Commit 91d93b6395

Jakub Konka <kubkon@jakubkonka.com>
2021-10-31 13:01:00
stage2: move x86_64 codegen to arch/x86_64/CodeGen.zig
This mimics steps taken for aarch64 and preps stage2 x86_64 for a rewrite introducing MIR for this arch.
1 parent c452d10
Changed files (2)
src
src/arch/x86_64/CodeGen.zig
@@ -0,0 +1,3647 @@
+const std = @import("std");
+const build_options = @import("build_options");
+const builtin = @import("builtin");
+const assert = std.debug.assert;
+const leb128 = std.leb;
+const link = @import("../../link.zig");
+const log = std.log.scoped(.codegen);
+const math = std.math;
+const mem = std.mem;
+const trace = @import("../../tracy.zig").trace;
+
+const Air = @import("../../Air.zig");
+const Allocator = mem.Allocator;
+const Compilation = @import("../../Compilation.zig");
+const DebugInfoOutput = @import("../../codegen.zig").DebugInfoOutput;
+const DW = std.dwarf;
+const Encoder = @import("bits.zig").Encoder;
+const ErrorMsg = Module.ErrorMsg;
+const FnResult = @import("../../codegen.zig").FnResult;
+const GenerateSymbolError = @import("../../codegen.zig").GenerateSymbolError;
+const Liveness = @import("../../Liveness.zig");
+const Module = @import("../../Module.zig");
+const RegisterManager = @import("../../register_manager.zig").RegisterManager;
+const Target = std.Target;
+const Type = @import("../../type.zig").Type;
+const TypedValue = @import("../../TypedValue.zig");
+const Value = @import("../../value.zig").Value;
+const Zir = @import("../../Zir.zig");
+
+const InnerError = error{
+    OutOfMemory,
+    CodegenFail,
+};
+
+arch: std.Target.Cpu.Arch,
+gpa: *Allocator,
+air: Air,
+liveness: Liveness,
+bin_file: *link.File,
+target: *const std.Target,
+mod_fn: *const Module.Fn,
+code: *std.ArrayList(u8),
+debug_output: DebugInfoOutput,
+err_msg: ?*ErrorMsg,
+args: []MCValue,
+ret_mcv: MCValue,
+fn_type: Type,
+arg_index: usize,
+src_loc: Module.SrcLoc,
+stack_align: u32,
+
+prev_di_line: u32,
+prev_di_column: u32,
+/// Byte offset within the source file of the ending curly.
+end_di_line: u32,
+end_di_column: u32,
+/// Relative to the beginning of `code`.
+prev_di_pc: usize,
+
+/// The value is an offset into the `Function` `code` from the beginning.
+/// To perform the reloc, write 32-bit signed little-endian integer
+/// which is a relative jump, based on the address following the reloc.
+exitlude_jump_relocs: std.ArrayListUnmanaged(usize) = .{},
+
+/// Whenever there is a runtime branch, we push a Branch onto this stack,
+/// and pop it off when the runtime branch joins. This provides an "overlay"
+/// of the table of mappings from instructions to `MCValue` from within the branch.
+/// This way we can modify the `MCValue` for an instruction in different ways
+/// within different branches. Special consideration is needed when a branch
+/// joins with its parent, to make sure all instructions have the same MCValue
+/// across each runtime branch upon joining.
+branch_stack: *std.ArrayList(Branch),
+
+// Key is the block instruction
+blocks: std.AutoHashMapUnmanaged(Air.Inst.Index, BlockData) = .{},
+
+register_manager: RegisterManager(Self, Register, &callee_preserved_regs) = .{},
+/// Maps offset to what is stored there.
+stack: std.AutoHashMapUnmanaged(u32, StackAllocation) = .{},
+
+/// Offset from the stack base, representing the end of the stack frame.
+max_end_stack: u32 = 0,
+/// Represents the current end stack offset. If there is no existing slot
+/// to place a new stack allocation, it goes here, and then bumps `max_end_stack`.
+next_stack_offset: u32 = 0,
+
+/// Debug field, used to find bugs in the compiler.
+air_bookkeeping: @TypeOf(air_bookkeeping_init) = air_bookkeeping_init,
+
+const air_bookkeeping_init = if (std.debug.runtime_safety) @as(usize, 0) else {};
+
+const MCValue = union(enum) {
+    /// No runtime bits. `void` types, empty structs, u0, enums with 1 tag, etc.
+    /// TODO Look into deleting this tag and using `dead` instead, since every use
+    /// of MCValue.none should be instead looking at the type and noticing it is 0 bits.
+    none,
+    /// Control flow will not allow this value to be observed.
+    unreach,
+    /// No more references to this value remain.
+    dead,
+    /// The value is undefined.
+    undef,
+    /// A pointer-sized integer that fits in a register.
+    /// If the type is a pointer, this is the pointer address in virtual address space.
+    immediate: u64,
+    /// The constant was emitted into the code, at this offset.
+    /// If the type is a pointer, it means the pointer address is embedded in the code.
+    embedded_in_code: usize,
+    /// The value is a pointer to a constant which was emitted into the code, at this offset.
+    ptr_embedded_in_code: usize,
+    /// The value is in a target-specific register.
+    register: Register,
+    /// The value is in memory at a hard-coded address.
+    /// If the type is a pointer, it means the pointer address is at this memory location.
+    memory: u64,
+    /// The value is one of the stack variables.
+    /// If the type is a pointer, it means the pointer address is in the stack at this offset.
+    stack_offset: u32,
+    /// The value is a pointer to one of the stack variables (payload is stack offset).
+    ptr_stack_offset: u32,
+    /// The value is in the compare flags assuming an unsigned operation,
+    /// with this operator applied on top of it.
+    compare_flags_unsigned: math.CompareOperator,
+    /// The value is in the compare flags assuming a signed operation,
+    /// with this operator applied on top of it.
+    compare_flags_signed: math.CompareOperator,
+
+    fn isMemory(mcv: MCValue) bool {
+        return switch (mcv) {
+            .embedded_in_code, .memory, .stack_offset => true,
+            else => false,
+        };
+    }
+
+    fn isImmediate(mcv: MCValue) bool {
+        return switch (mcv) {
+            .immediate => true,
+            else => false,
+        };
+    }
+
+    fn isMutable(mcv: MCValue) bool {
+        return switch (mcv) {
+            .none => unreachable,
+            .unreach => unreachable,
+            .dead => unreachable,
+
+            .immediate,
+            .embedded_in_code,
+            .memory,
+            .compare_flags_unsigned,
+            .compare_flags_signed,
+            .ptr_stack_offset,
+            .ptr_embedded_in_code,
+            .undef,
+            => false,
+
+            .register,
+            .stack_offset,
+            => true,
+        };
+    }
+};
+
+const Branch = struct {
+    inst_table: std.AutoArrayHashMapUnmanaged(Air.Inst.Index, MCValue) = .{},
+
+    fn deinit(self: *Branch, gpa: *Allocator) void {
+        self.inst_table.deinit(gpa);
+        self.* = undefined;
+    }
+};
+
+const StackAllocation = struct {
+    inst: Air.Inst.Index,
+    /// TODO do we need size? should be determined by inst.ty.abiSize()
+    size: u32,
+};
+
+const BlockData = struct {
+    relocs: std.ArrayListUnmanaged(Reloc),
+    /// The first break instruction encounters `null` here and chooses a
+    /// machine code value for the block result, populating this field.
+    /// Following break instructions encounter that value and use it for
+    /// the location to store their block results.
+    mcv: MCValue,
+};
+
+const Reloc = union(enum) {
+    /// The value is an offset into the `Function` `code` from the beginning.
+    /// To perform the reloc, write 32-bit signed little-endian integer
+    /// which is a relative jump, based on the address following the reloc.
+    rel32: usize,
+    /// A branch in the ARM instruction set
+    arm_branch: struct {
+        pos: usize,
+        cond: @import("../../arch/arm/bits.zig").Condition,
+    },
+};
+
+const BigTomb = struct {
+    function: *Self,
+    inst: Air.Inst.Index,
+    tomb_bits: Liveness.Bpi,
+    big_tomb_bits: u32,
+    bit_index: usize,
+
+    fn feed(bt: *BigTomb, op_ref: Air.Inst.Ref) void {
+        const this_bit_index = bt.bit_index;
+        bt.bit_index += 1;
+
+        const op_int = @enumToInt(op_ref);
+        if (op_int < Air.Inst.Ref.typed_value_map.len) return;
+        const op_index = @intCast(Air.Inst.Index, op_int - Air.Inst.Ref.typed_value_map.len);
+
+        if (this_bit_index < Liveness.bpi - 1) {
+            const dies = @truncate(u1, bt.tomb_bits >> @intCast(Liveness.OperandInt, this_bit_index)) != 0;
+            if (!dies) return;
+        } else {
+            const big_bit_index = @intCast(u5, this_bit_index - (Liveness.bpi - 1));
+            const dies = @truncate(u1, bt.big_tomb_bits >> big_bit_index) != 0;
+            if (!dies) return;
+        }
+        bt.function.processDeath(op_index);
+    }
+
+    fn finishAir(bt: *BigTomb, result: MCValue) void {
+        const is_used = !bt.function.liveness.isUnused(bt.inst);
+        if (is_used) {
+            log.debug("%{d} => {}", .{ bt.inst, result });
+            const branch = &bt.function.branch_stack.items[bt.function.branch_stack.items.len - 1];
+            branch.inst_table.putAssumeCapacityNoClobber(bt.inst, result);
+        }
+        bt.function.finishAirBookkeeping();
+    }
+};
+
+const Self = @This();
+
+pub fn generate(
+    arch: std.Target.Cpu.Arch,
+    bin_file: *link.File,
+    src_loc: Module.SrcLoc,
+    module_fn: *Module.Fn,
+    air: Air,
+    liveness: Liveness,
+    code: *std.ArrayList(u8),
+    debug_output: DebugInfoOutput,
+) GenerateSymbolError!FnResult {
+    if (build_options.skip_non_native and builtin.cpu.arch != arch) {
+        @panic("Attempted to compile for architecture that was disabled by build configuration");
+    }
+
+    assert(module_fn.owner_decl.has_tv);
+    const fn_type = module_fn.owner_decl.ty;
+
+    var branch_stack = std.ArrayList(Branch).init(bin_file.allocator);
+    defer {
+        assert(branch_stack.items.len == 1);
+        branch_stack.items[0].deinit(bin_file.allocator);
+        branch_stack.deinit();
+    }
+    try branch_stack.append(.{});
+
+    var function = Self{
+        .arch = arch,
+        .gpa = bin_file.allocator,
+        .air = air,
+        .liveness = liveness,
+        .target = &bin_file.options.target,
+        .bin_file = bin_file,
+        .mod_fn = module_fn,
+        .code = code,
+        .debug_output = debug_output,
+        .err_msg = null,
+        .args = undefined, // populated after `resolveCallingConventionValues`
+        .ret_mcv = undefined, // populated after `resolveCallingConventionValues`
+        .fn_type = fn_type,
+        .arg_index = 0,
+        .branch_stack = &branch_stack,
+        .src_loc = src_loc,
+        .stack_align = undefined,
+        .prev_di_pc = 0,
+        .prev_di_line = module_fn.lbrace_line,
+        .prev_di_column = module_fn.lbrace_column,
+        .end_di_line = module_fn.rbrace_line,
+        .end_di_column = module_fn.rbrace_column,
+    };
+    defer function.stack.deinit(bin_file.allocator);
+    defer function.blocks.deinit(bin_file.allocator);
+    defer function.exitlude_jump_relocs.deinit(bin_file.allocator);
+
+    var call_info = function.resolveCallingConventionValues(fn_type) catch |err| switch (err) {
+        error.CodegenFail => return FnResult{ .fail = function.err_msg.? },
+        else => |e| return e,
+    };
+    defer call_info.deinit(&function);
+
+    function.args = call_info.args;
+    function.ret_mcv = call_info.return_value;
+    function.stack_align = call_info.stack_align;
+    function.max_end_stack = call_info.stack_byte_count;
+
+    function.gen() catch |err| switch (err) {
+        error.CodegenFail => return FnResult{ .fail = function.err_msg.? },
+        else => |e| return e,
+    };
+
+    if (function.err_msg) |em| {
+        return FnResult{ .fail = em };
+    } else {
+        return FnResult{ .appended = {} };
+    }
+}
+
+fn gen(self: *Self) !void {
+    try self.code.ensureUnusedCapacity(11);
+
+    const cc = self.fn_type.fnCallingConvention();
+    if (cc != .Naked) {
+        // We want to subtract the aligned stack frame size from rsp here, but we don't
+        // yet know how big it will be, so we leave room for a 4-byte stack size.
+        // TODO During semantic analysis, check if there are no function calls. If there
+        // are none, here we can omit the part where we subtract and then add rsp.
+        self.code.appendSliceAssumeCapacity(&[_]u8{
+            0x55, // push rbp
+            0x48, 0x89, 0xe5, // mov rbp, rsp
+            0x48, 0x81, 0xec, // sub rsp, imm32 (with reloc)
+        });
+        const reloc_index = self.code.items.len;
+        self.code.items.len += 4;
+
+        try self.dbgSetPrologueEnd();
+        try self.genBody(self.air.getMainBody());
+
+        const stack_end = self.max_end_stack;
+        if (stack_end > math.maxInt(i32))
+            return self.failSymbol("too much stack used in call parameters", .{});
+        const aligned_stack_end = mem.alignForward(stack_end, self.stack_align);
+        mem.writeIntLittle(u32, self.code.items[reloc_index..][0..4], @intCast(u32, aligned_stack_end));
+
+        if (self.code.items.len >= math.maxInt(i32)) {
+            return self.failSymbol("unable to perform relocation: jump too far", .{});
+        }
+        if (self.exitlude_jump_relocs.items.len == 1) {
+            self.code.items.len -= 5;
+        } else for (self.exitlude_jump_relocs.items) |jmp_reloc| {
+            const amt = self.code.items.len - (jmp_reloc + 4);
+            const s32_amt = @intCast(i32, amt);
+            mem.writeIntLittle(i32, self.code.items[jmp_reloc..][0..4], s32_amt);
+        }
+
+        // Important to be after the possible self.code.items.len -= 5 above.
+        try self.dbgSetEpilogueBegin();
+
+        try self.code.ensureUnusedCapacity(9);
+        // add rsp, x
+        if (aligned_stack_end > math.maxInt(i8)) {
+            // example: 48 81 c4 ff ff ff 7f  add    rsp,0x7fffffff
+            self.code.appendSliceAssumeCapacity(&[_]u8{ 0x48, 0x81, 0xc4 });
+            const x = @intCast(u32, aligned_stack_end);
+            mem.writeIntLittle(u32, self.code.addManyAsArrayAssumeCapacity(4), x);
+        } else if (aligned_stack_end != 0) {
+            // example: 48 83 c4 7f           add    rsp,0x7f
+            const x = @intCast(u8, aligned_stack_end);
+            self.code.appendSliceAssumeCapacity(&[_]u8{ 0x48, 0x83, 0xc4, x });
+        }
+
+        self.code.appendSliceAssumeCapacity(&[_]u8{
+            0x5d, // pop rbp
+            0xc3, // ret
+        });
+    } else {
+        try self.dbgSetPrologueEnd();
+        try self.genBody(self.air.getMainBody());
+        try self.dbgSetEpilogueBegin();
+    }
+
+    // Drop them off at the rbrace.
