a lot of 5 cases up when one past the precision point.
+    try testFmt("f64: 1.00001e+05", "f64: {e:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1203982400)))});
+}
+
+test "float.special" {
+    try testFmt("f64: nan", "f64: {}", .{math.nan_f64});
+    // negative nan is not defined by IEE 754,
+    // and ARM thus normalizes it to positive nan
+    if (builtin.arch != builtin.Arch.arm) {
+        try testFmt("f64: -nan", "f64: {}", .{-math.nan_f64});
+    }
+    try testFmt("f64: inf", "f64: {}", .{math.inf_f64});
+    try testFmt("f64: -inf", "f64: {}", .{-math.inf_f64});
+}
+
+test "float.decimal" {
+    try testFmt("f64: 152314000000000000000000000000", "f64: {d}", .{@as(f64, 1.52314e+29)});
+    try testFmt("f32: 0", "f32: {d}", .{@as(f32, 0.0)});
+    try testFmt("f32: 1.1", "f32: {d:.1}", .{@as(f32, 1.1234)});
+    try testFmt("f32: 1234.57", "f32: {d:.2}", .{@as(f32, 1234.567)});
+    // -11.1234 is converted to f64 -11.12339... internally (errol3() function takes f64).
+    // -11.12339... is rounded back up to -11.1234
+    try testFmt("f32: -11.1234", "f32: {d:.4}", .{@as(f32, -11.1234)});
+    try testFmt("f32: 91.12345", "f32: {d:.5}", .{@as(f32, 91.12345)});
+    try testFmt("f64: 91.1234567890", "f64: {d:.10}", .{@as(f64, 91.12345678901235)});
+    try testFmt("f64: 0.00000", "f64: {d:.5}", .{@as(f64, 0.0)});
+    try testFmt("f64: 6", "f64: {d:.0}", .{@as(f64, 5.700)});
+    try testFmt("f64: 10.0", "f64: {d:.1}", .{@as(f64, 9.999)});
+    try testFmt("f64: 1.000", "f64: {d:.3}", .{@as(f64, 1.0)});
+    try testFmt("f64: 0.00030000", "f64: {d:.8}", .{@as(f64, 0.0003)});
+    try testFmt("f64: 0.00000", "f64: {d:.5}", .{@as(f64, 1.40130e-45)});
+    try testFmt("f64: 0.00000", "f64: {d:.5}", .{@as(f64, 9.999960e-40)});
+}
+
+test "float.libc.sanity" {
+    try testFmt("f64: 0.00001", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 916964781)))});
+    try testFmt("f64: 0.00001", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 925353389)))});
+    try testFmt("f64: 0.10000", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1036831278)))});
+    try testFmt("f64: 1.00000", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1065353133)))});
+    try testFmt("f64: 10.00000", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1092616192)))});
+
+    // libc differences
+    //
+    // This is 0.015625 exactly according to gdb. We thus round down,
+    // however glibc rounds up for some reason. This occurs for all
+    // floats of the form x.yyyy25 on a precision point.
+    try testFmt("f64: 0.01563", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1015021568)))});
+    // errol3 rounds to ... 630 but libc rounds to ...632. Grisu3
+    // also rounds to 630 so I'm inclined to believe libc is not
+    // optimal here.
