Commit 9d27f34d04

Frank Denis <124872+jedisct1@users.noreply.github.com>
2024-04-09 21:16:19
crypto.sha3: implement constructions from NIST SP 800-185 (#19533)
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf This adds useful standard SHA3-based constructions from the NIST SP 800-185 document: - cSHAKE: similar to the SHAKE extensible hash function, but with the addition of a context parameter. - KMAC: SHAKE-based authentication / keyed XOF - TupleHash: unambiguous hashing of tuples These are required by recent protocols and specifications. They also offer properties that none of the currently available constructions in the stdlib offer, especially the ability to safely hash tuples. Other keyed hash functions/XOFs will fall back to using HMAC, which is suboptimal from a performance perspective, but fine from a security perspective.
1 parent ac21ade
Changed files (3)
lib/std/crypto/ecdsa.zig
@@ -4,6 +4,7 @@ const crypto = std.crypto;
 const fmt = std.fmt;
 const io = std.io;
 const mem = std.mem;
+const sha3 = crypto.hash.sha3;
 const testing = std.testing;
 
 const EncodingError = crypto.errors.EncodingError;
@@ -26,7 +27,11 @@ pub const EcdsaSecp256k1Sha256oSha256 = Ecdsa(crypto.ecc.Secp256k1, crypto.hash.
 
 /// Elliptic Curve Digital Signature Algorithm (ECDSA).
 pub fn Ecdsa(comptime Curve: type, comptime Hash: type) type {
-    const Hmac = crypto.auth.hmac.Hmac(Hash);
+    const Prf = switch (Hash) {
+        sha3.Shake128 => sha3.KMac128,
+        sha3.Shake256 => sha3.KMac256,
+        else => crypto.auth.hmac.Hmac(Hash),
+    };
 
     return struct {
         /// Length (in bytes) of optional random bytes, for non-deterministic signatures.
@@ -350,22 +355,22 @@ pub fn Ecdsa(comptime Curve: type, comptime Hash: type) type {
             if (noise) |n| @memcpy(m_z, &n);
             @memcpy(m_x, &secret_key);
             @memcpy(m_h, &h);
-            Hmac.create(&k, &m, &k);
-            Hmac.create(m_v, m_v, &k);
+            Prf.create(&k, &m, &k);
+            Prf.create(m_v, m_v, &k);
             m_i.* = 0x01;
-            Hmac.create(&k, &m, &k);
-            Hmac.create(m_v, m_v, &k);
+            Prf.create(&k, &m, &k);
+            Prf.create(m_v, m_v, &k);
             while (true) {
                 var t_off: usize = 0;
                 while (t_off < t.len) : (t_off += m_v.len) {
                     const t_end = @min(t_off + m_v.len, t.len);
-                    Hmac.create(m_v, m_v, &k);
+                    Prf.create(m_v, m_v, &k);
                     @memcpy(t[t_off..t_end], m_v[0 .. t_end - t_off]);
                 }
                 if (Curve.scalar.Scalar.fromBytes(t, .big)) |s| return s else |_| {}
                 m_i.* = 0x00;
-                Hmac.create(&k, m[0 .. m_v.len + 1], &k);
-                Hmac.create(m_v, m_v, &k);
+                Prf.create(&k, m[0 .. m_v.len + 1], &k);
+                Prf.create(m_v, m_v, &k);
             }
         }
     };
lib/std/crypto/keccak_p.zig
@@ -195,7 +195,7 @@ pub fn KeccakF(comptime f: u11) type {
 }
 
 /// A generic Keccak-P state.
-pub fn State(comptime f: u11, comptime capacity: u11, comptime delim: u8, comptime rounds: u5) type {
+pub fn State(comptime f: u11, comptime capacity: u11, comptime rounds: u5) type {
     comptime assert(f > 200 and f <= 1600 and f % 200 == 0); // invalid state size
     comptime assert(capacity < f and capacity % 8 == 0); // invalid capacity size
 