+    try self.dbgAdvancePCAndLine(self.end_di_line, self.end_di_column);
+}
+
+fn genBody(self: *Self, body: []const Air.Inst.Index) InnerError!void {
+    const air_tags = self.air.instructions.items(.tag);
+
+    for (body) |inst| {
+        const old_air_bookkeeping = self.air_bookkeeping;
+        try self.ensureProcessDeathCapacity(Liveness.bpi);
+
+        switch (air_tags[inst]) {
+            // zig fmt: off
+                    .add, .ptr_add   => try self.airAdd(inst),
+                    .addwrap         => try self.airAddWrap(inst),
+                    .add_sat         => try self.airAddSat(inst),
+                    .sub, .ptr_sub   => try self.airSub(inst),
+                    .subwrap         => try self.airSubWrap(inst),
+                    .sub_sat         => try self.airSubSat(inst),
+                    .mul             => try self.airMul(inst),
+                    .mulwrap         => try self.airMulWrap(inst),
+                    .mul_sat         => try self.airMulSat(inst),
+                    .rem             => try self.airRem(inst),
+                    .mod             => try self.airMod(inst),
+                    .shl, .shl_exact => try self.airShl(inst),
+                    .shl_sat         => try self.airShlSat(inst),
+                    .min             => try self.airMin(inst),
+                    .max             => try self.airMax(inst),
+                    .slice           => try self.airSlice(inst),
+
+                    .div_float, .div_trunc, .div_floor, .div_exact => try self.airDiv(inst),
+
+                    .cmp_lt  => try self.airCmp(inst, .lt),
+                    .cmp_lte => try self.airCmp(inst, .lte),
+                    .cmp_eq  => try self.airCmp(inst, .eq),
+                    .cmp_gte => try self.airCmp(inst, .gte),
+                    .cmp_gt  => try self.airCmp(inst, .gt),
+                    .cmp_neq => try self.airCmp(inst, .neq),
+
+                    .bool_and => try self.airBoolOp(inst),
+                    .bool_or  => try self.airBoolOp(inst),
+                    .bit_and  => try self.airBitAnd(inst),
+                    .bit_or   => try self.airBitOr(inst),
+                    .xor      => try self.airXor(inst),
+                    .shr      => try self.airShr(inst),
+
+                    .alloc           => try self.airAlloc(inst),
+                    .ret_ptr         => try self.airRetPtr(inst),
+                    .arg             => try self.airArg(inst),
+                    .assembly        => try self.airAsm(inst),
+                    .bitcast         => try self.airBitCast(inst),
+                    .block           => try self.airBlock(inst),
+                    .br              => try self.airBr(inst),
+                    .breakpoint      => try self.airBreakpoint(),
+                    .fence           => try self.airFence(),
+                    .call            => try self.airCall(inst),
+                    .cond_br         => try self.airCondBr(inst),
+                    .dbg_stmt        => try self.airDbgStmt(inst),
+                    .fptrunc         => try self.airFptrunc(inst),
+                    .fpext           => try self.airFpext(inst),
+                    .intcast         => try self.airIntCast(inst),
+                    .trunc           => try self.airTrunc(inst),
+                    .bool_to_int     => try self.airBoolToInt(inst),
+                    .is_non_null     => try self.airIsNonNull(inst),
+                    .is_non_null_ptr => try self.airIsNonNullPtr(inst),
+                    .is_null         => try self.airIsNull(inst),
+                    .is_null_ptr     => try self.airIsNullPtr(inst),
+                    .is_non_err      => try self.airIsNonErr(inst),
+                    .is_non_err_ptr  => try self.airIsNonErrPtr(inst),
+                    .is_err          => try self.airIsErr(inst),
+                    .is_err_ptr      => try self.airIsErrPtr(inst),
+                    .load            => try self.airLoad(inst),
+                    .loop            => try self.airLoop(inst),
+                    .not             => try self.airNot(inst),
+                    .ptrtoint        => try self.airPtrToInt(inst),
+                    .ret             => try self.airRet(inst),
+                    .ret_load        => try self.airRetLoad(inst),
+                    .store           => try self.airStore(inst),
+                    .struct_field_ptr=> try self.airStructFieldPtr(inst),
+                    .struct_field_val=> try self.airStructFieldVal(inst),
+                    .array_to_slice  => try self.airArrayToSlice(inst),
+                    .int_to_float    => try self.airIntToFloat(inst),
+                    .float_to_int    => try self.airFloatToInt(inst),
+                    .cmpxchg_strong  => try self.airCmpxchg(inst),
+                    .cmpxchg_weak    => try self.airCmpxchg(inst),
+                    .atomic_rmw      => try self.airAtomicRmw(inst),
+                    .atomic_load     => try self.airAtomicLoad(inst),
+                    .memcpy          => try self.airMemcpy(inst),
+                    .memset          => try self.airMemset(inst),
+                    .set_union_tag   => try self.airSetUnionTag(inst),
+                    .get_union_tag   => try self.airGetUnionTag(inst),
+                    .clz             => try self.airClz(inst),
+                    .ctz             => try self.airCtz(inst),
+                    .popcount        => try self.airPopcount(inst),
+
+                    .atomic_store_unordered => try self.airAtomicStore(inst, .Unordered),
+                    .atomic_store_monotonic => try self.airAtomicStore(inst, .Monotonic),
+                    .atomic_store_release   => try self.airAtomicStore(inst, .Release),
+                    .atomic_store_seq_cst   => try self.airAtomicStore(inst, .SeqCst),
+
+                    .struct_field_ptr_index_0 => try self.airStructFieldPtrIndex(inst, 0),
+                    .struct_field_ptr_index_1 => try self.airStructFieldPtrIndex(inst, 1),
+                    .struct_field_ptr_index_2 => try self.airStructFieldPtrIndex(inst, 2),
+                    .struct_field_ptr_index_3 => try self.airStructFieldPtrIndex(inst, 3),
+
+                    .switch_br       => try self.airSwitch(inst),
+                    .slice_ptr       => try self.airSlicePtr(inst),
+                    .slice_len       => try self.airSliceLen(inst),
+
+                    .ptr_slice_len_ptr => try self.airPtrSliceLenPtr(inst),
+                    .ptr_slice_ptr_ptr => try self.airPtrSlicePtrPtr(inst),
+
+                    .array_elem_val      => try self.airArrayElemVal(inst),
+                    .slice_elem_val      => try self.airSliceElemVal(inst),
+                    .slice_elem_ptr      => try self.airSliceElemPtr(inst),
+                    .ptr_elem_val        => try self.airPtrElemVal(inst),
+                    .ptr_elem_ptr        => try self.airPtrElemPtr(inst),
+
+                    .constant => unreachable, // excluded from function bodies
+                    .const_ty => unreachable, // excluded from function bodies
+                    .unreach  => self.finishAirBookkeeping(),
+
+                    .optional_payload           => try self.airOptionalPayload(inst),
+                    .optional_payload_ptr       => try self.airOptionalPayloadPtr(inst),
+                    .unwrap_errunion_err        => try self.airUnwrapErrErr(inst),
+                    .unwrap_errunion_payload    => try self.airUnwrapErrPayload(inst),
+                    .unwrap_errunion_err_ptr    => try self.airUnwrapErrErrPtr(inst),
+                    .unwrap_errunion_payload_ptr=> try self.airUnwrapErrPayloadPtr(inst),
+
+                    .wrap_optional         => try self.airWrapOptional(inst),
+                    .wrap_errunion_payload => try self.airWrapErrUnionPayload(inst),
+                    .wrap_errunion_err     => try self.airWrapErrUnionErr(inst),
+                    // zig fmt: on
+        }
+        if (std.debug.runtime_safety) {
+            if (self.air_bookkeeping < old_air_bookkeeping + 1) {
+                std.debug.panic("in codegen.zig, handling of AIR instruction %{d} ('{}') did not do proper bookkeeping. Look for a missing call to finishAir.", .{ inst, air_tags[inst] });
+            }
+        }
+    }
+}
+
+fn dbgSetPrologueEnd(self: *Self) InnerError!void {
+    switch (self.debug_output) {
+        .dwarf => |dbg_out| {
+            try dbg_out.dbg_line.append(DW.LNS.set_prologue_end);
+            try self.dbgAdvancePCAndLine(self.prev_di_line, self.prev_di_column);
+        },
+        .plan9 => {},
+        .none => {},
+    }
+}
+
+fn dbgSetEpilogueBegin(self: *Self) InnerError!void {
+    switch (self.debug_output) {
+        .dwarf => |dbg_out| {
+            try dbg_out.dbg_line.append(DW.LNS.set_epilogue_begin);
+            try self.dbgAdvancePCAndLine(self.prev_di_line, self.prev_di_column);
+        },
+        .plan9 => {},
+        .none => {},
+    }
+}
+
+fn dbgAdvancePCAndLine(self: *Self, line: u32, column: u32) InnerError!void {
+    const delta_line = @intCast(i32, line) - @intCast(i32, self.prev_di_line);
+    const delta_pc: usize = self.code.items.len - self.prev_di_pc;
+    switch (self.debug_output) {
+        .dwarf => |dbg_out| {
+            // TODO Look into using the DWARF special opcodes to compress this data.
+            // It lets you emit single-byte opcodes that add different numbers to
+            // both the PC and the line number at the same time.
+            try dbg_out.dbg_line.ensureUnusedCapacity(11);
+            dbg_out.dbg_line.appendAssumeCapacity(DW.LNS.advance_pc);
+            leb128.writeULEB128(dbg_out.dbg_line.writer(), delta_pc) catch unreachable;
+            if (delta_line != 0) {
+                dbg_out.dbg_line.appendAssumeCapacity(DW.LNS.advance_line);
+                leb128.writeILEB128(dbg_out.dbg_line.writer(), delta_line) catch unreachable;
+            }
+            dbg_out.dbg_line.appendAssumeCapacity(DW.LNS.copy);
+            self.prev_di_pc = self.code.items.len;
+            self.prev_di_line = line;
+            self.prev_di_column = column;
+            self.prev_di_pc = self.code.items.len;
+        },
+        .plan9 => |dbg_out| {
+            if (delta_pc <= 0) return; // only do this when the pc changes
+            // we have already checked the target in the linker to make sure it is compatable
+            const quant = @import("../../link/Plan9/aout.zig").getPCQuant(self.target.cpu.arch) catch unreachable;
+
+            // increasing the line number
+            try @import("../../link/Plan9.zig").changeLine(dbg_out.dbg_line, delta_line);
+            // increasing the pc
+            const d_pc_p9 = @intCast(i64, delta_pc) - quant;
+            if (d_pc_p9 > 0) {
+                // minus one because if its the last one, we want to leave space to change the line which is one quanta
+                try dbg_out.dbg_line.append(@intCast(u8, @divExact(d_pc_p9, quant) + 128) - quant);
+                if (dbg_out.pcop_change_index.*) |pci|
+                    dbg_out.dbg_line.items[pci] += 1;
+                dbg_out.pcop_change_index.* = @intCast(u32, dbg_out.dbg_line.items.len - 1);
+            } else if (d_pc_p9 == 0) {
+                // we don't need to do anything, because adding the quant does it for us
+            } else unreachable;
+            if (dbg_out.start_line.* == null)
+                dbg_out.start_line.* = self.prev_di_line;
+            dbg_out.end_line.* = line;
+            // only do this if the pc changed
+            self.prev_di_line = line;
+            self.prev_di_column = column;
+            self.prev_di_pc = self.code.items.len;
+        },
+        .none => {},
+    }
+}
+
+/// Asserts there is already capacity to insert into top branch inst_table.
+fn processDeath(self: *Self, inst: Air.Inst.Index) void {
+    const air_tags = self.air.instructions.items(.tag);
+    if (air_tags[inst] == .constant) return; // Constants are immortal.
+    // When editing this function, note that the logic must synchronize with `reuseOperand`.
+    const prev_value = self.getResolvedInstValue(inst);
+    const branch = &self.branch_stack.items[self.branch_stack.items.len - 1];
+    branch.inst_table.putAssumeCapacity(inst, .dead);
+    switch (prev_value) {
+        .register => |reg| {
+            const canon_reg = reg.to64();
+            self.register_manager.freeReg(canon_reg);
+        },
+        else => {}, // TODO process stack allocation death
+    }
+}
+
+/// Called when there are no operands, and the instruction is always unreferenced.
+fn finishAirBookkeeping(self: *Self) void {
+    if (std.debug.runtime_safety) {
+        self.air_bookkeeping += 1;
+    }
+}
+
+fn finishAir(self: *Self, inst: Air.Inst.Index, result: MCValue, operands: [Liveness.bpi - 1]Air.Inst.Ref) void {
+    var tomb_bits = self.liveness.getTombBits(inst);
+    for (operands) |op| {
+        const dies = @truncate(u1, tomb_bits) != 0;
+        tomb_bits >>= 1;
+        if (!dies) continue;
+        const op_int = @enumToInt(op);
+        if (op_int < Air.Inst.Ref.typed_value_map.len) continue;
+        const op_index = @intCast(Air.Inst.Index, op_int - Air.Inst.Ref.typed_value_map.len);
+        self.processDeath(op_index);
+    }
+    const is_used = @truncate(u1, tomb_bits) == 0;
+    if (is_used) {
+        log.debug("%{d} => {}", .{ inst, result });
+        const branch = &self.branch_stack.items[self.branch_stack.items.len - 1];
+        branch.inst_table.putAssumeCapacityNoClobber(inst, result);
+
+        switch (result) {
+            .register => |reg| {
+                // In some cases (such as bitcast), an operand
+                // may be the same MCValue as the result. If
+                // that operand died and was a register, it
+                // was freed by processDeath. We have to
+                // "re-allocate" the register.
+                if (self.register_manager.isRegFree(reg)) {
+                    self.register_manager.getRegAssumeFree(reg, inst);
+                }
+            },
+            else => {},
+        }
+    }
+    self.finishAirBookkeeping();
+}
+
+fn ensureProcessDeathCapacity(self: *Self, additional_count: usize) !void {
+    const table = &self.branch_stack.items[self.branch_stack.items.len - 1].inst_table;
+    try table.ensureUnusedCapacity(self.gpa, additional_count);
+}
+
+/// Adds a Type to the .debug_info at the current position. The bytes will be populated later,
+/// after codegen for this symbol is done.
+fn addDbgInfoTypeReloc(self: *Self, ty: Type) !void {
+    switch (self.debug_output) {
+        .dwarf => |dbg_out| {
+            assert(ty.hasCodeGenBits());
+            const index = dbg_out.dbg_info.items.len;
+            try dbg_out.dbg_info.resize(index + 4); // DW.AT.type,  DW.FORM.ref4
+
+            const gop = try dbg_out.dbg_info_type_relocs.getOrPut(self.gpa, ty);
+            if (!gop.found_existing) {
+                gop.value_ptr.* = .{
+                    .off = undefined,
+                    .relocs = .{},
+                };
+            }
+            try gop.value_ptr.relocs.append(self.gpa, @intCast(u32, index));
+        },
+        .plan9 => {},
+        .none => {},
+    }
+}
+
+fn allocMem(self: *Self, inst: Air.Inst.Index, abi_size: u32, abi_align: u32) !u32 {
+    if (abi_align > self.stack_align)
+        self.stack_align = abi_align;
+    // TODO find a free slot instead of always appending
+    const offset = mem.alignForwardGeneric(u32, self.next_stack_offset, abi_align);
+    self.next_stack_offset = offset + abi_size;
+    if (self.next_stack_offset > self.max_end_stack)
+        self.max_end_stack = self.next_stack_offset;
+    try self.stack.putNoClobber(self.gpa, offset, .{
+        .inst = inst,
+        .size = abi_size,
+    });
+    return offset;
+}
+
+/// Use a pointer instruction as the basis for allocating stack memory.
+fn allocMemPtr(self: *Self, inst: Air.Inst.Index) !u32 {
+    const elem_ty = self.air.typeOfIndex(inst).elemType();
+    const abi_size = math.cast(u32, elem_ty.abiSize(self.target.*)) catch {
+        return self.fail("type '{}' too big to fit into stack frame", .{elem_ty});
+    };
+    // TODO swap this for inst.ty.ptrAlign
+    const abi_align = elem_ty.abiAlignment(self.target.*);
+    return self.allocMem(inst, abi_size, abi_align);
+}
+
+fn allocRegOrMem(self: *Self, inst: Air.Inst.Index, reg_ok: bool) !MCValue {
+    const elem_ty = self.air.typeOfIndex(inst);
+    const abi_size = math.cast(u32, elem_ty.abiSize(self.target.*)) catch {
+        return self.fail("type '{}' too big to fit into stack frame", .{elem_ty});
+    };
+    const abi_align = elem_ty.abiAlignment(self.target.*);
+    if (abi_align > self.stack_align)
+        self.stack_align = abi_align;
+
+    if (reg_ok) {
+        // Make sure the type can fit in a register before we try to allocate one.
+        const ptr_bits = self.target.cpu.arch.ptrBitWidth();
+        const ptr_bytes: u64 = @divExact(ptr_bits, 8);
+        if (abi_size <= ptr_bytes) {
+            if (self.register_manager.tryAllocReg(inst, &.{})) |reg| {
+                return MCValue{ .register = registerAlias(reg, abi_size) };
+            }
+        }
+    }
+    const stack_offset = try self.allocMem(inst, abi_size, abi_align);
+    return MCValue{ .stack_offset = stack_offset };
+}
+
+pub fn spillInstruction(self: *Self, reg: Register, inst: Air.Inst.Index) !void {
+    const stack_mcv = try self.allocRegOrMem(inst, false);
+    log.debug("spilling {d} to stack mcv {any}", .{ inst, stack_mcv });
+    const reg_mcv = self.getResolvedInstValue(inst);
+    assert(reg == reg_mcv.register.to64());
+    const branch = &self.branch_stack.items[self.branch_stack.items.len - 1];
+    try branch.inst_table.put(self.gpa, inst, stack_mcv);
+    try self.genSetStack(self.air.typeOfIndex(inst), stack_mcv.stack_offset, reg_mcv);
+}
+
+/// Copies a value to a register without tracking the register. The register is not considered
+/// allocated. A second call to `copyToTmpRegister` may return the same register.
+/// This can have a side effect of spilling instructions to the stack to free up a register.
+fn copyToTmpRegister(self: *Self, ty: Type, mcv: MCValue) !Register {
+    const reg = try self.register_manager.allocReg(null, &.{});
+    try self.genSetReg(ty, reg, mcv);
+    return reg;
+}
+
+/// Allocates a new register and copies `mcv` into it.
+/// `reg_owner` is the instruction that gets associated with the register in the register table.
+/// This can have a side effect of spilling instructions to the stack to free up a register.