+    try testFmt("f64: 18014400656965630.00000", "f64: {d:.5}", .{@as(f64, @bitCast(f32, @as(u32, 1518338049)))});
+}
+
+test "custom" {
+    const Vec2 = struct {
+        const SelfType = @This();
+        x: f32,
+        y: f32,
+
+        pub fn format(
+            self: SelfType,
+            comptime fmt: []const u8,
+            options: FormatOptions,
+            context: var,
+            comptime Errors: type,
+            comptime output: fn (@TypeOf(context), []const u8) Errors!void,
+        ) Errors!void {
+            if (fmt.len == 0 or comptime std.mem.eql(u8, fmt, "p")) {
+                return std.fmt.format(context, Errors, output, "({d:.3},{d:.3})", .{ self.x, self.y });
+            } else if (comptime std.mem.eql(u8, fmt, "d")) {
+                return std.fmt.format(context, Errors, output, "{d:.3}x{d:.3}", .{ self.x, self.y });
+            } else {
+                @compileError("Unknown format character: '" ++ fmt ++ "'");
+            }
+        }
+    };
+
+    var buf1: [32]u8 = undefined;
+    var value = Vec2{
+        .x = 10.2,
+        .y = 2.22,
+    };
+    try testFmt("point: (10.200,2.220)\n", "point: {}\n", .{&value});
+    try testFmt("dim: 10.200x2.220\n", "dim: {d}\n", .{&value});
+
+    // same thing but not passing a pointer
+    try testFmt("point: (10.200,2.220)\n", "point: {}\n", .{value});
+    try testFmt("dim: 10.200x2.220\n", "dim: {d}\n", .{value});
+}
+
+test "struct" {
+    const S = struct {
+        a: u32,
+        b: anyerror,
+    };
+
+    const inst = S{
+        .a = 456,
+        .b = error.Unused,
+    };
+
+    try testFmt("S{ .a = 456, .b = error.Unused }", "{}", .{inst});
+}
+
+test "union" {
+    const TU = union(enum) {
+        float: f32,
+        int: u32,
+    };
+
+    const UU = union {
+        float: f32,
+        int: u32,
+    };
+
+    const EU = extern union {
+        float: f32,
+        int: u32,
+    };
+
+    const tu_inst = TU{ .int = 123 };
+    const uu_inst = UU{ .int = 456 };
+    const eu_inst = EU{ .float = 321.123 };
+
+    try testFmt("TU{ .int = 123 }", "{}", .{tu_inst});
+
+    var buf: [100]u8 = undefined;
+    const uu_result = try bufPrint(buf[0..], "{}", .{uu_inst});
+    std.testing.expect(mem.eql(u8, uu_result[0..3], "UU@"));
+
+    const eu_result = try bufPrint(buf[0..], "{}", .{eu_inst});
+    std.testing.expect(mem.eql(u8, uu_result[0..3], "EU@"));
+}
+
+test "enum" {
+    const E = enum {
+        One,
+        Two,
+        Three,
+    };
+
+    const inst = E.Two;
+
+    try testFmt("E.Two", "{}", .{inst});
+}
+
+test "struct.self-referential" {
+    const S = struct {
+        const SelfType = @This();
+        a: ?*SelfType,
+    };
+
+    var inst = S{
+        .a = null,
+    };
+    inst.a = &inst;
+
+    try testFmt("S{ .a = S{ .a = S{ .a = S{ ... } } } }", "{}", .{inst});
+}
+
+test "struct.zero-size" {
+    const A = struct {
+        fn foo() void {}
+    };
+    const B = struct {
+        a: A,
+        c: i32,
+    };
+
+    const a = A{};
+    const b = B{ .a = a, .c = 0 };
+
+    try testFmt("B{ .a = A{ }, .c = 0 }", "{}", .{b});
+}
+
+test "bytes.hex" {
+    const some_bytes = "\xCA\xFE\xBA\xBE";
+    try testFmt("lowercase: cafebabe\n", "lowercase: {x}\n", .{some_bytes});
+    try testFmt("uppercase: CAFEBABE\n", "uppercase: {X}\n", .{some_bytes});
+    //Test Slices
+    try testFmt("uppercase: CAFE\n", "uppercase: {X}\n", .{some_bytes[0..2]});
+    try testFmt("lowercase: babe\n", "lowercase: {x}\n", .{some_bytes[2..]});
+    const bytes_with_zeros = "\x00\x0E\xBA\xBE";
+    try testFmt("lowercase: 000ebabe\n", "lowercase: {x}\n", .{bytes_with_zeros});