@@ -207,6 +207,9 @@ pub fn State(comptime f: u11, comptime capacity: u11, comptime delim: u8, compti
         /// Keccak does not have any options.
         pub const Options = struct {};
 
+        /// The input delimiter.
+        delim: u8,
+
         offset: usize = 0,
         buf: [rate]u8 = undefined,
 
@@ -238,10 +241,28 @@ pub fn State(comptime f: u11, comptime capacity: u11, comptime delim: u8, compti
             }
         }
 
+        /// Initialize the state from a slice of bytes.
+        pub fn init(bytes: [f / 8]u8) Self {
+            return .{ .st = KeccakF(f).init(bytes) };
+        }
+
+        /// Permute the state
+        pub fn permute(self: *Self) void {
+            self.st.permuteR(rounds);
+            self.offset = 0;
+        }
+
+        /// Align the input to the rate boundary.
+        pub fn fillBlock(self: *Self) void {
+            self.st.addBytes(self.buf[0..self.offset]);
+            self.st.permuteR(rounds);
+            self.offset = 0;
+        }
+
         /// Mark the end of the input.
         pub fn pad(self: *Self) void {
             self.st.addBytes(self.buf[0..self.offset]);
-            self.st.addByte(delim, self.offset);
+            self.st.addByte(self.delim, self.offset);
             self.st.addByte(0x80, rate - 1);
             self.st.permuteR(rounds);
             self.offset = 0;
lib/std/crypto/sha3.zig
@@ -18,11 +18,20 @@ pub const Keccak_512 = @compileError("Deprecated: use `Keccak512` instead");
 pub const Shake128 = Shake(128);
 pub const Shake256 = Shake(256);
 
+pub const CShake128 = CShake(128, null);
+pub const CShake256 = CShake(256, null);
+
+pub const KMac128 = KMac(128);
+pub const KMac256 = KMac(256);
+
+pub const TupleHash128 = TupleHash(128);
+pub const TupleHash256 = TupleHash(256);
+
 /// TurboSHAKE128 is a XOF (a secure hash function with a variable output length), with a 128 bit security level.
 /// It is based on the same permutation as SHA3 and SHAKE128, but which much higher performance.
 /// The delimiter is 0x1f by default, but can be changed for context-separation.
 /// For a protocol that uses both KangarooTwelve and TurboSHAKE128, it is recommended to avoid using 0x06, 0x07 or 0x0b for the delimiter.
-pub fn TurboShake128(comptime delim: ?u7) type {
+pub fn TurboShake128(delim: ?u7) type {
     return TurboShake(128, delim);
 }
 
@@ -34,27 +43,26 @@ pub fn TurboShake256(comptime delim: ?u7) type {
 }
 
 /// A generic Keccak hash function.
-pub fn Keccak(comptime f: u11, comptime output_bits: u11, comptime delim: u8, comptime rounds: u5) type {
+pub fn Keccak(comptime f: u11, comptime output_bits: u11, comptime default_delim: u8, comptime rounds: u5) type {
     comptime assert(output_bits > 0 and output_bits * 2 < f and output_bits % 8 == 0); // invalid output length
 
-    const State = KeccakState(f, output_bits * 2, delim, rounds);
+    const State = KeccakState(f, output_bits * 2, rounds);
 
     return struct {
         const Self = @This();
 
-        st: State = .{},
+        st: State,
 
         /// The output length, in bytes.
         pub const digest_length = output_bits / 8;
         /// The block length, or rate, in bytes.
         pub const block_length = State.rate;
-        /// Keccak does not have any options.
-        pub const Options = struct {};
+        /// The delimiter can be overwritten in the options.
+        pub const Options = struct { delim: u8 = default_delim };
 
         /// Initialize a Keccak hash function.
         pub fn init(options: Options) Self {
-            _ = options;
-            return Self{};
+            return Self{ .st = .{ .delim = options.delim } };
         }
 