+fn copyToNewRegister(self: *Self, reg_owner: Air.Inst.Index, mcv: MCValue) !MCValue {
+    const reg = try self.register_manager.allocReg(reg_owner, &.{});
+    try self.genSetReg(self.air.typeOfIndex(reg_owner), reg, mcv);
+    return MCValue{ .register = reg };
+}
+
+fn airAlloc(self: *Self, inst: Air.Inst.Index) !void {
+    const stack_offset = try self.allocMemPtr(inst);
+    return self.finishAir(inst, .{ .ptr_stack_offset = stack_offset }, .{ .none, .none, .none });
+}
+
+fn airRetPtr(self: *Self, inst: Air.Inst.Index) !void {
+    const stack_offset = try self.allocMemPtr(inst);
+    return self.finishAir(inst, .{ .ptr_stack_offset = stack_offset }, .{ .none, .none, .none });
+}
+
+fn airFptrunc(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    _ = ty_op;
+    return self.fail("TODO implement airFptrunc for {}", .{self.target.cpu.arch});
+    // return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airFpext(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    _ = ty_op;
+    return self.fail("TODO implement airFpext for {}", .{self.target.cpu.arch});
+    // return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airIntCast(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    if (self.liveness.isUnused(inst))
+        return self.finishAir(inst, .dead, .{ ty_op.operand, .none, .none });
+
+    const operand_ty = self.air.typeOf(ty_op.operand);
+    const operand = try self.resolveInst(ty_op.operand);
+    const info_a = operand_ty.intInfo(self.target.*);
+    const info_b = self.air.typeOfIndex(inst).intInfo(self.target.*);
+    if (info_a.signedness != info_b.signedness)
+        return self.fail("TODO gen intcast sign safety in semantic analysis", .{});
+
+    if (info_a.bits == info_b.bits)
+        return self.finishAir(inst, operand, .{ ty_op.operand, .none, .none });
+
+    return self.fail("TODO implement intCast for {}", .{self.target.cpu.arch});
+}
+
+fn airTrunc(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    if (self.liveness.isUnused(inst))
+        return self.finishAir(inst, .dead, .{ ty_op.operand, .none, .none });
+
+    const operand = try self.resolveInst(ty_op.operand);
+    _ = operand;
+    return self.fail("TODO implement trunc for {}", .{self.target.cpu.arch});
+}
+
+fn airBoolToInt(self: *Self, inst: Air.Inst.Index) !void {
+    const un_op = self.air.instructions.items(.data)[inst].un_op;
+    const operand = try self.resolveInst(un_op);
+    const result: MCValue = if (self.liveness.isUnused(inst)) .dead else operand;
+    return self.finishAir(inst, result, .{ un_op, .none, .none });
+}
+
+fn airNot(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
+        const operand = try self.resolveInst(ty_op.operand);
+        switch (operand) {
+            .dead => unreachable,
+            .unreach => unreachable,
+            .compare_flags_unsigned => |op| {
+                const r = MCValue{
+                    .compare_flags_unsigned = switch (op) {
+                        .gte => .lt,
+                        .gt => .lte,
+                        .neq => .eq,
+                        .lt => .gte,
+                        .lte => .gt,
+                        .eq => .neq,
+                    },
+                };
+                break :result r;
+            },
+            .compare_flags_signed => |op| {
+                const r = MCValue{
+                    .compare_flags_signed = switch (op) {
+                        .gte => .lt,
+                        .gt => .lte,
+                        .neq => .eq,
+                        .lt => .gte,
+                        .lte => .gt,
+                        .eq => .neq,
+                    },
+                };
+                break :result r;
+            },
+            else => {},
+        }
+        break :result try self.genX8664BinMath(inst, ty_op.operand, .bool_true);
+    };
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airMin(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement min for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airMax(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement max for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airSlice(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
+    const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement slice for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airAdd(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        try self.genX8664BinMath(inst, bin_op.lhs, bin_op.rhs);
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airAddWrap(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement addwrap for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airAddSat(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement add_sat for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airSub(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        try self.genX8664BinMath(inst, bin_op.lhs, bin_op.rhs);
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airSubWrap(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement subwrap for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airSubSat(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement sub_sat for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airMul(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        try self.genX8664BinMath(inst, bin_op.lhs, bin_op.rhs);
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airMulWrap(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement mulwrap for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airMulSat(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement mul_sat for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airDiv(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement div for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airRem(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement rem for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airMod(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement mod for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airBitAnd(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        try self.genX8664BinMath(inst, bin_op.lhs, bin_op.rhs);
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airBitOr(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        try self.genX8664BinMath(inst, bin_op.lhs, bin_op.rhs);
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airXor(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement xor for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airShl(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement shl for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airShlSat(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement shl_sat for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airShr(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement shr for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airOptionalPayload(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement .optional_payload for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airOptionalPayloadPtr(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement .optional_payload_ptr for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airUnwrapErrErr(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement unwrap error union error for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airUnwrapErrPayload(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement unwrap error union payload for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+// *(E!T) -> E
+fn airUnwrapErrErrPtr(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement unwrap error union error ptr for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+// *(E!T) -> *T
+fn airUnwrapErrPayloadPtr(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement unwrap error union payload ptr for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airWrapOptional(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
+        const optional_ty = self.air.typeOfIndex(inst);
+
+        // Optional with a zero-bit payload type is just a boolean true
+        if (optional_ty.abiSize(self.target.*) == 1)
+            break :result MCValue{ .immediate = 1 };
+
+        return self.fail("TODO implement wrap optional for {}", .{self.target.cpu.arch});
+    };
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+/// T to E!T
+fn airWrapErrUnionPayload(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement wrap errunion payload for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+/// E to E!T
+fn airWrapErrUnionErr(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement wrap errunion error for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airSlicePtr(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement slice_ptr for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airSliceLen(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement slice_len for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airPtrSliceLenPtr(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement ptr_slice_len_ptr for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airPtrSlicePtrPtr(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement ptr_slice_ptr_ptr for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airSliceElemVal(self: *Self, inst: Air.Inst.Index) !void {
+    const is_volatile = false; // TODO
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (!is_volatile and self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement slice_elem_val for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airSliceElemPtr(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
+    const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement slice_elem_ptr for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ extra.lhs, extra.rhs, .none });
+}
+
+fn airArrayElemVal(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement array_elem_val for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airPtrElemVal(self: *Self, inst: Air.Inst.Index) !void {
+    const is_volatile = false; // TODO
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const result: MCValue = if (!is_volatile and self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement ptr_elem_val for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airPtrElemPtr(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
+    const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement ptr_elem_ptr for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ extra.lhs, extra.rhs, .none });
+}
+
+fn airSetUnionTag(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    _ = bin_op;
+    return self.fail("TODO implement airSetUnionTag for {}", .{self.target.cpu.arch});
+}
+
+fn airGetUnionTag(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement airGetUnionTag for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airClz(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement airClz for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airCtz(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement airCtz for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airPopcount(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement airPopcount for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn reuseOperand(self: *Self, inst: Air.Inst.Index, operand: Air.Inst.Ref, op_index: Liveness.OperandInt, mcv: MCValue) bool {
+    if (!self.liveness.operandDies(inst, op_index))
+        return false;
+
+    switch (mcv) {
+        .register => |reg| {
+            // If it's in the registers table, need to associate the register with the
+            // new instruction.
+            if (reg.allocIndex()) |index| {
+                if (!self.register_manager.isRegFree(reg)) {
+                    self.register_manager.registers[index] = inst;
+                }
+            }
+            log.debug("%{d} => {} (reused)", .{ inst, reg });
+        },
+        .stack_offset => |off| {
+            log.debug("%{d} => stack offset {d} (reused)", .{ inst, off });
+        },
+        else => return false,
+    }
+
+    // Prevent the operand deaths processing code from deallocating it.
+    self.liveness.clearOperandDeath(inst, op_index);
+
+    // That makes us responsible for doing the rest of the stuff that processDeath would have done.
+    const branch = &self.branch_stack.items[self.branch_stack.items.len - 1];
+    branch.inst_table.putAssumeCapacity(Air.refToIndex(operand).?, .dead);
+
+    return true;
+}
+
+fn load(self: *Self, dst_mcv: MCValue, ptr: MCValue, ptr_ty: Type) InnerError!void {
+    const elem_ty = ptr_ty.elemType();
+    switch (ptr) {
+        .none => unreachable,
+        .undef => unreachable,
+        .unreach => unreachable,
+        .dead => unreachable,
+        .compare_flags_unsigned => unreachable,
+        .compare_flags_signed => unreachable,
+        .immediate => |imm| try self.setRegOrMem(elem_ty, dst_mcv, .{ .memory = imm }),
+        .ptr_stack_offset => |off| try self.setRegOrMem(elem_ty, dst_mcv, .{ .stack_offset = off }),
+        .ptr_embedded_in_code => |off| {
+            try self.setRegOrMem(elem_ty, dst_mcv, .{ .embedded_in_code = off });
+        },
+        .embedded_in_code => {
+            return self.fail("TODO implement loading from MCValue.embedded_in_code", .{});
+        },
+        .register => {
+            return self.fail("TODO implement loading from MCValue.register for {}", .{self.target.cpu.arch});
+        },
+        .memory => |addr| {
+            const reg = try self.register_manager.allocReg(null, &.{});
+            try self.genSetReg(ptr_ty, reg, .{ .memory = addr });
+            try self.load(dst_mcv, .{ .register = reg }, ptr_ty);
+        },
+        .stack_offset => {
+            return self.fail("TODO implement loading from MCValue.stack_offset", .{});
+        },
+    }
+}
+
+fn airLoad(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const elem_ty = self.air.typeOfIndex(inst);
+    const result: MCValue = result: {
+        if (!elem_ty.hasCodeGenBits())
+            break :result MCValue.none;
+
+        const ptr = try self.resolveInst(ty_op.operand);
+        const is_volatile = self.air.typeOf(ty_op.operand).isVolatilePtr();
+        if (self.liveness.isUnused(inst) and !is_volatile)
+            break :result MCValue.dead;
+
+        const dst_mcv: MCValue = blk: {
+            if (self.reuseOperand(inst, ty_op.operand, 0, ptr)) {
+                // The MCValue that holds the pointer can be re-used as the value.
+                break :blk ptr;
+            } else {
+                break :blk try self.allocRegOrMem(inst, true);
+            }
+        };
+        try self.load(dst_mcv, ptr, self.air.typeOf(ty_op.operand));
+        break :result dst_mcv;
+    };
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airStore(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const ptr = try self.resolveInst(bin_op.lhs);
+    const value = try self.resolveInst(bin_op.rhs);
+    const elem_ty = self.air.typeOf(bin_op.rhs);
+    switch (ptr) {
+        .none => unreachable,
+        .undef => unreachable,
+        .unreach => unreachable,
+        .dead => unreachable,
+        .compare_flags_unsigned => unreachable,
+        .compare_flags_signed => unreachable,
+        .immediate => |imm| {
+            try self.setRegOrMem(elem_ty, .{ .memory = imm }, value);
+        },
+        .ptr_stack_offset => |off| {
+            try self.genSetStack(elem_ty, off, value);
+        },
+        .ptr_embedded_in_code => |off| {
+            try self.setRegOrMem(elem_ty, .{ .embedded_in_code = off }, value);
+        },
+        .embedded_in_code => {
+            return self.fail("TODO implement storing to MCValue.embedded_in_code", .{});
+        },
+        .register => {
+            return self.fail("TODO implement storing to MCValue.register", .{});
+        },
+        .memory => {
+            return self.fail("TODO implement storing to MCValue.memory", .{});
+        },
+        .stack_offset => {
+            return self.fail("TODO implement storing to MCValue.stack_offset", .{});
+        },
+    }
+    return self.finishAir(inst, .dead, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airStructFieldPtr(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
+    const extra = self.air.extraData(Air.StructField, ty_pl.payload).data;
+    return self.structFieldPtr(extra.struct_operand, ty_pl.ty, extra.field_index);
+}
+
+fn airStructFieldPtrIndex(self: *Self, inst: Air.Inst.Index, index: u8) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    return self.structFieldPtr(ty_op.operand, ty_op.ty, index);
+}
+fn structFieldPtr(self: *Self, operand: Air.Inst.Ref, ty: Air.Inst.Ref, index: u32) !void {
+    _ = self;
+    _ = operand;
+    _ = ty;
+    _ = index;
+    return self.fail("TODO implement codegen struct_field_ptr", .{});
+    //return self.finishAir(inst, result, .{ extra.struct_ptr, .none, .none });
+}
+
+fn airStructFieldVal(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
+    const extra = self.air.extraData(Air.StructField, ty_pl.payload).data;
+    _ = extra;
+    return self.fail("TODO implement codegen struct_field_val", .{});
+    //return self.finishAir(inst, result, .{ extra.struct_ptr, .none, .none });
+}
+
+/// Perform "binary" operators, excluding comparisons.
+/// Currently, the following ops are supported:
+/// ADD, SUB, XOR, OR, AND
+fn genX8664BinMath(self: *Self, inst: Air.Inst.Index, op_lhs: Air.Inst.Ref, op_rhs: Air.Inst.Ref) !MCValue {
+    // We'll handle these ops in two steps.
+    // 1) Prepare an output location (register or memory)
+    //    This location will be the location of the operand that dies (if one exists)
+    //    or just a temporary register (if one doesn't exist)
+    // 2) Perform the op with the other argument
+    // 3) Sometimes, the output location is memory but the op doesn't support it.
+    //    In this case, copy that location to a register, then perform the op to that register instead.
+    //
+    // TODO: make this algorithm less bad
+
+    try self.code.ensureUnusedCapacity(8);
+
+    const lhs = try self.resolveInst(op_lhs);
+    const rhs = try self.resolveInst(op_rhs);
+
+    // There are 2 operands, destination and source.
+    // Either one, but not both, can be a memory operand.
+    // Source operand can be an immediate, 8 bits or 32 bits.
+    // So, if either one of the operands dies with this instruction, we can use it
+    // as the result MCValue.
+    var dst_mcv: MCValue = undefined;
+    var src_mcv: MCValue = undefined;
+    var src_inst: Air.Inst.Ref = undefined;
+    if (self.reuseOperand(inst, op_lhs, 0, lhs)) {
+        // LHS dies; use it as the destination.
+        // Both operands cannot be memory.
+        src_inst = op_rhs;
+        if (lhs.isMemory() and rhs.isMemory()) {
+            dst_mcv = try self.copyToNewRegister(inst, lhs);
+            src_mcv = rhs;
+        } else {
+            dst_mcv = lhs;
+            src_mcv = rhs;
+        }
+    } else if (self.reuseOperand(inst, op_rhs, 1, rhs)) {
+        // RHS dies; use it as the destination.
+        // Both operands cannot be memory.
+        src_inst = op_lhs;
+        if (lhs.isMemory() and rhs.isMemory()) {
+            dst_mcv = try self.copyToNewRegister(inst, rhs);
+            src_mcv = lhs;
+        } else {
+            dst_mcv = rhs;
+            src_mcv = lhs;
+        }
+    } else {
+        if (lhs.isMemory()) {
+            dst_mcv = try self.copyToNewRegister(inst, lhs);
+            src_mcv = rhs;
+            src_inst = op_rhs;
+        } else {
+            dst_mcv = try self.copyToNewRegister(inst, rhs);
+            src_mcv = lhs;
+            src_inst = op_lhs;
+        }
+    }
+    // This instruction supports only signed 32-bit immediates at most. If the immediate
+    // value is larger than this, we put it in a register.
+    // A potential opportunity for future optimization here would be keeping track
+    // of the fact that the instruction is available both as an immediate
+    // and as a register.
+    switch (src_mcv) {
+        .immediate => |imm| {
+            if (imm > math.maxInt(u31)) {
+                src_mcv = MCValue{ .register = try self.copyToTmpRegister(Type.initTag(.u64), src_mcv) };
+            }
+        },
+        else => {},
+    }
+
+    // Now for step 2, we perform the actual op
+    const inst_ty = self.air.typeOfIndex(inst);
+    const air_tags = self.air.instructions.items(.tag);
+    switch (air_tags[inst]) {
+        // TODO: Generate wrapping and non-wrapping versions separately
+        .add, .addwrap => try self.genX8664BinMathCode(inst_ty, dst_mcv, src_mcv, 0, 0x00),
+        .bool_or, .bit_or => try self.genX8664BinMathCode(inst_ty, dst_mcv, src_mcv, 1, 0x08),
+        .bool_and, .bit_and => try self.genX8664BinMathCode(inst_ty, dst_mcv, src_mcv, 4, 0x20),
+        .sub, .subwrap => try self.genX8664BinMathCode(inst_ty, dst_mcv, src_mcv, 5, 0x28),
+        .xor, .not => try self.genX8664BinMathCode(inst_ty, dst_mcv, src_mcv, 6, 0x30),
+
+        .mul, .mulwrap => try self.genX8664Imul(inst_ty, dst_mcv, src_mcv),
+        else => unreachable,
+    }
+
+    return dst_mcv;
+}
+
+/// Wrap over Instruction.encodeInto to translate errors
+fn encodeX8664Instruction(self: *Self, inst: Instruction) !void {
+    inst.encodeInto(self.code) catch |err| {
+        if (err == error.OutOfMemory)
+            return error.OutOfMemory
+        else
+            return self.fail("Instruction.encodeInto failed because {s}", .{@errorName(err)});
+    };
+}
+
+/// This function encodes a binary operation for x86_64
+/// intended for use with the following opcode ranges
+/// because they share the same structure.
+///
+/// Thus not all binary operations can be used here
+/// -- multiplication needs to be done with imul,
+/// which doesn't have as convenient an interface.