+}
+
+fn testFmt(expected: []const u8, comptime template: []const u8, args: var) !void {
+    var buf: [100]u8 = undefined;
+    const result = try bufPrint(buf[0..], template, args);
+    if (mem.eql(u8, result, expected)) return;
+
+    std.debug.warn("\n====== expected this output: =========\n", .{});
+    std.debug.warn("{}", .{expected});
+    std.debug.warn("\n======== instead found this: =========\n", .{});
+    std.debug.warn("{}", .{result});
+    std.debug.warn("\n======================================\n", .{});
+    return error.TestFailed;
+}
+
+pub fn trim(buf: []const u8) []const u8 {
+    var start: usize = 0;
+    while (start < buf.len and isWhiteSpace(buf[start])) : (start += 1) {}
+
+    var end: usize = buf.len;
+    while (true) {
+        if (end > start) {
+            const new_end = end - 1;
+            if (isWhiteSpace(buf[new_end])) {
+                end = new_end;
+                continue;
+            }
+        }
+        break;
+    }
+    return buf[start..end];
+}
+
+test "trim" {
+    std.testing.expect(mem.eql(u8, "abc", trim("\n  abc  \t")));
+    std.testing.expect(mem.eql(u8, "", trim("   ")));
+    std.testing.expect(mem.eql(u8, "", trim("")));
+    std.testing.expect(mem.eql(u8, "abc", trim(" abc")));
+    std.testing.expect(mem.eql(u8, "abc", trim("abc ")));
+}
+
+pub fn isWhiteSpace(byte: u8) bool {
+    return switch (byte) {
+        ' ', '\t', '\n', '\r' => true,
+        else => false,
+    };
+}
+
+pub fn hexToBytes(out: []u8, input: []const u8) !void {
+    if (out.len * 2 < input.len)
+        return error.InvalidLength;
+
+    var in_i: usize = 0;
+    while (in_i != input.len) : (in_i += 2) {
+        const hi = try charToDigit(input[in_i], 16);
+        const lo = try charToDigit(input[in_i + 1], 16);
+        out[in_i / 2] = (hi << 4) | lo;
+    }
+}
+
+test "hexToBytes" {
+    const test_hex_str = "909A312BB12ED1F819B3521AC4C1E896F2160507FFC1C8381E3B07BB16BD1706";
+    var pb: [32]u8 = undefined;
+    try hexToBytes(pb[0..], test_hex_str);
+    try testFmt(test_hex_str, "{X}", .{pb});
+}
+
+test "formatIntValue with comptime_int" {
+    const value: comptime_int = 123456789123456789;
+
+    var buf = std.ArrayList(u8).init(std.testing.allocator);
+    defer buf.deinit();
+    try formatIntValue(value, "", FormatOptions{}, &buf, @TypeOf(std.ArrayList(u8).appendSlice).ReturnType.ErrorSet, std.ArrayList(u8).appendSlice);
+    std.testing.expect(mem.eql(u8, buf.toSliceConst(), "123456789123456789"));
+}
+
+test "formatType max_depth" {
+    const Vec2 = struct {
+        const SelfType = @This();
+        x: f32,
+        y: f32,
+
+        pub fn format(
+            self: SelfType,
+            comptime fmt: []const u8,
+            options: FormatOptions,
+            context: var,
+            comptime Errors: type,
+            comptime output: fn (@TypeOf(context), []const u8) Errors!void,
+        ) Errors!void {
+            if (fmt.len == 0) {
+                return std.fmt.format(context, Errors, output, "({d:.3},{d:.3})", .{ self.x, self.y });
+            } else {
+                @compileError("Unknown format string: '" ++ fmt ++ "'");
+            }
+        }
+    };
+    const E = enum {
+        One,
+        Two,
+        Three,
+    };
+    const TU = union(enum) {
+        const SelfType = @This();
+        float: f32,
+        int: u32,
+        ptr: ?*SelfType,
+    };
+    const S = struct {
+        const SelfType = @This();
+        a: ?*SelfType,
+        tu: TU,
+        e: E,
+        vec: Vec2,
+    };
+
+    var inst = S{
+        .a = null,
+        .tu = TU{ .ptr = null },