         /// Hash a slice of bytes.
@@ -105,29 +113,28 @@ pub fn TurboShake(comptime security_level: u11, comptime delim: ?u7) type {
     return ShakeLike(security_level, d, 12);
 }
 
-fn ShakeLike(comptime security_level: u11, comptime delim: u8, comptime rounds: u5) type {
+fn ShakeLike(comptime security_level: u11, comptime default_delim: u8, comptime rounds: u5) type {
     const f = 1600;
-    const State = KeccakState(f, security_level * 2, delim, rounds);
+    const State = KeccakState(f, security_level * 2, rounds);
 
     return struct {
         const Self = @This();
 
-        st: State = .{},
+        st: State,
         buf: [State.rate]u8 = undefined,
         offset: usize = 0,
         padded: bool = false,
 
         /// The recommended output length, in bytes.
-        pub const digest_length = security_level / 2;
+        pub const digest_length = security_level / 8 * 2;
         /// The block length, or rate, in bytes.
         pub const block_length = State.rate;
-        /// Keccak does not have any options.
-        pub const Options = struct {};
+        /// The delimiter can be overwritten in the options.
+        pub const Options = struct { delim: u8 = default_delim };
 
         /// Initialize a SHAKE extensible hash function.
         pub fn init(options: Options) Self {
-            _ = options;
-            return Self{};
+            return Self{ .st = .{ .delim = options.delim } };
         }
 
         /// Hash a slice of bytes.
@@ -182,6 +189,11 @@ fn ShakeLike(comptime security_level: u11, comptime delim: u8, comptime rounds:
             self.st.st.clear(0, State.rate);
         }
 
+        /// Align the input to a block boundary.
+        pub fn fillBlock(self: *Self) void {
+            self.st.fillBlock();
+        }
+
         pub const Error = error{};
         pub const Writer = std.io.Writer(*Self, Error, write);
 
@@ -196,6 +208,338 @@ fn ShakeLike(comptime security_level: u11, comptime delim: u8, comptime rounds:
     };
 }
 