+///
+/// "opx"-style instructions use the opcode extension field to indicate which instruction to execute:
+///
+/// opx = /0: add
+/// opx = /1: or
+/// opx = /2: adc
+/// opx = /3: sbb
+/// opx = /4: and
+/// opx = /5: sub
+/// opx = /6: xor
+/// opx = /7: cmp
+///
+/// opcode  | operand shape
+/// --------+----------------------
+/// 80 /opx | *r/m8*,        imm8
+/// 81 /opx | *r/m16/32/64*, imm16/32
+/// 83 /opx | *r/m16/32/64*, imm8
+///
+/// "mr"-style instructions use the low bits of opcode to indicate shape of instruction:
+///
+/// mr = 00: add
+/// mr = 08: or
+/// mr = 10: adc
+/// mr = 18: sbb
+/// mr = 20: and
+/// mr = 28: sub
+/// mr = 30: xor
+/// mr = 38: cmp
+///
+/// opcode | operand shape
+/// -------+-------------------------
+/// mr + 0 | *r/m8*,        r8
+/// mr + 1 | *r/m16/32/64*, r16/32/64
+/// mr + 2 | *r8*,          r/m8
+/// mr + 3 | *r16/32/64*,   r/m16/32/64
+/// mr + 4 | *AL*,          imm8
+/// mr + 5 | *rAX*,         imm16/32
+///
+/// TODO: rotates and shifts share the same structure, so we can potentially implement them
+///       at a later date with very similar code.
+///       They have "opx"-style instructions, but no "mr"-style instructions.
+///
+/// opx = /0: rol,
+/// opx = /1: ror,
+/// opx = /2: rcl,
+/// opx = /3: rcr,
+/// opx = /4: shl sal,
+/// opx = /5: shr,
+/// opx = /6: sal shl,
+/// opx = /7: sar,
+///
+/// opcode  | operand shape
+/// --------+------------------
+/// c0 /opx | *r/m8*,        imm8
+/// c1 /opx | *r/m16/32/64*, imm8
+/// d0 /opx | *r/m8*,        1
+/// d1 /opx | *r/m16/32/64*, 1
+/// d2 /opx | *r/m8*,        CL    (for context, CL is register 1)
+/// d3 /opx | *r/m16/32/64*, CL    (for context, CL is register 1)
+fn genX8664BinMathCode(
+    self: *Self,
+    dst_ty: Type,
+    dst_mcv: MCValue,
+    src_mcv: MCValue,
+    opx: u3,
+    mr: u8,
+) !void {
+    switch (dst_mcv) {
+        .none => unreachable,
+        .undef => unreachable,
+        .dead, .unreach, .immediate => unreachable,
+        .compare_flags_unsigned => unreachable,
+        .compare_flags_signed => unreachable,
+        .ptr_stack_offset => unreachable,
+        .ptr_embedded_in_code => unreachable,
+        .register => |dst_reg| {
+            switch (src_mcv) {
+                .none => unreachable,
+                .undef => try self.genSetReg(dst_ty, dst_reg, .undef),
+                .dead, .unreach => unreachable,
+                .ptr_stack_offset => unreachable,
+                .ptr_embedded_in_code => unreachable,
+                .register => |src_reg| {
+                    // for register, register use mr + 1
+                    // addressing mode: *r/m16/32/64*, r16/32/64
+                    const abi_size = dst_ty.abiSize(self.target.*);
+                    const encoder = try Encoder.init(self.code, 3);
+                    encoder.rex(.{
+                        .w = abi_size == 8,
+                        .r = src_reg.isExtended(),
+                        .b = dst_reg.isExtended(),
+                    });
+                    encoder.opcode_1byte(mr + 1);
+                    encoder.modRm_direct(
+                        src_reg.low_id(),
+                        dst_reg.low_id(),
+                    );
+                },
+                .immediate => |imm| {
+                    // register, immediate use opx = 81 or 83 addressing modes:
+                    // opx = 81: r/m16/32/64, imm16/32
+                    // opx = 83: r/m16/32/64, imm8
+                    const imm32 = @intCast(i32, imm); // This case must be handled before calling genX8664BinMathCode.
+                    if (imm32 <= math.maxInt(i8)) {
+                        const abi_size = dst_ty.abiSize(self.target.*);
+                        const encoder = try Encoder.init(self.code, 4);
+                        encoder.rex(.{
+                            .w = abi_size == 8,
+                            .b = dst_reg.isExtended(),
+                        });
+                        encoder.opcode_1byte(0x83);
+                        encoder.modRm_direct(
+                            opx,
+                            dst_reg.low_id(),
+                        );
+                        encoder.imm8(@intCast(i8, imm32));
+                    } else {
+                        const abi_size = dst_ty.abiSize(self.target.*);
+                        const encoder = try Encoder.init(self.code, 7);
+                        encoder.rex(.{
+                            .w = abi_size == 8,
+                            .b = dst_reg.isExtended(),
+                        });
+                        encoder.opcode_1byte(0x81);
+                        encoder.modRm_direct(
+                            opx,
+                            dst_reg.low_id(),
+                        );
+                        encoder.imm32(@intCast(i32, imm32));
+                    }
+                },
+                .embedded_in_code, .memory => {
+                    return self.fail("TODO implement x86 ADD/SUB/CMP source memory", .{});
+                },
+                .stack_offset => |off| {
+                    // register, indirect use mr + 3
+                    // addressing mode: *r16/32/64*, r/m16/32/64
+                    const abi_size = dst_ty.abiSize(self.target.*);
+                    const adj_off = off + abi_size;
+                    if (off > math.maxInt(i32)) {
+                        return self.fail("stack offset too large", .{});
+                    }
+                    const encoder = try Encoder.init(self.code, 7);
+                    encoder.rex(.{
+                        .w = abi_size == 8,
+                        .r = dst_reg.isExtended(),
+                    });
+                    encoder.opcode_1byte(mr + 3);
+                    if (adj_off <= std.math.maxInt(i8)) {
+                        encoder.modRm_indirectDisp8(
+                            dst_reg.low_id(),
+                            Register.ebp.low_id(),
+                        );
+                        encoder.disp8(-@intCast(i8, adj_off));
+                    } else {
+                        encoder.modRm_indirectDisp32(
+                            dst_reg.low_id(),
+                            Register.ebp.low_id(),
+                        );
+                        encoder.disp32(-@intCast(i32, adj_off));
+                    }
+                },
+                .compare_flags_unsigned => {
+                    return self.fail("TODO implement x86 ADD/SUB/CMP source compare flag (unsigned)", .{});
+                },
+                .compare_flags_signed => {
+                    return self.fail("TODO implement x86 ADD/SUB/CMP source compare flag (signed)", .{});
+                },
+            }
+        },
+        .stack_offset => |off| {
+            switch (src_mcv) {
+                .none => unreachable,
+                .undef => return self.genSetStack(dst_ty, off, .undef),
+                .dead, .unreach => unreachable,
+                .ptr_stack_offset => unreachable,
+                .ptr_embedded_in_code => unreachable,
+                .register => |src_reg| {
+                    try self.genX8664ModRMRegToStack(dst_ty, off, src_reg, mr + 0x1);
+                },
+                .immediate => |imm| {
+                    _ = imm;
+                    return self.fail("TODO implement x86 ADD/SUB/CMP source immediate", .{});
+                },
+                .embedded_in_code, .memory, .stack_offset => {
+                    return self.fail("TODO implement x86 ADD/SUB/CMP source memory", .{});
+                },
+                .compare_flags_unsigned => {
+                    return self.fail("TODO implement x86 ADD/SUB/CMP source compare flag (unsigned)", .{});
+                },
+                .compare_flags_signed => {
+                    return self.fail("TODO implement x86 ADD/SUB/CMP source compare flag (signed)", .{});
+                },
+            }
+        },
+        .embedded_in_code, .memory => {
+            return self.fail("TODO implement x86 ADD/SUB/CMP destination memory", .{});
+        },
+    }
+}
+
+/// Performs integer multiplication between dst_mcv and src_mcv, storing the result in dst_mcv.
+fn genX8664Imul(
+    self: *Self,
+    dst_ty: Type,
+    dst_mcv: MCValue,
+    src_mcv: MCValue,
+) !void {
+    switch (dst_mcv) {
+        .none => unreachable,
+        .undef => unreachable,
+        .dead, .unreach, .immediate => unreachable,
+        .compare_flags_unsigned => unreachable,
+        .compare_flags_signed => unreachable,
+        .ptr_stack_offset => unreachable,
+        .ptr_embedded_in_code => unreachable,
+        .register => |dst_reg| {
+            switch (src_mcv) {
+                .none => unreachable,
+                .undef => try self.genSetReg(dst_ty, dst_reg, .undef),
+                .dead, .unreach => unreachable,
+                .ptr_stack_offset => unreachable,
+                .ptr_embedded_in_code => unreachable,
+                .register => |src_reg| {
+                    // register, register
+                    //
+                    // Use the following imul opcode
+                    // 0F AF /r: IMUL r32/64, r/m32/64
+                    const abi_size = dst_ty.abiSize(self.target.*);
+                    const encoder = try Encoder.init(self.code, 4);
+                    encoder.rex(.{
+                        .w = abi_size == 8,
+                        .r = dst_reg.isExtended(),
+                        .b = src_reg.isExtended(),
+                    });
+                    encoder.opcode_2byte(0x0f, 0xaf);
+                    encoder.modRm_direct(
+                        dst_reg.low_id(),
+                        src_reg.low_id(),
+                    );
+                },
+                .immediate => |imm| {
+                    // register, immediate:
+                    // depends on size of immediate.
+                    //
+                    // immediate fits in i8:
+                    // 6B /r ib: IMUL r32/64, r/m32/64, imm8
+                    //
+                    // immediate fits in i32:
+                    // 69 /r id: IMUL r32/64, r/m32/64, imm32
+                    //
+                    // immediate is huge:
+                    // split into 2 instructions
+                    // 1) copy the 64 bit immediate into a tmp register
+                    // 2) perform register,register mul
+                    // 0F AF /r: IMUL r32/64, r/m32/64
+                    if (math.minInt(i8) <= imm and imm <= math.maxInt(i8)) {
+                        const abi_size = dst_ty.abiSize(self.target.*);
+                        const encoder = try Encoder.init(self.code, 4);
+                        encoder.rex(.{
+                            .w = abi_size == 8,
+                            .r = dst_reg.isExtended(),
+                            .b = dst_reg.isExtended(),
+                        });
+                        encoder.opcode_1byte(0x6B);
+                        encoder.modRm_direct(
+                            dst_reg.low_id(),
+                            dst_reg.low_id(),
+                        );
+                        encoder.imm8(@intCast(i8, imm));
+                    } else if (math.minInt(i32) <= imm and imm <= math.maxInt(i32)) {
+                        const abi_size = dst_ty.abiSize(self.target.*);
+                        const encoder = try Encoder.init(self.code, 7);
+                        encoder.rex(.{
+                            .w = abi_size == 8,
+                            .r = dst_reg.isExtended(),
+                            .b = dst_reg.isExtended(),
+                        });
+                        encoder.opcode_1byte(0x69);
+                        encoder.modRm_direct(
+                            dst_reg.low_id(),
+                            dst_reg.low_id(),
+                        );
+                        encoder.imm32(@intCast(i32, imm));
+                    } else {
+                        const src_reg = try self.copyToTmpRegister(dst_ty, src_mcv);
+                        return self.genX8664Imul(dst_ty, dst_mcv, MCValue{ .register = src_reg });
+                    }
+                },
+                .embedded_in_code, .memory, .stack_offset => {
+                    return self.fail("TODO implement x86 multiply source memory", .{});
+                },
+                .compare_flags_unsigned => {
+                    return self.fail("TODO implement x86 multiply source compare flag (unsigned)", .{});
+                },
+                .compare_flags_signed => {
+                    return self.fail("TODO implement x86 multiply source compare flag (signed)", .{});
+                },
+            }
+        },
+        .stack_offset => |off| {
+            switch (src_mcv) {
+                .none => unreachable,
+                .undef => return self.genSetStack(dst_ty, off, .undef),
+                .dead, .unreach => unreachable,
+                .ptr_stack_offset => unreachable,
+                .ptr_embedded_in_code => unreachable,
+                .register => |src_reg| {
+                    // copy dst to a register
+                    const dst_reg = try self.copyToTmpRegister(dst_ty, dst_mcv);
+                    // multiply into dst_reg
+                    // register, register
+                    // Use the following imul opcode
+                    // 0F AF /r: IMUL r32/64, r/m32/64
+                    const abi_size = dst_ty.abiSize(self.target.*);
+                    const encoder = try Encoder.init(self.code, 4);
+                    encoder.rex(.{
+                        .w = abi_size == 8,
+                        .r = dst_reg.isExtended(),
+                        .b = src_reg.isExtended(),
+                    });
+                    encoder.opcode_2byte(0x0f, 0xaf);
+                    encoder.modRm_direct(
+                        dst_reg.low_id(),
+                        src_reg.low_id(),
+                    );
+                    // copy dst_reg back out
+                    return self.genSetStack(dst_ty, off, MCValue{ .register = dst_reg });
+                },
+                .immediate => |imm| {
+                    _ = imm;
+                    return self.fail("TODO implement x86 multiply source immediate", .{});
+                },
+                .embedded_in_code, .memory, .stack_offset => {
+                    return self.fail("TODO implement x86 multiply source memory", .{});
+                },
+                .compare_flags_unsigned => {
+                    return self.fail("TODO implement x86 multiply source compare flag (unsigned)", .{});
+                },
+                .compare_flags_signed => {
+                    return self.fail("TODO implement x86 multiply source compare flag (signed)", .{});
+                },
+            }
+        },
+        .embedded_in_code, .memory => {
+            return self.fail("TODO implement x86 multiply destination memory", .{});
+        },
+    }
+}
+
+fn genX8664ModRMRegToStack(self: *Self, ty: Type, off: u32, reg: Register, opcode: u8) !void {
+    const abi_size = ty.abiSize(self.target.*);
+    const adj_off = off + abi_size;
+    if (off > math.maxInt(i32)) {
+        return self.fail("stack offset too large", .{});
+    }
+
+    const i_adj_off = -@intCast(i32, adj_off);
+    const encoder = try Encoder.init(self.code, 7);
+    encoder.rex(.{
+        .w = abi_size == 8,
+        .r = reg.isExtended(),
+    });
+    encoder.opcode_1byte(opcode);
+    if (i_adj_off < std.math.maxInt(i8)) {
+        // example: 48 89 55 7f           mov    QWORD PTR [rbp+0x7f],rdx
+        encoder.modRm_indirectDisp8(
+            reg.low_id(),
+            Register.ebp.low_id(),
+        );
+        encoder.disp8(@intCast(i8, i_adj_off));
+    } else {
+        // example: 48 89 95 80 00 00 00  mov    QWORD PTR [rbp+0x80],rdx
+        encoder.modRm_indirectDisp32(
+            reg.low_id(),
+            Register.ebp.low_id(),
+        );
+        encoder.disp32(i_adj_off);
+    }
+}
+
+fn genArgDbgInfo(self: *Self, inst: Air.Inst.Index, mcv: MCValue) !void {
+    const ty_str = self.air.instructions.items(.data)[inst].ty_str;
+    const zir = &self.mod_fn.owner_decl.getFileScope().zir;
+    const name = zir.nullTerminatedString(ty_str.str);
+    const name_with_null = name.ptr[0 .. name.len + 1];
+    const ty = self.air.getRefType(ty_str.ty);
+
+    switch (mcv) {
+        .register => |reg| {
+            switch (self.debug_output) {
+                .dwarf => |dbg_out| {
+                    try dbg_out.dbg_info.ensureUnusedCapacity(3);
+                    dbg_out.dbg_info.appendAssumeCapacity(link.File.Elf.abbrev_parameter);
+                    dbg_out.dbg_info.appendSliceAssumeCapacity(&[2]u8{ // DW.AT.location, DW.FORM.exprloc
+                        1, // ULEB128 dwarf expression length
+                        reg.dwarfLocOp(),
+                    });
+                    try dbg_out.dbg_info.ensureUnusedCapacity(5 + name_with_null.len);
+                    try self.addDbgInfoTypeReloc(ty); // DW.AT.type,  DW.FORM.ref4
+                    dbg_out.dbg_info.appendSliceAssumeCapacity(name_with_null); // DW.AT.name, DW.FORM.string
+                },
+                .plan9 => {},
+                .none => {},
+            }
+        },
+        .stack_offset => {
+            switch (self.debug_output) {
+                .dwarf => {},
+                .plan9 => {},
+                .none => {},
+            }
+        },
+        else => {},
+    }
+}
+
+fn airArg(self: *Self, inst: Air.Inst.Index) !void {
+    const arg_index = self.arg_index;
+    self.arg_index += 1;
+
+    const ty = self.air.typeOfIndex(inst);
+    _ = ty;
+
+    const mcv = self.args[arg_index];
+    try self.genArgDbgInfo(inst, mcv);
+
+    if (self.liveness.isUnused(inst))
+        return self.finishAirBookkeeping();
+
+    switch (mcv) {
+        .register => |reg| {
+            self.register_manager.getRegAssumeFree(reg.to64(), inst);
+        },
+        else => {},
+    }
+
+    return self.finishAir(inst, mcv, .{ .none, .none, .none });
+}
+
+fn airBreakpoint(self: *Self) !void {
+    try self.code.append(0xcc); // int3
+    return self.finishAirBookkeeping();
+}
+
+fn airFence(self: *Self) !void {
+    return self.fail("TODO implement fence() for {}", .{self.target.cpu.arch});
+    //return self.finishAirBookkeeping();
+}
+
+fn airCall(self: *Self, inst: Air.Inst.Index) !void {
+    const pl_op = self.air.instructions.items(.data)[inst].pl_op;
+    const fn_ty = self.air.typeOf(pl_op.operand);
+    const callee = pl_op.operand;
+    const extra = self.air.extraData(Air.Call, pl_op.payload);
+    const args = @bitCast([]const Air.Inst.Ref, self.air.extra[extra.end..][0..extra.data.args_len]);
+
+    var info = try self.resolveCallingConventionValues(fn_ty);
+    defer info.deinit(self);
+
+    // Due to incremental compilation, how function calls are generated depends
+    // on linking.
