Commit 9c99a88796
lib/std/math/gcd.zig
@@ -0,0 +1,48 @@
+//! Greatest common divisor (https://mathworld.wolfram.com/GreatestCommonDivisor.html)
+const std = @import("std");
+const expectEqual = std.testing.expectEqual;
+
+/// Returns the greatest common divisor (GCD) of two unsigned integers (a and b) which are not both zero.
+/// For example, the GCD of 8 and 12 is 4, that is, gcd(8, 12) == 4.
+pub fn gcd(a: anytype, b: anytype) @TypeOf(a, b) {
+
+ // only unsigned integers are allowed and not both must be zero
+ comptime switch (@typeInfo(@TypeOf(a, b))) {
+ .Int => |int| std.debug.assert(int.signedness == .unsigned),
+ .ComptimeInt => {
+ std.debug.assert(a >= 0);
+ std.debug.assert(b >= 0);
+ },
+ else => unreachable,
+ };
+ std.debug.assert(a != 0 or b != 0);
+
+ // if one of them is zero, the other is returned
+ if (a == 0) return b;
+ if (b == 0) return a;
+
+ // init vars
+ var x: @TypeOf(a, b) = a;
+ var y: @TypeOf(a, b) = b;
+ var m: @TypeOf(a, b) = a;
+
+ // using the Euclidean algorithm (https://mathworld.wolfram.com/EuclideanAlgorithm.html)
+ while (y != 0) {
+ m = x % y;
+ x = y;
+ y = m;
+ }
+ return x;
+}
+
+test "gcd" {
+ try expectEqual(gcd(0, 5), 5);
+ try expectEqual(gcd(5, 0), 5);
+ try expectEqual(gcd(8, 12), 4);
+ try expectEqual(gcd(12, 8), 4);
+ try expectEqual(gcd(33, 77), 11);
+ try expectEqual(gcd(77, 33), 11);
+ try expectEqual(gcd(49865, 69811), 9973);
+ try expectEqual(gcd(300_000, 2_300_000), 100_000);
+ try expectEqual(gcd(90000000_000_000_000_000_000, 2), 2);
+}
lib/std/math.zig
@@ -262,6 +262,7 @@ pub const atanh = @import("math/atanh.zig").atanh;
pub const sinh = @import("math/sinh.zig").sinh;
pub const cosh = @import("math/cosh.zig").cosh;
pub const tanh = @import("math/tanh.zig").tanh;
+pub const gcd = @import("math/gcd.zig").gcd;
/// Sine trigonometric function on a floating point number.
/// Uses a dedicated hardware instruction when available.