+/// The cSHAKE extendable output hash function.
+/// cSHAKE is similar to SHAKE, but in addition to the input message, it also takes an optional context (aka customization string).
+pub fn CShake(comptime security_level: u11, comptime fname: ?[]const u8) type {
+    return CShakeLike(security_level, 0x04, 24, fname);
+}
+
+fn CShakeLike(comptime security_level: u11, comptime default_delim: u8, comptime rounds: u5, comptime fname: ?[]const u8) type {
+    return struct {
+        const Shaker = ShakeLike(security_level, default_delim, rounds);
+        shaker: Shaker,
+
+        /// The recommended output length, in bytes.
+        pub const digest_length = Shaker.digest_length;
+        /// The block length, or rate, in bytes.
+        pub const block_length = Shaker.block_length;
+
+        /// cSHAKE options can include a context string.
+        pub const Options = struct { context: ?[]const u8 = null };
+
+        const Self = @This();
+
+        /// Initialize a SHAKE extensible hash function.
+        pub fn init(options: Options) Self {
+            if (fname == null and options.context == null) {
+                return Self{ .shaker = Shaker.init(.{ .delim = 0x1f }) };
+            }
+            var shaker = Shaker.init(.{});
+            comptime assert(Shaker.block_length % 8 == 0);
+            const encoded_rate_len = NistLengthEncoding.encode(.left, block_length / 8);
+            shaker.update(encoded_rate_len.slice());
+            const encoded_zero = comptime NistLengthEncoding.encode(.left, 0);
+            if (fname) |name| {
+                const encoded_fname_len = comptime NistLengthEncoding.encode(.left, name.len);
+                const encoded_fname = comptime encoded_fname_len.slice() ++ name;
+                shaker.update(encoded_fname);
+            } else {
+                shaker.update(encoded_zero.slice());
+            }
+            if (options.context) |context| {
+                const encoded_context_len = NistLengthEncoding.encode(.left, context.len);
+                shaker.update(encoded_context_len.slice());
+                shaker.update(context);
+            } else {
+                shaker.update(encoded_zero.slice());
+            }
+            shaker.st.fillBlock();
+            return Self{ .shaker = shaker };
+        }
+
+        /// Hash a slice of bytes.
+        /// `out` can be any length.
+        pub fn hash(bytes: []const u8, out: []u8, options: Options) void {
+            var st = Self.init(options);
+            st.update(bytes);
+            st.squeeze(out);
+        }
+
+        /// Absorb a slice of bytes into the state.
+        pub fn update(self: *Self, bytes: []const u8) void {
+            self.shaker.update(bytes);
+        }
+
+        /// Squeeze a slice of bytes from the state.
+        /// `out` can be any length, and the function can be called multiple times.
+        pub fn squeeze(self: *Self, out: []u8) void {
+            self.shaker.squeeze(out);
+        }
+
+        /// Return the hash of the absorbed bytes.
+        /// `out` can be of any length, but the function must not be called multiple times (use `squeeze` for that purpose instead).
+        pub fn final(self: *Self, out: []u8) void {
+            self.shaker.final(out);
+        }
+
+        /// Align the input to a block boundary.
+        pub fn fillBlock(self: *Self) void {
+            self.shaker.fillBlock();
+        }
+
+        pub const Error = error{};
+        pub const Writer = std.io.Writer(*Self, Error, write);
+
+        fn write(self: *Self, bytes: []const u8) Error!usize {
+            self.update(bytes);
+            return bytes.len;
+        }
+
+        pub fn writer(self: *Self) Writer {
+            return .{ .context = self };
+        }
+    };
+}
+
+/// The KMAC extendable output authentication function.
+/// KMAC is a keyed version of the cSHAKE function, with an optional context.
+/// It can be used as an SHA-3 based alternative to HMAC, as well as a generic keyed XoF (extendable output function).
+pub fn KMac(comptime security_level: u11) type {
+    return KMacLike(security_level, 0x04, 24);
+}
+
+fn KMacLike(comptime security_level: u11, comptime default_delim: u8, comptime rounds: u5) type {
+    const CShaker = CShakeLike(security_level, default_delim, rounds, "KMAC");
+
+    return struct {
+        const Self = @This();
+
+        /// The recommended output length, in bytes.
+        pub const mac_length = CShaker.digest_length;