+    if (self.bin_file.tag == link.File.Elf.base_tag or self.bin_file.tag == link.File.Coff.base_tag) {
+        for (info.args) |mc_arg, arg_i| {
+            const arg = args[arg_i];
+            const arg_ty = self.air.typeOf(arg);
+            const arg_mcv = try self.resolveInst(args[arg_i]);
+            // Here we do not use setRegOrMem even though the logic is similar, because
+            // the function call will move the stack pointer, so the offsets are different.
+            switch (mc_arg) {
+                .none => continue,
+                .register => |reg| {
+                    try self.register_manager.getReg(reg, null);
+                    try self.genSetReg(arg_ty, reg, arg_mcv);
+                },
+                .stack_offset => |off| {
+                    // Here we need to emit instructions like this:
+                    // mov     qword ptr [rsp + stack_offset], x
+                    try self.genSetStack(arg_ty, off, arg_mcv);
+                },
+                .ptr_stack_offset => {
+                    return self.fail("TODO implement calling with MCValue.ptr_stack_offset arg", .{});
+                },
+                .ptr_embedded_in_code => {
+                    return self.fail("TODO implement calling with MCValue.ptr_embedded_in_code arg", .{});
+                },
+                .undef => unreachable,
+                .immediate => unreachable,
+                .unreach => unreachable,
+                .dead => unreachable,
+                .embedded_in_code => unreachable,
+                .memory => unreachable,
+                .compare_flags_signed => unreachable,
+                .compare_flags_unsigned => unreachable,
+            }
+        }
+
+        if (self.air.value(callee)) |func_value| {
+            if (func_value.castTag(.function)) |func_payload| {
+                const func = func_payload.data;
+
+                const ptr_bits = self.target.cpu.arch.ptrBitWidth();
+                const ptr_bytes: u64 = @divExact(ptr_bits, 8);
+                const got_addr = if (self.bin_file.cast(link.File.Elf)) |elf_file| blk: {
+                    const got = &elf_file.program_headers.items[elf_file.phdr_got_index.?];
+                    break :blk @intCast(u32, got.p_vaddr + func.owner_decl.link.elf.offset_table_index * ptr_bytes);
+                } else if (self.bin_file.cast(link.File.Coff)) |coff_file|
+                    @intCast(u32, coff_file.offset_table_virtual_address + func.owner_decl.link.coff.offset_table_index * ptr_bytes)
+                else
+                    unreachable;
+
+                // ff 14 25 xx xx xx xx    call [addr]
+                try self.code.ensureUnusedCapacity(7);
+                self.code.appendSliceAssumeCapacity(&[3]u8{ 0xff, 0x14, 0x25 });
+                mem.writeIntLittle(u32, self.code.addManyAsArrayAssumeCapacity(4), got_addr);
+            } else if (func_value.castTag(.extern_fn)) |_| {
+                return self.fail("TODO implement calling extern functions", .{});
+            } else {
+                return self.fail("TODO implement calling bitcasted functions", .{});
+            }
+        } else {
+            return self.fail("TODO implement calling runtime known function pointer", .{});
+        }
+    } else if (self.bin_file.cast(link.File.MachO)) |macho_file| {
+        for (info.args) |mc_arg, arg_i| {
+            const arg = args[arg_i];
+            const arg_ty = self.air.typeOf(arg);
+            const arg_mcv = try self.resolveInst(args[arg_i]);
+            // Here we do not use setRegOrMem even though the logic is similar, because
+            // the function call will move the stack pointer, so the offsets are different.
+            switch (mc_arg) {
+                .none => continue,
+                .register => |reg| {
+                    // TODO prevent this macho if block to be generated for all archs
+                    try self.register_manager.getReg(reg, null);
+                    try self.genSetReg(arg_ty, reg, arg_mcv);
+                },
+                .stack_offset => {
+                    // Here we need to emit instructions like this:
+                    // mov     qword ptr [rsp + stack_offset], x
+                    return self.fail("TODO implement calling with parameters in memory", .{});
+                },
+                .ptr_stack_offset => {
+                    return self.fail("TODO implement calling with MCValue.ptr_stack_offset arg", .{});
+                },
+                .ptr_embedded_in_code => {
+                    return self.fail("TODO implement calling with MCValue.ptr_embedded_in_code arg", .{});
+                },
+                .undef => unreachable,
+                .immediate => unreachable,
+                .unreach => unreachable,
+                .dead => unreachable,
+                .embedded_in_code => unreachable,
+                .memory => unreachable,
+                .compare_flags_signed => unreachable,
+                .compare_flags_unsigned => unreachable,
+            }
+        }
+
+        if (self.air.value(callee)) |func_value| {
+            if (func_value.castTag(.function)) |func_payload| {
+                const func = func_payload.data;
+                // TODO I'm hacking my way through here by repurposing .memory for storing
+                // index to the GOT target symbol index.
+                try self.genSetReg(Type.initTag(.u64), .rax, .{
+                    .memory = func.owner_decl.link.macho.local_sym_index,
+                });
+                // callq *%rax
+                try self.code.ensureUnusedCapacity(2);
+                self.code.appendSliceAssumeCapacity(&[2]u8{ 0xff, 0xd0 });
+            } else if (func_value.castTag(.extern_fn)) |func_payload| {
+                const decl = func_payload.data;
+                const n_strx = try macho_file.addExternFn(mem.spanZ(decl.name));
+                const offset = blk: {
+                    // callq
+                    try self.code.ensureUnusedCapacity(5);
+                    self.code.appendSliceAssumeCapacity(&[5]u8{ 0xe8, 0x0, 0x0, 0x0, 0x0 });
+                    break :blk @intCast(u32, self.code.items.len) - 4;
+                };
+                // Add relocation to the decl.
+                try macho_file.active_decl.?.link.macho.relocs.append(self.bin_file.allocator, .{
+                    .offset = offset,
+                    .target = .{ .global = n_strx },
+                    .addend = 0,
+                    .subtractor = null,
+                    .pcrel = true,
+                    .length = 2,
+                    .@"type" = @enumToInt(std.macho.reloc_type_x86_64.X86_64_RELOC_BRANCH),
+                });
+            } else {
+                return self.fail("TODO implement calling bitcasted functions", .{});
+            }
+        } else {
+            return self.fail("TODO implement calling runtime known function pointer", .{});
+        }
+    } else if (self.bin_file.cast(link.File.Plan9)) |p9| {
+        for (info.args) |mc_arg, arg_i| {
+            const arg = args[arg_i];
+            const arg_ty = self.air.typeOf(arg);
+            const arg_mcv = try self.resolveInst(args[arg_i]);
+            // Here we do not use setRegOrMem even though the logic is similar, because
+            // the function call will move the stack pointer, so the offsets are different.
+            switch (mc_arg) {
+                .none => continue,
+                .register => |reg| {
+                    try self.register_manager.getReg(reg, null);
+                    try self.genSetReg(arg_ty, reg, arg_mcv);
+                },
+                .stack_offset => {
+                    // Here we need to emit instructions like this:
+                    // mov     qword ptr [rsp + stack_offset], x
+                    return self.fail("TODO implement calling with parameters in memory", .{});
+                },
+                .ptr_stack_offset => {
+                    return self.fail("TODO implement calling with MCValue.ptr_stack_offset arg", .{});
+                },
+                .ptr_embedded_in_code => {
+                    return self.fail("TODO implement calling with MCValue.ptr_embedded_in_code arg", .{});
+                },
+                .undef => unreachable,
+                .immediate => unreachable,
+                .unreach => unreachable,
+                .dead => unreachable,
+                .embedded_in_code => unreachable,
+                .memory => unreachable,
+                .compare_flags_signed => unreachable,
+                .compare_flags_unsigned => unreachable,
+            }
+        }
+        if (self.air.value(callee)) |func_value| {
+            if (func_value.castTag(.function)) |func_payload| {
+                try p9.seeDecl(func_payload.data.owner_decl);
+                const ptr_bits = self.target.cpu.arch.ptrBitWidth();
+                const ptr_bytes: u64 = @divExact(ptr_bits, 8);
+                const got_addr = p9.bases.data;
+                const got_index = func_payload.data.owner_decl.link.plan9.got_index.?;
+                // ff 14 25 xx xx xx xx    call [addr]
+                try self.code.ensureUnusedCapacity(7);
+                self.code.appendSliceAssumeCapacity(&[3]u8{ 0xff, 0x14, 0x25 });
+                const fn_got_addr = got_addr + got_index * ptr_bytes;
+                mem.writeIntLittle(u32, self.code.addManyAsArrayAssumeCapacity(4), @intCast(u32, fn_got_addr));
+            } else return self.fail("TODO implement calling extern fn on plan9", .{});
+        } else {
+            return self.fail("TODO implement calling runtime known function pointer", .{});
+        }
+    } else unreachable;
+
+    const result: MCValue = result: {
+        switch (info.return_value) {
+            .register => |reg| {
+                if (Register.allocIndex(reg) == null) {
+                    // Save function return value in a callee saved register
+                    break :result try self.copyToNewRegister(inst, info.return_value);
+                }
+            },
+            else => {},
+        }
+        break :result info.return_value;
+    };
+
+    if (args.len <= Liveness.bpi - 2) {
+        var buf = [1]Air.Inst.Ref{.none} ** (Liveness.bpi - 1);
+        buf[0] = callee;
+        std.mem.copy(Air.Inst.Ref, buf[1..], args);
+        return self.finishAir(inst, result, buf);
+    }
+    var bt = try self.iterateBigTomb(inst, 1 + args.len);
+    bt.feed(callee);
+    for (args) |arg| {
+        bt.feed(arg);
+    }
+    return bt.finishAir(result);
+}
+
+fn ret(self: *Self, mcv: MCValue) !void {
+    const ret_ty = self.fn_type.fnReturnType();
+    try self.setRegOrMem(ret_ty, self.ret_mcv, mcv);
+    // TODO when implementing defer, this will need to jump to the appropriate defer expression.
+    // TODO optimization opportunity: figure out when we can emit this as a 2 byte instruction
+    // which is available if the jump is 127 bytes or less forward.
+    try self.code.resize(self.code.items.len + 5);
+    self.code.items[self.code.items.len - 5] = 0xe9; // jmp rel32
+    try self.exitlude_jump_relocs.append(self.gpa, self.code.items.len - 4);
+}
+
+fn airRet(self: *Self, inst: Air.Inst.Index) !void {
+    const un_op = self.air.instructions.items(.data)[inst].un_op;
+    const operand = try self.resolveInst(un_op);
+    try self.ret(operand);
+    return self.finishAir(inst, .dead, .{ un_op, .none, .none });
+}
+
+fn airRetLoad(self: *Self, inst: Air.Inst.Index) !void {
+    const un_op = self.air.instructions.items(.data)[inst].un_op;
+    const ptr = try self.resolveInst(un_op);
+    _ = ptr;
+    return self.fail("TODO implement airRetLoad for {}", .{self.target.cpu.arch});
+    //return self.finishAir(inst, .dead, .{ un_op, .none, .none });
+}
+
+fn airCmp(self: *Self, inst: Air.Inst.Index, op: math.CompareOperator) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    if (self.liveness.isUnused(inst))
+        return self.finishAir(inst, .dead, .{ bin_op.lhs, bin_op.rhs, .none });
+    const ty = self.air.typeOf(bin_op.lhs);
+    assert(ty.eql(self.air.typeOf(bin_op.rhs)));
+    if (ty.zigTypeTag() == .ErrorSet)
+        return self.fail("TODO implement cmp for errors", .{});
+
+    const lhs = try self.resolveInst(bin_op.lhs);
+    const rhs = try self.resolveInst(bin_op.rhs);
+    const result: MCValue = result: {
+        try self.code.ensureUnusedCapacity(8);
+
+        // There are 2 operands, destination and source.
+        // Either one, but not both, can be a memory operand.
+        // Source operand can be an immediate, 8 bits or 32 bits.
+        const dst_mcv = if (lhs.isImmediate() or (lhs.isMemory() and rhs.isMemory()))
+            try self.copyToNewRegister(inst, lhs)
+        else
+            lhs;
+        // This instruction supports only signed 32-bit immediates at most.
+        const src_mcv = try self.limitImmediateType(bin_op.rhs, i32);
+
+        try self.genX8664BinMathCode(Type.initTag(.bool), dst_mcv, src_mcv, 7, 0x38);
+        break :result switch (ty.isSignedInt()) {
+            true => MCValue{ .compare_flags_signed = op },
+            false => MCValue{ .compare_flags_unsigned = op },
+        };
+    };
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn airDbgStmt(self: *Self, inst: Air.Inst.Index) !void {
+    const dbg_stmt = self.air.instructions.items(.data)[inst].dbg_stmt;
+    try self.dbgAdvancePCAndLine(dbg_stmt.line, dbg_stmt.column);
+    return self.finishAirBookkeeping();
+}
+
+fn airCondBr(self: *Self, inst: Air.Inst.Index) !void {
+    const pl_op = self.air.instructions.items(.data)[inst].pl_op;
+    const cond = try self.resolveInst(pl_op.operand);
+    const extra = self.air.extraData(Air.CondBr, pl_op.payload);
+    const then_body = self.air.extra[extra.end..][0..extra.data.then_body_len];
+    const else_body = self.air.extra[extra.end + then_body.len ..][0..extra.data.else_body_len];
+    const liveness_condbr = self.liveness.getCondBr(inst);
+
+    const reloc: Reloc = reloc: {
+        try self.code.ensureUnusedCapacity(6);
+
+        const opcode: u8 = switch (cond) {
+            .compare_flags_signed => |cmp_op| blk: {
+                // Here we map to the opposite opcode because the jump is to the false branch.
+                const opcode: u8 = switch (cmp_op) {
+                    .gte => 0x8c,
+                    .gt => 0x8e,
+                    .neq => 0x84,
+                    .lt => 0x8d,
+                    .lte => 0x8f,
+                    .eq => 0x85,
+                };
+                break :blk opcode;
+            },
+            .compare_flags_unsigned => |cmp_op| blk: {
+                // Here we map to the opposite opcode because the jump is to the false branch.
+                const opcode: u8 = switch (cmp_op) {
+                    .gte => 0x82,
+                    .gt => 0x86,
+                    .neq => 0x84,
+                    .lt => 0x83,
+                    .lte => 0x87,
+                    .eq => 0x85,
+                };
+                break :blk opcode;
+            },
+            .register => |reg| blk: {
+                // test reg, 1
+                // TODO detect al, ax, eax
+                const encoder = try Encoder.init(self.code, 4);
+                encoder.rex(.{
+                    // TODO audit this codegen: we force w = true here to make
+                    // the value affect the big register
+                    .w = true,
+                    .b = reg.isExtended(),
+                });
+                encoder.opcode_1byte(0xf6);
+                encoder.modRm_direct(
+                    0,
+                    reg.low_id(),
+                );
+                encoder.disp8(1);
+                break :blk 0x84;
+            },
+            else => return self.fail("TODO implement condbr {s} when condition is {s}", .{ self.target.cpu.arch, @tagName(cond) }),
+        };
+        self.code.appendSliceAssumeCapacity(&[_]u8{ 0x0f, opcode });
+        const reloc = Reloc{ .rel32 = self.code.items.len };
+        self.code.items.len += 4;
+        break :reloc reloc;
+    };
+
+    // Capture the state of register and stack allocation state so that we can revert to it.
+    const parent_next_stack_offset = self.next_stack_offset;
+    const parent_free_registers = self.register_manager.free_registers;
+    var parent_stack = try self.stack.clone(self.gpa);
+    defer parent_stack.deinit(self.gpa);
+    const parent_registers = self.register_manager.registers;
+
+    try self.branch_stack.append(.{});
+
+    try self.ensureProcessDeathCapacity(liveness_condbr.then_deaths.len);
+    for (liveness_condbr.then_deaths) |operand| {
+        self.processDeath(operand);
+    }
+    try self.genBody(then_body);
+
+    // Revert to the previous register and stack allocation state.
+
+    var saved_then_branch = self.branch_stack.pop();
+    defer saved_then_branch.deinit(self.gpa);
+
+    self.register_manager.registers = parent_registers;
+
+    self.stack.deinit(self.gpa);
+    self.stack = parent_stack;
+    parent_stack = .{};
+
+    self.next_stack_offset = parent_next_stack_offset;
+    self.register_manager.free_registers = parent_free_registers;
+
+    try self.performReloc(reloc);
+    const else_branch = self.branch_stack.addOneAssumeCapacity();
+    else_branch.* = .{};
+
+    try self.ensureProcessDeathCapacity(liveness_condbr.else_deaths.len);
+    for (liveness_condbr.else_deaths) |operand| {
+        self.processDeath(operand);
+    }
+    try self.genBody(else_body);
+
+    // At this point, each branch will possibly have conflicting values for where
+    // each instruction is stored. They agree, however, on which instructions are alive/dead.