+        .e = E.Two,
+        .vec = Vec2{ .x = 10.2, .y = 2.22 },
+    };
+    inst.a = &inst;
+    inst.tu.ptr = &inst.tu;
+
+    var buf0 = std.ArrayList(u8).init(std.testing.allocator);
+    defer buf0.deinit();
+    try formatType(inst, "", FormatOptions{}, &buf0, @TypeOf(std.ArrayList(u8).appendSlice).ReturnType.ErrorSet, std.ArrayList(u8).appendSlice, 0);
+    std.testing.expect(mem.eql(u8, buf0.toSlice(), "S{ ... }"));
+
+    var buf1 = std.ArrayList(u8).init(std.testing.allocator);
+    defer buf1.deinit();
+    try formatType(inst, "", FormatOptions{}, &buf1, @TypeOf(std.ArrayList(u8).appendSlice).ReturnType.ErrorSet, std.ArrayList(u8).appendSlice, 1);
+    std.testing.expect(mem.eql(u8, buf1.toSlice(), "S{ .a = S{ ... }, .tu = TU{ ... }, .e = E.Two, .vec = (10.200,2.220) }"));
+
+    var buf2 = std.ArrayList(u8).init(std.testing.allocator);
+    defer buf2.deinit();
+    try formatType(inst, "", FormatOptions{}, &buf2, @TypeOf(std.ArrayList(u8).appendSlice).ReturnType.ErrorSet, std.ArrayList(u8).appendSlice, 2);
+    std.testing.expect(mem.eql(u8, buf2.toSlice(), "S{ .a = S{ .a = S{ ... }, .tu = TU{ ... }, .e = E.Two, .vec = (10.200,2.220) }, .tu = TU{ .ptr = TU{ ... } }, .e = E.Two, .vec = (10.200,2.220) }"));
+
+    var buf3 = std.ArrayList(u8).init(std.testing.allocator);
+    defer buf3.deinit();
+    try formatType(inst, "", FormatOptions{}, &buf3, @TypeOf(std.ArrayList(u8).appendSlice).ReturnType.ErrorSet, std.ArrayList(u8).appendSlice, 3);
+    std.testing.expect(mem.eql(u8, buf3.toSlice(), "S{ .a = S{ .a = S{ .a = S{ ... }, .tu = TU{ ... }, .e = E.Two, .vec = (10.200,2.220) }, .tu = TU{ .ptr = TU{ ... } }, .e = E.Two, .vec = (10.200,2.220) }, .tu = TU{ .ptr = TU{ .ptr = TU{ ... } } }, .e = E.Two, .vec = (10.200,2.220) }"));
+}
+
+test "positional" {
+    try testFmt("2 1 0", "{2} {1} {0}", .{ @as(usize, 0), @as(usize, 1), @as(usize, 2) });
+    try testFmt("2 1 0", "{2} {1} {}", .{ @as(usize, 0), @as(usize, 1), @as(usize, 2) });
+    try testFmt("0 0", "{0} {0}", .{@as(usize, 0)});
+    try testFmt("0 1", "{} {1}", .{ @as(usize, 0), @as(usize, 1) });
+    try testFmt("1 0 0 1", "{1} {} {0} {}", .{ @as(usize, 0), @as(usize, 1) });
+}
+
+test "positional with specifier" {
+    try testFmt("10.0", "{0d:.1}", .{@as(f64, 9.999)});
+}
+
+test "positional/alignment/width/precision" {
+    try testFmt("10.0", "{0d: >3.1}", .{@as(f64, 9.999)});
+}
+
+test "vector" {
+    // https://github.com/ziglang/zig/issues/3317
+    if (builtin.arch == .mipsel) return error.SkipZigTest;
+
+    const vbool: @Vector(4, bool) = [_]bool{ true, false, true, false };
+    const vi64: @Vector(4, i64) = [_]i64{ -2, -1, 0, 1 };
+    const vu64: @Vector(4, u64) = [_]u64{ 1000, 2000, 3000, 4000 };
+
+    try testFmt("{ true, false, true, false }", "{}", .{vbool});
+    try testFmt("{ -2, -1, 0, 1 }", "{}", .{vi64});
+    try testFmt("{ -   2, -   1, +   0, +   1 }", "{d:5}", .{vi64});
+    try testFmt("{ 1000, 2000, 3000, 4000 }", "{}", .{vu64});
+    try testFmt("{ 3e8, 7d0, bb8, fa0 }", "{x}", .{vu64});
+    try testFmt("{ 1kB, 2kB, 3kB, 4kB }", "{B}", .{vu64});
+    try testFmt("{ 1000B, 1.953125KiB, 2.9296875KiB, 3.90625KiB }", "{Bi}", .{vu64});
+}
+
+test "enum-literal" {
+    try testFmt(".hello_world", "{}", .{.hello_world});
+}
lib/std/std.zig
@@ -38,6 +38,7 @@ pub const elf = @import("elf.zig");
 pub const event = @import("event.zig");
 pub const fifo = @import("fifo.zig");
 pub const fmt = @import("fmt.zig");
+pub const fmtstream = @import("fmtstream.zig");
 pub const fs = @import("fs.zig");
 pub const hash = @import("hash.zig");
 pub const hash_map = @import("hash_map.zig");