+        /// The minimum output length, in bytes.
+        pub const mac_length_min = 4;
+        /// The recommended key length, in bytes.
+        pub const key_length = security_level / 8;
+        /// The minimum key length, in bytes.
+        pub const key_length_min = 0;
+        /// The block length, or rate, in bytes.
+        pub const block_length = CShaker.block_length;
+
+        cshaker: CShaker,
+        xof_mode: bool = false,
+
+        /// KMAC options can include a context string.
+        pub const Options = struct {
+            context: ?[]const u8 = null,
+        };
+
+        /// Initialize a state for the KMAC function, with an optional context and an arbitrary-long key.
+        /// If the context and key are going to be reused, the structure can be initialized once, and cloned for each message.
+        /// This is more efficient than reinitializing the state for each message at the cost of a small amount of memory.
+        pub fn initWithOptions(key: []const u8, options: Options) Self {
+            var cshaker = CShaker.init(.{ .context = options.context });
+            const encoded_rate_len = NistLengthEncoding.encode(.left, block_length / 8);
+            cshaker.update(encoded_rate_len.slice());
+            const encoded_key_len = NistLengthEncoding.encode(.left, key.len);
+            cshaker.update(encoded_key_len.slice());
+            cshaker.update(key);
+            cshaker.fillBlock();
+            return Self{
+                .cshaker = cshaker,
+            };
+        }
+
+        /// Initialize a state for the KMAC function.
+        /// If the context and key are going to be reused, the structure can be initialized once, and cloned for each message.
+        /// This is more efficient than reinitializing the state for each message at the cost of a small amount of memory.
+        pub fn init(key: []const u8) Self {
+            return initWithOptions(key, .{});
+        }
+
+        /// Add data to the state.
+        pub fn update(self: *Self, b: []const u8) void {
+            self.cshaker.update(b);
+        }
+
+        /// Return an authentication tag for the current state.
+        pub fn final(self: *Self, out: []u8) void {
+            const encoded_out_len = NistLengthEncoding.encode(.right, out.len);
+            self.update(encoded_out_len.slice());
+            self.cshaker.final(out);
+        }
+
+        /// Squeeze a slice of bytes from the state.
+        /// `out` can be any length, and the function can be called multiple times.
+        pub fn squeeze(self: *Self, out: []u8) void {
+            if (!self.xof_mode) {
+                const encoded_out_len = comptime NistLengthEncoding.encode(.right, 0);
+                self.update(encoded_out_len.slice());
+                self.xof_mode = true;
+            }
+            self.cshaker.squeeze(out);
+        }
+
+        /// Return an authentication tag for a message and a key, with an optional context.
+        pub fn createWithOptions(out: []u8, msg: []const u8, key: []const u8, options: Options) void {
+            var ctx = Self.initWithOptions(key, options);
+            ctx.update(msg);
+            ctx.final(out);
+        }
+
+        /// Return an authentication tag for a message and a key.
+        pub fn create(out: []u8, msg: []const u8, key: []const u8) void {
+            var ctx = Self.init(key);
+            ctx.update(msg);
+            ctx.final(out);
+        }
+
+        pub const Error = error{};
+        pub const Writer = std.io.Writer(*Self, Error, write);
+
+        fn write(self: *Self, bytes: []const u8) Error!usize {
+            self.update(bytes);
+            return bytes.len;
+        }
+
+        pub fn writer(self: *Self) Writer {
+            return .{ .context = self };
+        }
+    };
+}
+
+/// The TupleHash extendable output hash function, with domain-separated inputs.
+/// TupleHash is a secure hash function with a variable output length, based on the cSHAKE function.
+/// It is designed for unambiguously hashing tuples of data.
+///
+/// With most hash functions, calling `update("A")` followed by `update("B")`is identical to `update("AB")`.
+/// With TupleHash, this is not the case: `update("A"); update("B")` is different from `update("AB")`.
+///
+/// Any number of inputs can be hashed, and the output depends on individual inputs and their order.
+pub fn TupleHash(comptime security_level: u11) type {
+    return TupleHashLike(security_level, 0x04, 24);
+}
+