+    // We use the first ("then") branch as canonical, and here emit
+    // instructions into the second ("else") branch to make it conform.
+    // We continue respect the data structure semantic guarantees of the else_branch so
+    // that we can use all the code emitting abstractions. This is why at the bottom we
+    // assert that parent_branch.free_registers equals the saved_then_branch.free_registers
+    // rather than assigning it.
+    const parent_branch = &self.branch_stack.items[self.branch_stack.items.len - 2];
+    try parent_branch.inst_table.ensureUnusedCapacity(self.gpa, else_branch.inst_table.count());
+
+    const else_slice = else_branch.inst_table.entries.slice();
+    const else_keys = else_slice.items(.key);
+    const else_values = else_slice.items(.value);
+    for (else_keys) |else_key, else_idx| {
+        const else_value = else_values[else_idx];
+        const canon_mcv = if (saved_then_branch.inst_table.fetchSwapRemove(else_key)) |then_entry| blk: {
+            // The instruction's MCValue is overridden in both branches.
+            parent_branch.inst_table.putAssumeCapacity(else_key, then_entry.value);
+            if (else_value == .dead) {
+                assert(then_entry.value == .dead);
+                continue;
+            }
+            break :blk then_entry.value;
+        } else blk: {
+            if (else_value == .dead)
+                continue;
+            // The instruction is only overridden in the else branch.
+            var i: usize = self.branch_stack.items.len - 2;
+            while (true) {
+                i -= 1; // If this overflows, the question is: why wasn't the instruction marked dead?
+                if (self.branch_stack.items[i].inst_table.get(else_key)) |mcv| {
+                    assert(mcv != .dead);
+                    break :blk mcv;
+                }
+            }
+        };
+        log.debug("consolidating else_entry {d} {}=>{}", .{ else_key, else_value, canon_mcv });
+        // TODO make sure the destination stack offset / register does not already have something
+        // going on there.
+        try self.setRegOrMem(self.air.typeOfIndex(else_key), canon_mcv, else_value);
+        // TODO track the new register / stack allocation
+    }
+    try parent_branch.inst_table.ensureUnusedCapacity(self.gpa, saved_then_branch.inst_table.count());
+    const then_slice = saved_then_branch.inst_table.entries.slice();
+    const then_keys = then_slice.items(.key);
+    const then_values = then_slice.items(.value);
+    for (then_keys) |then_key, then_idx| {
+        const then_value = then_values[then_idx];
+        // We already deleted the items from this table that matched the else_branch.
+        // So these are all instructions that are only overridden in the then branch.
+        parent_branch.inst_table.putAssumeCapacity(then_key, then_value);
+        if (then_value == .dead)
+            continue;
+        const parent_mcv = blk: {
+            var i: usize = self.branch_stack.items.len - 2;
+            while (true) {
+                i -= 1;
+                if (self.branch_stack.items[i].inst_table.get(then_key)) |mcv| {
+                    assert(mcv != .dead);
+                    break :blk mcv;
+                }
+            }
+        };
+        log.debug("consolidating then_entry {d} {}=>{}", .{ then_key, parent_mcv, then_value });
+        // TODO make sure the destination stack offset / register does not already have something
+        // going on there.
+        try self.setRegOrMem(self.air.typeOfIndex(then_key), parent_mcv, then_value);
+        // TODO track the new register / stack allocation
+    }
+
+    self.branch_stack.pop().deinit(self.gpa);
+
+    return self.finishAir(inst, .unreach, .{ pl_op.operand, .none, .none });
+}
+
+fn isNull(self: *Self, operand: MCValue) !MCValue {
+    _ = operand;
+    // Here you can specialize this instruction if it makes sense to, otherwise the default
+    // will call isNonNull and invert the result.
+    return self.fail("TODO call isNonNull and invert the result", .{});
+}
+
+fn isNonNull(self: *Self, operand: MCValue) !MCValue {
+    _ = operand;
+    // Here you can specialize this instruction if it makes sense to, otherwise the default
+    // will call isNull and invert the result.
+    return self.fail("TODO call isNull and invert the result", .{});
+}
+
+fn isErr(self: *Self, operand: MCValue) !MCValue {
+    _ = operand;
+    // Here you can specialize this instruction if it makes sense to, otherwise the default
+    // will call isNonNull and invert the result.
+    return self.fail("TODO call isNonErr and invert the result", .{});
+}
+
+fn isNonErr(self: *Self, operand: MCValue) !MCValue {
+    _ = operand;
+    // Here you can specialize this instruction if it makes sense to, otherwise the default
+    // will call isNull and invert the result.
+    return self.fail("TODO call isErr and invert the result", .{});
+}
+
+fn airIsNull(self: *Self, inst: Air.Inst.Index) !void {
+    const un_op = self.air.instructions.items(.data)[inst].un_op;
+    const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
+        const operand = try self.resolveInst(un_op);
+        break :result try self.isNull(operand);
+    };
+    return self.finishAir(inst, result, .{ un_op, .none, .none });
+}
+
+fn airIsNullPtr(self: *Self, inst: Air.Inst.Index) !void {
+    const un_op = self.air.instructions.items(.data)[inst].un_op;
+    const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
+        const operand_ptr = try self.resolveInst(un_op);
+        const operand: MCValue = blk: {
+            if (self.reuseOperand(inst, un_op, 0, operand_ptr)) {
+                // The MCValue that holds the pointer can be re-used as the value.
+                break :blk operand_ptr;
+            } else {
+                break :blk try self.allocRegOrMem(inst, true);
+            }
+        };
+        try self.load(operand, operand_ptr, self.air.typeOf(un_op));
+        break :result try self.isNull(operand);
+    };
+    return self.finishAir(inst, result, .{ un_op, .none, .none });
+}
+
+fn airIsNonNull(self: *Self, inst: Air.Inst.Index) !void {
+    const un_op = self.air.instructions.items(.data)[inst].un_op;
+    const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
+        const operand = try self.resolveInst(un_op);
+        break :result try self.isNonNull(operand);
+    };
+    return self.finishAir(inst, result, .{ un_op, .none, .none });
+}
+
+fn airIsNonNullPtr(self: *Self, inst: Air.Inst.Index) !void {
+    const un_op = self.air.instructions.items(.data)[inst].un_op;
+    const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
+        const operand_ptr = try self.resolveInst(un_op);
+        const operand: MCValue = blk: {
+            if (self.reuseOperand(inst, un_op, 0, operand_ptr)) {
+                // The MCValue that holds the pointer can be re-used as the value.
+                break :blk operand_ptr;
+            } else {
+                break :blk try self.allocRegOrMem(inst, true);
+            }
+        };
+        try self.load(operand, operand_ptr, self.air.typeOf(un_op));
+        break :result try self.isNonNull(operand);
+    };
+    return self.finishAir(inst, result, .{ un_op, .none, .none });
+}
+
+fn airIsErr(self: *Self, inst: Air.Inst.Index) !void {
+    const un_op = self.air.instructions.items(.data)[inst].un_op;
+    const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
+        const operand = try self.resolveInst(un_op);
+        break :result try self.isErr(operand);
+    };
+    return self.finishAir(inst, result, .{ un_op, .none, .none });
+}
+
+fn airIsErrPtr(self: *Self, inst: Air.Inst.Index) !void {
+    const un_op = self.air.instructions.items(.data)[inst].un_op;
+    const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
+        const operand_ptr = try self.resolveInst(un_op);
+        const operand: MCValue = blk: {
+            if (self.reuseOperand(inst, un_op, 0, operand_ptr)) {
+                // The MCValue that holds the pointer can be re-used as the value.
+                break :blk operand_ptr;
+            } else {
+                break :blk try self.allocRegOrMem(inst, true);
+            }
+        };
+        try self.load(operand, operand_ptr, self.air.typeOf(un_op));
+        break :result try self.isErr(operand);
+    };
+    return self.finishAir(inst, result, .{ un_op, .none, .none });
+}
+
+fn airIsNonErr(self: *Self, inst: Air.Inst.Index) !void {
+    const un_op = self.air.instructions.items(.data)[inst].un_op;
+    const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
+        const operand = try self.resolveInst(un_op);
+        break :result try self.isNonErr(operand);
+    };
+    return self.finishAir(inst, result, .{ un_op, .none, .none });
+}
+
+fn airIsNonErrPtr(self: *Self, inst: Air.Inst.Index) !void {
+    const un_op = self.air.instructions.items(.data)[inst].un_op;
+    const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
+        const operand_ptr = try self.resolveInst(un_op);
+        const operand: MCValue = blk: {
+            if (self.reuseOperand(inst, un_op, 0, operand_ptr)) {
+                // The MCValue that holds the pointer can be re-used as the value.
+                break :blk operand_ptr;
+            } else {
+                break :blk try self.allocRegOrMem(inst, true);
+            }
+        };
+        try self.load(operand, operand_ptr, self.air.typeOf(un_op));
+        break :result try self.isNonErr(operand);
+    };
+    return self.finishAir(inst, result, .{ un_op, .none, .none });
+}
+
+fn airLoop(self: *Self, inst: Air.Inst.Index) !void {
+    // A loop is a setup to be able to jump back to the beginning.
+    const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
+    const loop = self.air.extraData(Air.Block, ty_pl.payload);
+    const body = self.air.extra[loop.end..][0..loop.data.body_len];
+    const start_index = self.code.items.len;
+    try self.genBody(body);
+    try self.jump(start_index);
+    return self.finishAirBookkeeping();
+}
+
+/// Send control flow to the `index` of `self.code`.
+fn jump(self: *Self, index: usize) !void {
+    try self.code.ensureUnusedCapacity(5);
+    if (math.cast(i8, @intCast(i32, index) - (@intCast(i32, self.code.items.len + 2)))) |delta| {
+        self.code.appendAssumeCapacity(0xeb); // jmp rel8
+        self.code.appendAssumeCapacity(@bitCast(u8, delta));
+    } else |_| {
+        const delta = @intCast(i32, index) - (@intCast(i32, self.code.items.len + 5));
+        self.code.appendAssumeCapacity(0xe9); // jmp rel32
+        mem.writeIntLittle(i32, self.code.addManyAsArrayAssumeCapacity(4), delta);
+    }
+}
+
+fn airBlock(self: *Self, inst: Air.Inst.Index) !void {
+    try self.blocks.putNoClobber(self.gpa, inst, .{
+        // A block is a setup to be able to jump to the end.
+        .relocs = .{},
+        // It also acts as a receptacle for break operands.
+        // Here we use `MCValue.none` to represent a null value so that the first
+        // break instruction will choose a MCValue for the block result and overwrite
+        // this field. Following break instructions will use that MCValue to put their
+        // block results.
+        .mcv = MCValue{ .none = {} },
+    });
+    const block_data = self.blocks.getPtr(inst).?;
+    defer block_data.relocs.deinit(self.gpa);
+
+    const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
+    const extra = self.air.extraData(Air.Block, ty_pl.payload);
+    const body = self.air.extra[extra.end..][0..extra.data.body_len];
+    try self.genBody(body);
+
+    for (block_data.relocs.items) |reloc| try self.performReloc(reloc);
+
+    const result = @bitCast(MCValue, block_data.mcv);
+    return self.finishAir(inst, result, .{ .none, .none, .none });
+}
+
+fn airSwitch(self: *Self, inst: Air.Inst.Index) !void {
+    const pl_op = self.air.instructions.items(.data)[inst].pl_op;
+    const condition = pl_op.operand;
+    _ = condition;
+    return self.fail("TODO airSwitch for {}", .{self.target.cpu.arch});
+    // return self.finishAir(inst, .dead, .{ condition, .none, .none });
+}
+
+fn performReloc(self: *Self, reloc: Reloc) !void {
+    switch (reloc) {
+        .rel32 => |pos| {
+            const amt = self.code.items.len - (pos + 4);
+            // Here it would be tempting to implement testing for amt == 0 and then elide the
+            // jump. However, that will cause a problem because other jumps may assume that they
+            // can jump to this code. Or maybe I didn't understand something when I was debugging.
+            // It could be worth another look. Anyway, that's why that isn't done here. Probably the
+            // best place to elide jumps will be in semantic analysis, by inlining blocks that only
+            // only have 1 break instruction.
+            const s32_amt = math.cast(i32, amt) catch
+                return self.fail("unable to perform relocation: jump too far", .{});
+            mem.writeIntLittle(i32, self.code.items[pos..][0..4], s32_amt);
+        },
+        .arm_branch => unreachable,
+    }
+}
+
+fn airBr(self: *Self, inst: Air.Inst.Index) !void {
+    const branch = self.air.instructions.items(.data)[inst].br;
+    try self.br(branch.block_inst, branch.operand);
+    return self.finishAir(inst, .dead, .{ branch.operand, .none, .none });
+}
+
+fn airBoolOp(self: *Self, inst: Air.Inst.Index) !void {
+    const bin_op = self.air.instructions.items(.data)[inst].bin_op;
+    const air_tags = self.air.instructions.items(.tag);
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else switch (air_tags[inst]) {
+        // lhs AND rhs
+        .bool_and => try self.genX8664BinMath(inst, bin_op.lhs, bin_op.rhs),
+        // lhs OR rhs
+        .bool_or => try self.genX8664BinMath(inst, bin_op.lhs, bin_op.rhs),
+        else => unreachable, // Not a boolean operation
+    };
+    return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
+}
+
+fn br(self: *Self, block: Air.Inst.Index, operand: Air.Inst.Ref) !void {
+    const block_data = self.blocks.getPtr(block).?;
+
+    if (self.air.typeOf(operand).hasCodeGenBits()) {
+        const operand_mcv = try self.resolveInst(operand);
+        const block_mcv = block_data.mcv;
+        if (block_mcv == .none) {
+            block_data.mcv = operand_mcv;
+        } else {
+            try self.setRegOrMem(self.air.typeOfIndex(block), block_mcv, operand_mcv);
+        }
+    }
+    return self.brVoid(block);
+}
+
+fn brVoid(self: *Self, block: Air.Inst.Index) !void {
+    const block_data = self.blocks.getPtr(block).?;
+    // Emit a jump with a relocation. It will be patched up after the block ends.
+    try block_data.relocs.ensureUnusedCapacity(self.gpa, 1);
+    // TODO optimization opportunity: figure out when we can emit this as a 2 byte instruction
+    // which is available if the jump is 127 bytes or less forward.