+fn TupleHashLike(comptime security_level: u11, comptime default_delim: u8, comptime rounds: u5) type {
+    const CShaker = CShakeLike(security_level, default_delim, rounds, "TupleHash");
+
+    return struct {
+        const Self = @This();
+
+        /// The output length, in bytes.
+        pub const digest_length = CShaker.digest_length;
+        /// The block length, or rate, in bytes.
+        pub const block_length = CShaker.block_length;
+
+        cshaker: CShaker,
+        xof_mode: bool = false,
+
+        /// TupleHash options can include a context string.
+        pub const Options = struct {
+            context: ?[]const u8 = null,
+        };
+
+        /// Initialize a state for the TupleHash function, with an optional context.
+        /// If the context is going to be reused, the structure can be initialized once, and cloned for each message.
+        /// This is more efficient than reinitializing the state for each message at the cost of a small amount of memory.
+        ///
+        /// A key can be optionally added to the context to create a keyed TupleHash function, similar to KMAC.
+        pub fn initWithOptions(options: Options) Self {
+            const cshaker = CShaker.init(.{ .context = options.context });
+            return Self{
+                .cshaker = cshaker,
+            };
+        }
+
+        /// Initialize a state for the MAC function.
+        pub fn init() Self {
+            return initWithOptions(.{});
+        }
+
+        /// Add data to the state, separated from previous updates.
+        pub fn update(self: *Self, b: []const u8) void {
+            const encoded_b_len = NistLengthEncoding.encode(.left, b.len);
+            self.cshaker.update(encoded_b_len.slice());
+            self.cshaker.update(b);
+        }
+
+        /// Return an authentication tag for the current state.
+        pub fn final(self: *Self, out: []u8) void {
+            const encoded_out_len = NistLengthEncoding.encode(.right, out.len);
+            self.cshaker.update(encoded_out_len.slice());
+            self.cshaker.final(out);
+        }
+
+        /// Align the input to a block boundary.
+        pub fn fillBlock(self: *Self) void {
+            self.cshaker.fillBlock();
+        }
+
+        /// Squeeze a slice of bytes from the state.
+        /// `out` can be any length, and the function can be called multiple times.
+        pub fn squeeze(self: *Self, out: []u8) void {
+            if (!self.xof_mode) {
+                const encoded_out_len = comptime NistLengthEncoding.encode(.right, 0);
+                self.update(encoded_out_len.slice());
+                self.xof_mode = true;
+            }
+            self.cshaker.squeeze(out);
+        }
+
+        pub const Error = error{};
+        pub const Writer = std.io.Writer(*Self, Error, write);
+
+        fn write(self: *Self, bytes: []const u8) Error!usize {
+            self.update(bytes);
+            return bytes.len;
+        }
+
+        pub fn writer(self: *Self) Writer {
+            return .{ .context = self };
+        }
+    };
+}
+
+/// The NIST SP 800-185 encoded length format.
+pub const NistLengthEncoding = enum {
+    left,
+    right,
+
+    /// A length encoded according to NIST SP 800-185.
+    pub const Length = struct {
+        /// The size of the encoded value, in bytes.
+        len: usize = 0,
+        /// A buffer to store the encoded length.
+        buf: [@sizeOf(usize) + 1]u8 = undefined,
+
+        /// Return the encoded length as a slice.
+        pub fn slice(self: *const Length) []const u8 {
+            return self.buf[0..self.len];
+        }
+    };
+
+    /// Encode a length according to NIST SP 800-185.
+    pub fn encode(comptime encoding: NistLengthEncoding, len: usize) Length {
+        const len_bits = @bitSizeOf(@TypeOf(len)) - @clz(len) + 3;
+        const len_bytes = std.math.divCeil(usize, len_bits, 8) catch unreachable;
+
+        var res = Length{ .len = len_bytes + 1 };
+        if (encoding == .right) {
+            res.buf[len_bytes] = @intCast(len_bytes);
+        }
+        const end = if (encoding == .right) len_bytes - 1 else len_bytes;
+        res.buf[end] = @truncate(len << 3);
+        var len_ = len >> 5;
+        for (1..len_bytes) |i| {
+            res.buf[end - i] = @truncate(len_);
+            len_ >>= 8;
+        }
+        if (encoding == .left) {
+            res.buf[0] = @intCast(len_bytes);
+        }
+        return res;
+    }
+};
+
 const htest = @import("test.zig");
 