+    try self.code.resize(self.code.items.len + 5);
+    self.code.items[self.code.items.len - 5] = 0xe9; // jmp rel32
+    // Leave the jump offset undefined
+    block_data.relocs.appendAssumeCapacity(.{ .rel32 = self.code.items.len - 4 });
+}
+
+fn airAsm(self: *Self, inst: Air.Inst.Index) !void {
+    const air_datas = self.air.instructions.items(.data);
+    const air_extra = self.air.extraData(Air.Asm, air_datas[inst].ty_pl.payload);
+    const zir = self.mod_fn.owner_decl.getFileScope().zir;
+    const extended = zir.instructions.items(.data)[air_extra.data.zir_index].extended;
+    const zir_extra = zir.extraData(Zir.Inst.Asm, extended.operand);
+    const asm_source = zir.nullTerminatedString(zir_extra.data.asm_source);
+    const outputs_len = @truncate(u5, extended.small);
+    const args_len = @truncate(u5, extended.small >> 5);
+    const clobbers_len = @truncate(u5, extended.small >> 10);
+    _ = clobbers_len; // TODO honor these
+    const is_volatile = @truncate(u1, extended.small >> 15) != 0;
+    const outputs = @bitCast([]const Air.Inst.Ref, self.air.extra[air_extra.end..][0..outputs_len]);
+    const args = @bitCast([]const Air.Inst.Ref, self.air.extra[air_extra.end + outputs.len ..][0..args_len]);
+
+    if (outputs_len > 1) {
+        return self.fail("TODO implement codegen for asm with more than 1 output", .{});
+    }
+    var extra_i: usize = zir_extra.end;
+    const output_constraint: ?[]const u8 = out: {
+        var i: usize = 0;
+        while (i < outputs_len) : (i += 1) {
+            const output = zir.extraData(Zir.Inst.Asm.Output, extra_i);
+            extra_i = output.end;
+            break :out zir.nullTerminatedString(output.data.constraint);
+        }
+        break :out null;
+    };
+
+    const dead = !is_volatile and self.liveness.isUnused(inst);
+    const result: MCValue = if (dead)
+        .dead
+    else result: {
+        for (args) |arg| {
+            const input = zir.extraData(Zir.Inst.Asm.Input, extra_i);
+            extra_i = input.end;
+            const constraint = zir.nullTerminatedString(input.data.constraint);
+
+            if (constraint.len < 3 or constraint[0] != '{' or constraint[constraint.len - 1] != '}') {
+                return self.fail("unrecognized asm input constraint: '{s}'", .{constraint});
+            }
+            const reg_name = constraint[1 .. constraint.len - 1];
+            const reg = parseRegName(reg_name) orelse
+                return self.fail("unrecognized register: '{s}'", .{reg_name});
+
+            const arg_mcv = try self.resolveInst(arg);
+            try self.register_manager.getReg(reg, null);
+            try self.genSetReg(self.air.typeOf(arg), reg, arg_mcv);
+        }
+
+        {
+            var iter = std.mem.tokenize(u8, asm_source, "\n\r");
+            while (iter.next()) |ins| {
+                if (mem.eql(u8, ins, "syscall")) {
+                    try self.code.appendSlice(&[_]u8{ 0x0f, 0x05 });
+                } else if (mem.indexOf(u8, ins, "push")) |_| {
+                    const arg = ins[4..];
+                    if (mem.indexOf(u8, arg, "$")) |l| {
+                        const n = std.fmt.parseInt(u8, ins[4 + l + 1 ..], 10) catch return self.fail("TODO implement more inline asm int parsing", .{});
+                        try self.code.appendSlice(&.{ 0x6a, n });
+                    } else if (mem.indexOf(u8, arg, "%%")) |l| {
+                        const reg_name = ins[4 + l + 2 ..];
+                        const reg = parseRegName(reg_name) orelse
+                            return self.fail("unrecognized register: '{s}'", .{reg_name});
+                        const low_id: u8 = reg.low_id();
+                        if (reg.isExtended()) {
+                            try self.code.appendSlice(&.{ 0x41, 0b1010000 | low_id });
+                        } else {
+                            try self.code.append(0b1010000 | low_id);
+                        }
+                    } else return self.fail("TODO more push operands", .{});
+                } else if (mem.indexOf(u8, ins, "pop")) |_| {
+                    const arg = ins[3..];
+                    if (mem.indexOf(u8, arg, "%%")) |l| {
+                        const reg_name = ins[3 + l + 2 ..];
+                        const reg = parseRegName(reg_name) orelse
+                            return self.fail("unrecognized register: '{s}'", .{reg_name});
+                        const low_id: u8 = reg.low_id();
+                        if (reg.isExtended()) {
+                            try self.code.appendSlice(&.{ 0x41, 0b1011000 | low_id });
+                        } else {
+                            try self.code.append(0b1011000 | low_id);
+                        }
+                    } else return self.fail("TODO more pop operands", .{});
+                } else {
+                    return self.fail("TODO implement support for more x86 assembly instructions", .{});
+                }
+            }
+        }
+
+        if (output_constraint) |output| {
+            if (output.len < 4 or output[0] != '=' or output[1] != '{' or output[output.len - 1] != '}') {
+                return self.fail("unrecognized asm output constraint: '{s}'", .{output});
+            }
+            const reg_name = output[2 .. output.len - 1];
+            const reg = parseRegName(reg_name) orelse
+                return self.fail("unrecognized register: '{s}'", .{reg_name});
+            break :result MCValue{ .register = reg };
+        } else {
+            break :result MCValue{ .none = {} };
+        }
+    };
+    if (outputs.len + args.len <= Liveness.bpi - 1) {
+        var buf = [1]Air.Inst.Ref{.none} ** (Liveness.bpi - 1);
+        std.mem.copy(Air.Inst.Ref, &buf, outputs);
+        std.mem.copy(Air.Inst.Ref, buf[outputs.len..], args);
+        return self.finishAir(inst, result, buf);
+    }
+    var bt = try self.iterateBigTomb(inst, outputs.len + args.len);
+    for (outputs) |output| {
+        bt.feed(output);
+    }
+    for (args) |arg| {
+        bt.feed(arg);
+    }
+    return bt.finishAir(result);
+}
+
+fn iterateBigTomb(self: *Self, inst: Air.Inst.Index, operand_count: usize) !BigTomb {
+    try self.ensureProcessDeathCapacity(operand_count + 1);
+    return BigTomb{
+        .function = self,
+        .inst = inst,
+        .tomb_bits = self.liveness.getTombBits(inst),
+        .big_tomb_bits = self.liveness.special.get(inst) orelse 0,
+        .bit_index = 0,
+    };
+}
+
+/// Sets the value without any modifications to register allocation metadata or stack allocation metadata.
+fn setRegOrMem(self: *Self, ty: Type, loc: MCValue, val: MCValue) !void {
+    switch (loc) {
+        .none => return,
+        .register => |reg| return self.genSetReg(ty, reg, val),
+        .stack_offset => |off| return self.genSetStack(ty, off, val),
+        .memory => {
+            return self.fail("TODO implement setRegOrMem for memory", .{});
+        },
+        else => unreachable,
+    }
+}
+
+fn genSetStack(self: *Self, ty: Type, stack_offset: u32, mcv: MCValue) InnerError!void {
+    switch (mcv) {
+        .dead => unreachable,
+        .ptr_stack_offset => unreachable,
+        .ptr_embedded_in_code => unreachable,
+        .unreach, .none => return, // Nothing to do.
+        .undef => {
+            if (!self.wantSafety())
+                return; // The already existing value will do just fine.
+            // TODO Upgrade this to a memset call when we have that available.
+            switch (ty.abiSize(self.target.*)) {
+                1 => return self.genSetStack(ty, stack_offset, .{ .immediate = 0xaa }),
+                2 => return self.genSetStack(ty, stack_offset, .{ .immediate = 0xaaaa }),
+                4 => return self.genSetStack(ty, stack_offset, .{ .immediate = 0xaaaaaaaa }),
+                8 => return self.genSetStack(ty, stack_offset, .{ .immediate = 0xaaaaaaaaaaaaaaaa }),
+                else => return self.fail("TODO implement memset", .{}),
+            }
+        },
+        .compare_flags_unsigned => |op| {
+            _ = op;
+            return self.fail("TODO implement set stack variable with compare flags value (unsigned)", .{});
+        },
+        .compare_flags_signed => |op| {
+            _ = op;
+            return self.fail("TODO implement set stack variable with compare flags value (signed)", .{});
+        },
+        .immediate => |x_big| {
+            const abi_size = ty.abiSize(self.target.*);
+            const adj_off = stack_offset + abi_size;
+            if (adj_off > 128) {
+                return self.fail("TODO implement set stack variable with large stack offset", .{});
+            }
+            try self.code.ensureUnusedCapacity(8);
+            switch (abi_size) {
+                1 => {
+                    return self.fail("TODO implement set abi_size=1 stack variable with immediate", .{});
+                },
+                2 => {
+                    return self.fail("TODO implement set abi_size=2 stack variable with immediate", .{});
+                },
+                4 => {
+                    const x = @intCast(u32, x_big);
+                    // We have a positive stack offset value but we want a twos complement negative
+                    // offset from rbp, which is at the top of the stack frame.
+                    const negative_offset = @intCast(i8, -@intCast(i32, adj_off));
+                    const twos_comp = @bitCast(u8, negative_offset);
+                    // mov    DWORD PTR [rbp+offset], immediate
+                    self.code.appendSliceAssumeCapacity(&[_]u8{ 0xc7, 0x45, twos_comp });
+                    mem.writeIntLittle(u32, self.code.addManyAsArrayAssumeCapacity(4), x);
+                },
+                8 => {
+                    // We have a positive stack offset value but we want a twos complement negative
+                    // offset from rbp, which is at the top of the stack frame.
+                    const negative_offset = @intCast(i8, -@intCast(i32, adj_off));
+                    const twos_comp = @bitCast(u8, negative_offset);
+
+                    // 64 bit write to memory would take two mov's anyways so we
+                    // insted just use two 32 bit writes to avoid register allocation
+                    try self.code.ensureUnusedCapacity(14);
+                    var buf: [8]u8 = undefined;
+                    mem.writeIntLittle(u64, &buf, x_big);
+
+                    // mov    DWORD PTR [rbp+offset+4], immediate
+                    self.code.appendSliceAssumeCapacity(&[_]u8{ 0xc7, 0x45, twos_comp + 4 });
+                    self.code.appendSliceAssumeCapacity(buf[4..8]);
+
+                    // mov    DWORD PTR [rbp+offset], immediate
+                    self.code.appendSliceAssumeCapacity(&[_]u8{ 0xc7, 0x45, twos_comp });
+                    self.code.appendSliceAssumeCapacity(buf[0..4]);
+                },
+                else => {
+                    return self.fail("TODO implement set abi_size=large stack variable with immediate", .{});
+                },
+            }
+        },
+        .embedded_in_code => {
+            // TODO this and `.stack_offset` below need to get improved to support types greater than
+            // register size, and do general memcpy
+            const reg = try self.copyToTmpRegister(ty, mcv);
+            return self.genSetStack(ty, stack_offset, MCValue{ .register = reg });
+        },
+        .register => |reg| {
+            try self.genX8664ModRMRegToStack(ty, stack_offset, reg, 0x89);
+        },
+        .memory => |vaddr| {
+            _ = vaddr;
+            return self.fail("TODO implement set stack variable from memory vaddr", .{});
+        },
+        .stack_offset => |off| {
+            // TODO this and `.embedded_in_code` above need to get improved to support types greater than
+            // register size, and do general memcpy
+
+            if (stack_offset == off)
+                return; // Copy stack variable to itself; nothing to do.
+
+            const reg = try self.copyToTmpRegister(ty, mcv);
+            return self.genSetStack(ty, stack_offset, MCValue{ .register = reg });
+        },
+    }
+}
+
+fn genSetReg(self: *Self, ty: Type, reg: Register, mcv: MCValue) InnerError!void {
+    switch (mcv) {
+        .dead => unreachable,
+        .ptr_stack_offset => unreachable,
+        .ptr_embedded_in_code => unreachable,
+        .unreach, .none => return, // Nothing to do.
+        .undef => {
+            if (!self.wantSafety())
+                return; // The already existing value will do just fine.
+            // Write the debug undefined value.
+            switch (reg.size()) {
+                8 => return self.genSetReg(ty, reg, .{ .immediate = 0xaa }),
+                16 => return self.genSetReg(ty, reg, .{ .immediate = 0xaaaa }),
+                32 => return self.genSetReg(ty, reg, .{ .immediate = 0xaaaaaaaa }),
+                64 => return self.genSetReg(ty, reg, .{ .immediate = 0xaaaaaaaaaaaaaaaa }),
+                else => unreachable,
+            }
+        },
+        .compare_flags_unsigned => |op| {
+            const encoder = try Encoder.init(self.code, 7);
+            // TODO audit this codegen: we force w = true here to make
+            // the value affect the big register
+            encoder.rex(.{
+                .w = true,
+                .b = reg.isExtended(),
+            });
+            encoder.opcode_2byte(0x0f, switch (op) {
+                .gte => 0x93,
+                .gt => 0x97,
+                .neq => 0x95,
+                .lt => 0x92,
+                .lte => 0x96,
+                .eq => 0x94,
+            });
+            encoder.modRm_direct(
+                0,
+                reg.low_id(),
+            );
+        },
+        .compare_flags_signed => |op| {
+            _ = op;
+            return self.fail("TODO set register with compare flags value (signed)", .{});
+        },
+        .immediate => |x| {
+            // 32-bit moves zero-extend to 64-bit, so xoring the 32-bit
+            // register is the fastest way to zero a register.
+            if (x == 0) {
+                // The encoding for `xor r32, r32` is `0x31 /r`.
+                const encoder = try Encoder.init(self.code, 3);
+
+                // If we're accessing e.g. r8d, we need to use a REX prefix before the actual operation. Since
+                // this is a 32-bit operation, the W flag is set to zero. X is also zero, as we're not using a SIB.
+                // Both R and B are set, as we're extending, in effect, the register bits *and* the operand.
+                encoder.rex(.{
+                    .r = reg.isExtended(),
+                    .b = reg.isExtended(),
+                });
+                encoder.opcode_1byte(0x31);
+                // Section 3.1.1.1 of the Intel x64 Manual states that "/r indicates that the
+                // ModR/M byte of the instruction contains a register operand and an r/m operand."
+                encoder.modRm_direct(
+                    reg.low_id(),
+                    reg.low_id(),
+                );
+
+                return;
+            }
+            if (x <= math.maxInt(i32)) {
+                // Next best case: if we set the lower four bytes, the upper four will be zeroed.
+                //
+                // The encoding for `mov IMM32 -> REG` is (0xB8 + R) IMM.
+
+                const encoder = try Encoder.init(self.code, 6);
+                // Just as with XORing, we need a REX prefix. This time though, we only
+                // need the B bit set, as we're extending the opcode's register field,
+                // and there is no Mod R/M byte.
+                encoder.rex(.{
+                    .b = reg.isExtended(),
+                });
+                encoder.opcode_withReg(0xB8, reg.low_id());
+
+                // no ModR/M byte
+
+                // IMM
+                encoder.imm32(@intCast(i32, x));
+                return;
+            }
+            // Worst case: we need to load the 64-bit register with the IMM. GNU's assemblers calls
+            // this `movabs`, though this is officially just a different variant of the plain `mov`
+            // instruction.
+            //
+            // This encoding is, in fact, the *same* as the one used for 32-bit loads. The only
+            // difference is that we set REX.W before the instruction, which extends the load to
+            // 64-bit and uses the full bit-width of the register.
+            {
+                const encoder = try Encoder.init(self.code, 10);
+                encoder.rex(.{
+                    .w = true,
+                    .b = reg.isExtended(),
+                });
+                encoder.opcode_withReg(0xB8, reg.low_id());
+                encoder.imm64(x);
+            }
+        },
+        .embedded_in_code => |code_offset| {
+            // We need the offset from RIP in a signed i32 twos complement.
+            // The instruction is 7 bytes long and RIP points to the next instruction.
+
+            // 64-bit LEA is encoded as REX.W 8D /r.
+            const rip = self.code.items.len + 7;
+            const big_offset = @intCast(i64, code_offset) - @intCast(i64, rip);
+            const offset = @intCast(i32, big_offset);
+            const encoder = try Encoder.init(self.code, 7);
+
+            // byte 1, always exists because w = true
+            encoder.rex(.{
+                .w = true,
+                .r = reg.isExtended(),
+            });
+            // byte 2
+            encoder.opcode_1byte(0x8D);
+            // byte 3
+            encoder.modRm_RIPDisp32(reg.low_id());
+            // byte 4-7
+            encoder.disp32(offset);
+
+            // Double check that we haven't done any math errors
+            assert(rip == self.code.items.len);
+        },
+        .register => |src_reg| {
+            // If the registers are the same, nothing to do.
+            if (src_reg.id() == reg.id())
+                return;
+
+            // This is a variant of 8B /r.
+            const abi_size = ty.abiSize(self.target.*);
+            const encoder = try Encoder.init(self.code, 3);
+            encoder.rex(.{
+                .w = abi_size == 8,
+                .r = reg.isExtended(),
+                .b = src_reg.isExtended(),
+            });
+            encoder.opcode_1byte(0x8B);
+            encoder.modRm_direct(reg.low_id(), src_reg.low_id());
+        },
+        .memory => |x| {
+            if (self.bin_file.options.pie) {
+                // RIP-relative displacement to the entry in the GOT table.
+                const abi_size = ty.abiSize(self.target.*);
+                const encoder = try Encoder.init(self.code, 10);
+
+                // LEA reg, [<offset>]
+
+                // We encode the instruction FIRST because prefixes may or may not appear.
+                // After we encode the instruction, we will know that the displacement bytes
+                // for [<offset>] will be at self.code.items.len - 4.
+                encoder.rex(.{
+                    .w = true, // force 64 bit because loading an address (to the GOT)
+                    .r = reg.isExtended(),
+                });
+                encoder.opcode_1byte(0x8D);
+                encoder.modRm_RIPDisp32(reg.low_id());
+                encoder.disp32(0);
+
+                const offset = @intCast(u32, self.code.items.len);
+
+                if (self.bin_file.cast(link.File.MachO)) |macho_file| {
+                    // TODO I think the reloc might be in the wrong place.
+                    const decl = macho_file.active_decl.?;
+                    // Load reloc for LEA instruction.
+                    try decl.link.macho.relocs.append(self.bin_file.allocator, .{
+                        .offset = offset - 4,
+                        .target = .{ .local = @intCast(u32, x) },
+                        .addend = 0,
+                        .subtractor = null,
+                        .pcrel = true,
+                        .length = 2,
+                        .@"type" = @enumToInt(std.macho.reloc_type_x86_64.X86_64_RELOC_GOT),
+                    });
+                } else {
+                    return self.fail("TODO implement genSetReg for PIE GOT indirection on this platform", .{});
+                }
+
+                // MOV reg, [reg]
+                encoder.rex(.{
+                    .w = abi_size == 8,
+                    .r = reg.isExtended(),
+                    .b = reg.isExtended(),
+                });
+                encoder.opcode_1byte(0x8B);
+                encoder.modRm_indirectDisp0(reg.low_id(), reg.low_id());
+            } else if (x <= math.maxInt(i32)) {
+                // Moving from memory to a register is a variant of `8B /r`.
+                // Since we're using 64-bit moves, we require a REX.
+                // This variant also requires a SIB, as it would otherwise be RIP-relative.
+                // We want mode zero with the lower three bits set to four to indicate an SIB with no other displacement.
+                // The SIB must be 0x25, to indicate a disp32 with no scaled index.
+                // 0b00RRR100, where RRR is the lower three bits of the register ID.
+                // The instruction is thus eight bytes; REX 0x8B 0b00RRR100 0x25 followed by a four-byte disp32.
+                const abi_size = ty.abiSize(self.target.*);
+                const encoder = try Encoder.init(self.code, 8);
+                encoder.rex(.{
+                    .w = abi_size == 8,
+                    .r = reg.isExtended(),
+                });
+                encoder.opcode_1byte(0x8B);
+                // effective address = [SIB]
+                encoder.modRm_SIBDisp0(reg.low_id());
+                // SIB = disp32
+                encoder.sib_disp32();
+                encoder.disp32(@intCast(i32, x));
+            } else {
+                // If this is RAX, we can use a direct load; otherwise, we need to load the address, then indirectly load
+                // the value.