 test "sha3-224 single" {
@@ -397,3 +741,88 @@ test "SHA-3 with streaming" {
     h.final(&out);
     try htest.assertEqual("5780048dfa381a1d01c747906e4a08711dd34fd712ecd7c6801dd2b38fd81a89", &out);
 }
+
+test "cSHAKE-128 with no context nor function name" {
+    var out: [32]u8 = undefined;
+    CShake128.hash("hello123", &out, .{});
+    try htest.assertEqual("1b85861510bc4d8e467d6f8a92270533cbaa7ba5e06c2d2a502854bac468b8b9", &out);
+}
+
+test "cSHAKE-128 with context" {
+    var out: [32]u8 = undefined;
+    CShake128.hash("hello123", &out, .{ .context = "custom" });
+    try htest.assertEqual("7509fa13a6bd3e38ad5c6fac042142c233996e40ebffc86c276f108b3b19cc6a", &out);
+}
+
+test "cSHAKE-128 with context and function" {
+    var out: [32]u8 = undefined;
+    CShake(128, "function").hash("hello123", &out, .{ .context = "custom" });
+    try htest.assertEqual("ad7f4d7db2d96587fcd5047c65d37c368f5366e3afac60bb9b66b0bb95dfb675", &out);
+}
+
+test "cSHAKE-256" {
+    var out: [32]u8 = undefined;
+    CShake256.hash("hello123", &out, .{ .context = "custom" });
+    try htest.assertEqual("dabe027eb1a6cbe3a0542d0560eb4e6b39146dd72ae1bf89c970a61bd93b1813", &out);
+}
+
+test "KMAC-128 with empty key and message" {
+    var out: [KMac128.mac_length]u8 = undefined;
+    const key = "";
+    KMac128.create(&out, "", key);
+    try htest.assertEqual("5c135c615152fb4d9784dd1155f9b6034e013fd77165c327dfa4d36701983ef7", &out);
+}
+
+test "KMAC-128" {
+    var out: [KMac128.mac_length]u8 = undefined;
+    const key = "A KMAC secret key";
+    KMac128.create(&out, "hello123", key);
+    try htest.assertEqual("1fa1c0d761129a83f9a4299ca137674de8373a3cc437799ae4c129e651627f8e", &out);
+}
+
+test "KMAC-128 with a customization string" {
+    var out: [KMac128.mac_length]u8 = undefined;
+    const key = "A KMAC secret key";
+    KMac128.createWithOptions(&out, "hello123", key, .{ .context = "custom" });
+    try htest.assertEqual("c58c6d42dc00a27dfa8e7e08f8c9307cecb5d662ddb11b6c36057fc2e0e068ba", &out);
+}
+
+test "KMACXOF-128" {
+    const key = "A KMAC secret key";
+    var xof = KMac128.init(key);
+    xof.update("hello123");
+    var out: [50]u8 = undefined;
+    xof.squeeze(&out);
+    try htest.assertEqual("628c2fb870d294b3673ac82d9f0d651aae6a5bb8084ea8cd8343cb888d075b9053173200a71f301141069c3c0322527981f7", &out);
+    xof.squeeze(&out);
+    try htest.assertEqual("7b638e178cfdac5727a4ea7694efaa967a65a1d0034501855acff506b4158d187d5a18d668e67b43f2abf61144b20ed4c09f", &out);
+}
+
+test "KMACXOF-256" {
+    const key = "A KMAC secret key";
+    var xof = KMac256.init(key);
+    xof.update("hello123");
+    var out: [50]u8 = undefined;
+    xof.squeeze(&out);
+    try htest.assertEqual("23fc644bc2655ba6fde7b7c11f2804f22e8d8c6bd7db856268bf3370ce2362703f6c7e91916a1b8c116e60edfbcb25613054", &out);
+    xof.squeeze(&out);
+    try htest.assertEqual("ff97251020ff255ee65a1c1f5f78ebe904f61211c39f973f82fbce2b196b9f51c2cb12afe51549a0f1eaf7954e657ba11af3", &out);
+}
+
+test "TupleHash-128" {
+    var st = TupleHash128.init();
+    st.update("hello");
+    st.update("123");
+    var out: [32]u8 = undefined;
+    st.final(&out);
+    try htest.assertEqual("3938d49ade8ec0f0c305ac63497b2d2e8b2f650714f9667cc41816b1c11ffd20", &out);
+}
+
+test "TupleHash-256" {
+    var st = TupleHash256.init();
+    st.update("hello");
+    st.update("123");
+    var out: [64]u8 = undefined;
+    st.final(&out);
+    try htest.assertEqual("2dca563c2882f2ba4f46a441a4c5e13fb97150d1436fe99c7e4e43a2d20d0f1cd3d38483bde4a966930606dfa6c61c4ca6400aeedfb474d1bf0d7f6a70968289", &out);
+}