+                if (reg.id() == 0) {
+                    // REX.W 0xA1 moffs64*
+                    // moffs64* is a 64-bit offset "relative to segment base", which really just means the
+                    // absolute address for all practical purposes.
+
+                    const encoder = try Encoder.init(self.code, 10);
+                    encoder.rex(.{
+                        .w = true,
+                    });
+                    encoder.opcode_1byte(0xA1);
+                    encoder.writeIntLittle(u64, x);
+                } else {
+                    // This requires two instructions; a move imm as used above, followed by an indirect load using the register
+                    // as the address and the register as the destination.
+                    //
+                    // This cannot be used if the lower three bits of the id are equal to four or five, as there
+                    // is no way to possibly encode it. This means that RSP, RBP, R12, and R13 cannot be used with
+                    // this instruction.
+                    const id3 = @truncate(u3, reg.id());
+                    assert(id3 != 4 and id3 != 5);
+
+                    // Rather than duplicate the logic used for the move, we just use a self-call with a new MCValue.
+                    try self.genSetReg(ty, reg, MCValue{ .immediate = x });
+
+                    // Now, the register contains the address of the value to load into it
+                    // Currently, we're only allowing 64-bit registers, so we need the `REX.W 8B /r` variant.
+                    // TODO: determine whether to allow other sized registers, and if so, handle them properly.
+
+                    // mov reg, [reg]
+                    const abi_size = ty.abiSize(self.target.*);
+                    const encoder = try Encoder.init(self.code, 3);
+                    encoder.rex(.{
+                        .w = abi_size == 8,
+                        .r = reg.isExtended(),
+                        .b = reg.isExtended(),
+                    });
+                    encoder.opcode_1byte(0x8B);
+                    encoder.modRm_indirectDisp0(reg.low_id(), reg.low_id());
+                }
+            }
+        },
+        .stack_offset => |unadjusted_off| {
+            const abi_size = ty.abiSize(self.target.*);
+            const off = unadjusted_off + abi_size;
+            if (off < std.math.minInt(i32) or off > std.math.maxInt(i32)) {
+                return self.fail("stack offset too large", .{});
+            }
+            const ioff = -@intCast(i32, off);
+            const encoder = try Encoder.init(self.code, 3);
+            encoder.rex(.{
+                .w = abi_size == 8,
+                .r = reg.isExtended(),
+            });
+            encoder.opcode_1byte(0x8B);
+            if (std.math.minInt(i8) <= ioff and ioff <= std.math.maxInt(i8)) {
+                // Example: 48 8b 4d 7f           mov    rcx,QWORD PTR [rbp+0x7f]
+                encoder.modRm_indirectDisp8(reg.low_id(), Register.ebp.low_id());
+                encoder.disp8(@intCast(i8, ioff));
+            } else {
+                // Example: 48 8b 8d 80 00 00 00  mov    rcx,QWORD PTR [rbp+0x80]
+                encoder.modRm_indirectDisp32(reg.low_id(), Register.ebp.low_id());
+                encoder.disp32(ioff);
+            }
+        },
+    }
+}
+
+fn airPtrToInt(self: *Self, inst: Air.Inst.Index) !void {
+    const un_op = self.air.instructions.items(.data)[inst].un_op;
+    const result = try self.resolveInst(un_op);
+    return self.finishAir(inst, result, .{ un_op, .none, .none });
+}
+
+fn airBitCast(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result = try self.resolveInst(ty_op.operand);
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airArrayToSlice(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement airArrayToSlice for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airIntToFloat(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement airIntToFloat for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airFloatToInt(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_op = self.air.instructions.items(.data)[inst].ty_op;
+    const result: MCValue = if (self.liveness.isUnused(inst))
+        .dead
+    else
+        return self.fail("TODO implement airFloatToInt for {}", .{self.target.cpu.arch});
+    return self.finishAir(inst, result, .{ ty_op.operand, .none, .none });
+}
+
+fn airCmpxchg(self: *Self, inst: Air.Inst.Index) !void {
+    const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
+    const extra = self.air.extraData(Air.Block, ty_pl.payload);
+    _ = ty_pl;
+    _ = extra;
+    return self.fail("TODO implement airCmpxchg for {}", .{self.target.cpu.arch});
+    // return self.finishAir(inst, result, .{ extra.ptr, extra.expected_value, extra.new_value });
+}
+
+fn airAtomicRmw(self: *Self, inst: Air.Inst.Index) !void {
+    _ = inst;
+    return self.fail("TODO implement airCmpxchg for {}", .{self.target.cpu.arch});
+}
+
+fn airAtomicLoad(self: *Self, inst: Air.Inst.Index) !void {
+    _ = inst;
+    return self.fail("TODO implement airAtomicLoad for {}", .{self.target.cpu.arch});
+}
+
+fn airAtomicStore(self: *Self, inst: Air.Inst.Index, order: std.builtin.AtomicOrder) !void {
+    _ = inst;
+    _ = order;
+    return self.fail("TODO implement airAtomicStore for {}", .{self.target.cpu.arch});
+}
+
+fn airMemset(self: *Self, inst: Air.Inst.Index) !void {
+    _ = inst;
+    return self.fail("TODO implement airMemset for {}", .{self.target.cpu.arch});
+}
+
+fn airMemcpy(self: *Self, inst: Air.Inst.Index) !void {
+    _ = inst;
+    return self.fail("TODO implement airMemcpy for {}", .{self.target.cpu.arch});
+}
+
+fn resolveInst(self: *Self, inst: Air.Inst.Ref) InnerError!MCValue {
+    // First section of indexes correspond to a set number of constant values.
+    const ref_int = @enumToInt(inst);
+    if (ref_int < Air.Inst.Ref.typed_value_map.len) {
+        const tv = Air.Inst.Ref.typed_value_map[ref_int];
+        if (!tv.ty.hasCodeGenBits()) {
+            return MCValue{ .none = {} };
+        }
+        return self.genTypedValue(tv);
+    }
+
+    // If the type has no codegen bits, no need to store it.
+    const inst_ty = self.air.typeOf(inst);
+    if (!inst_ty.hasCodeGenBits())
+        return MCValue{ .none = {} };
+
+    const inst_index = @intCast(Air.Inst.Index, ref_int - Air.Inst.Ref.typed_value_map.len);
+    switch (self.air.instructions.items(.tag)[inst_index]) {
+        .constant => {
+            // Constants have static lifetimes, so they are always memoized in the outer most table.
+            const branch = &self.branch_stack.items[0];
+            const gop = try branch.inst_table.getOrPut(self.gpa, inst_index);
+            if (!gop.found_existing) {
+                const ty_pl = self.air.instructions.items(.data)[inst_index].ty_pl;
+                gop.value_ptr.* = try self.genTypedValue(.{
+                    .ty = inst_ty,
+                    .val = self.air.values[ty_pl.payload],
+                });
+            }
+            return gop.value_ptr.*;
+        },
+        .const_ty => unreachable,
+        else => return self.getResolvedInstValue(inst_index),
+    }
+}
+
+fn getResolvedInstValue(self: *Self, inst: Air.Inst.Index) MCValue {
+    // Treat each stack item as a "layer" on top of the previous one.
+    var i: usize = self.branch_stack.items.len;
+    while (true) {
+        i -= 1;
+        if (self.branch_stack.items[i].inst_table.get(inst)) |mcv| {
+            assert(mcv != .dead);
+            return mcv;
+        }
+    }
+}
+
+/// If the MCValue is an immediate, and it does not fit within this type,
+/// we put it in a register.
+/// A potential opportunity for future optimization here would be keeping track
+/// of the fact that the instruction is available both as an immediate
+/// and as a register.
+fn limitImmediateType(self: *Self, operand: Air.Inst.Ref, comptime T: type) !MCValue {
+    const mcv = try self.resolveInst(operand);
+    const ti = @typeInfo(T).Int;
+    switch (mcv) {
+        .immediate => |imm| {
+            // This immediate is unsigned.
+            const U = std.meta.Int(.unsigned, ti.bits - @boolToInt(ti.signedness == .signed));
+            if (imm >= math.maxInt(U)) {
+                return MCValue{ .register = try self.copyToTmpRegister(Type.initTag(.usize), mcv) };
+            }
+        },
+        else => {},
+    }
+    return mcv;
+}
+
+fn genTypedValue(self: *Self, typed_value: TypedValue) InnerError!MCValue {
+    if (typed_value.val.isUndef())
+        return MCValue{ .undef = {} };
+    const ptr_bits = self.target.cpu.arch.ptrBitWidth();
+    const ptr_bytes: u64 = @divExact(ptr_bits, 8);
+    switch (typed_value.ty.zigTypeTag()) {
+        .Pointer => switch (typed_value.ty.ptrSize()) {
+            .Slice => {
+                var buf: Type.SlicePtrFieldTypeBuffer = undefined;
+                const ptr_type = typed_value.ty.slicePtrFieldType(&buf);
+                const ptr_mcv = try self.genTypedValue(.{ .ty = ptr_type, .val = typed_value.val });
+                const slice_len = typed_value.val.sliceLen();
+                // Codegen can't handle some kinds of indirection. If the wrong union field is accessed here it may mean
+                // the Sema code needs to use anonymous Decls or alloca instructions to store data.
+                const ptr_imm = ptr_mcv.memory;
+                _ = slice_len;
+                _ = ptr_imm;
+                // We need more general support for const data being stored in memory to make this work.
+                return self.fail("TODO codegen for const slices", .{});
+            },
+            else => {
+                if (typed_value.val.castTag(.decl_ref)) |payload| {
+                    const decl = payload.data;
+                    decl.alive = true;
+                    if (self.bin_file.cast(link.File.Elf)) |elf_file| {
+                        const got = &elf_file.program_headers.items[elf_file.phdr_got_index.?];
+                        const got_addr = got.p_vaddr + decl.link.elf.offset_table_index * ptr_bytes;
+                        return MCValue{ .memory = got_addr };
+                    } else if (self.bin_file.cast(link.File.MachO)) |_| {
+                        // TODO I'm hacking my way through here by repurposing .memory for storing
+                        // index to the GOT target symbol index.
+                        return MCValue{ .memory = decl.link.macho.local_sym_index };
+                    } else if (self.bin_file.cast(link.File.Coff)) |coff_file| {
+                        const got_addr = coff_file.offset_table_virtual_address + decl.link.coff.offset_table_index * ptr_bytes;
+                        return MCValue{ .memory = got_addr };
+                    } else if (self.bin_file.cast(link.File.Plan9)) |p9| {
+                        try p9.seeDecl(decl);
+                        const got_addr = p9.bases.data + decl.link.plan9.got_index.? * ptr_bytes;
+                        return MCValue{ .memory = got_addr };
+                    } else {
+                        return self.fail("TODO codegen non-ELF const Decl pointer", .{});
+                    }
+                }
+                if (typed_value.val.tag() == .int_u64) {
+                    return MCValue{ .immediate = typed_value.val.toUnsignedInt() };
+                }
+                return self.fail("TODO codegen more kinds of const pointers", .{});
+            },
+        },
+        .Int => {
+            const info = typed_value.ty.intInfo(self.target.*);
+            if (info.bits > ptr_bits or info.signedness == .signed) {
+                return self.fail("TODO const int bigger than ptr and signed int", .{});
+            }
+            return MCValue{ .immediate = typed_value.val.toUnsignedInt() };
+        },
+        .Bool => {
+            return MCValue{ .immediate = @boolToInt(typed_value.val.toBool()) };
+        },
+        .ComptimeInt => unreachable, // semantic analysis prevents this
+        .ComptimeFloat => unreachable, // semantic analysis prevents this
+        .Optional => {
+            if (typed_value.ty.isPtrLikeOptional()) {
+                if (typed_value.val.isNull())
+                    return MCValue{ .immediate = 0 };
+
+                var buf: Type.Payload.ElemType = undefined;
+                return self.genTypedValue(.{
+                    .ty = typed_value.ty.optionalChild(&buf),
+                    .val = typed_value.val,
+                });
+            } else if (typed_value.ty.abiSize(self.target.*) == 1) {
+                return MCValue{ .immediate = @boolToInt(typed_value.val.isNull()) };
+            }
+            return self.fail("TODO non pointer optionals", .{});
+        },
+        .Enum => {
+            if (typed_value.val.castTag(.enum_field_index)) |field_index| {
+                switch (typed_value.ty.tag()) {
+                    .enum_simple => {
+                        return MCValue{ .immediate = field_index.data };
+                    },
+                    .enum_full, .enum_nonexhaustive => {
+                        const enum_full = typed_value.ty.cast(Type.Payload.EnumFull).?.data;
+                        if (enum_full.values.count() != 0) {
+                            const tag_val = enum_full.values.keys()[field_index.data];
+                            return self.genTypedValue(.{ .ty = enum_full.tag_ty, .val = tag_val });
+                        } else {
+                            return MCValue{ .immediate = field_index.data };
+                        }
+                    },
+                    else => unreachable,
+                }
+            } else {
+                var int_tag_buffer: Type.Payload.Bits = undefined;
+                const int_tag_ty = typed_value.ty.intTagType(&int_tag_buffer);
+                return self.genTypedValue(.{ .ty = int_tag_ty, .val = typed_value.val });
+            }
+        },
+        .ErrorSet => {
+            switch (typed_value.val.tag()) {
+                .@"error" => {
+                    const err_name = typed_value.val.castTag(.@"error").?.data.name;
+                    const module = self.bin_file.options.module.?;
+                    const global_error_set = module.global_error_set;
+                    const error_index = global_error_set.get(err_name).?;
+                    return MCValue{ .immediate = error_index };
+                },
+                else => {
+                    // In this case we are rendering an error union which has a 0 bits payload.
+                    return MCValue{ .immediate = 0 };
+                },
+            }
+        },
+        .ErrorUnion => {
+            const error_type = typed_value.ty.errorUnionSet();
+            const payload_type = typed_value.ty.errorUnionPayload();
+            const sub_val = typed_value.val.castTag(.eu_payload).?.data;
+
+            if (!payload_type.hasCodeGenBits()) {
+                // We use the error type directly as the type.
+                return self.genTypedValue(.{ .ty = error_type, .val = sub_val });
+            }
+
+            return self.fail("TODO implement error union const of type '{}'", .{typed_value.ty});
+        },
+        else => return self.fail("TODO implement const of type '{}'", .{typed_value.ty}),
+    }
+}
+
+const CallMCValues = struct {
+    args: []MCValue,
+    return_value: MCValue,
+    stack_byte_count: u32,
+    stack_align: u32,
+
+    fn deinit(self: *CallMCValues, func: *Self) void {
+        func.gpa.free(self.args);
+        self.* = undefined;
+    }
+};
+
+/// Caller must call `CallMCValues.deinit`.
+fn resolveCallingConventionValues(self: *Self, fn_ty: Type) !CallMCValues {
+    const cc = fn_ty.fnCallingConvention();
+    const param_types = try self.gpa.alloc(Type, fn_ty.fnParamLen());
+    defer self.gpa.free(param_types);
+    fn_ty.fnParamTypes(param_types);
+    var result: CallMCValues = .{
+        .args = try self.gpa.alloc(MCValue, param_types.len),
+        // These undefined values must be populated before returning from this function.
+        .return_value = undefined,
+        .stack_byte_count = undefined,
+        .stack_align = undefined,
+    };
+    errdefer self.gpa.free(result.args);
+
+    const ret_ty = fn_ty.fnReturnType();
+
+    switch (cc) {
+        .Naked => {
+            assert(result.args.len == 0);
+            result.return_value = .{ .unreach = {} };
+            result.stack_byte_count = 0;
+            result.stack_align = 1;
+            return result;
+        },
+        .Unspecified, .C => {
+            var next_int_reg: usize = 0;
+            var next_stack_offset: u32 = 0;
+
+            for (param_types) |ty, i| {
+                if (!ty.hasCodeGenBits()) {
+                    assert(cc != .C);
+                    result.args[i] = .{ .none = {} };
+                    continue;
+                }
+                const param_size = @intCast(u32, ty.abiSize(self.target.*));
+                const pass_in_reg = switch (ty.zigTypeTag()) {
+                    .Bool => true,
+                    .Int => param_size <= 8,
+                    .Pointer => ty.ptrSize() != .Slice,
+                    .Optional => ty.isPtrLikeOptional(),
+                    else => false,
+                };
+                if (pass_in_reg) {
+                    if (next_int_reg >= c_abi_int_param_regs.len) {
+                        result.args[i] = .{ .stack_offset = next_stack_offset };
+                        next_stack_offset += param_size;
+                    } else {
+                        const aliased_reg = registerAlias(
+                            c_abi_int_param_regs[next_int_reg],
+                            param_size,
+                        );
+                        result.args[i] = .{ .register = aliased_reg };
+                        next_int_reg += 1;
+                    }
+                } else {
+                    // For simplicity of codegen, slices and other types are always pushed onto the stack.
+                    // TODO: look into optimizing this by passing things as registers sometimes,
+                    // such as ptr and len of slices as separate registers.
+                    // TODO: also we need to honor the C ABI for relevant types rather than passing on
+                    // the stack here.
+                    result.args[i] = .{ .stack_offset = next_stack_offset };
+                    next_stack_offset += param_size;
+                }
+            }
+            result.stack_byte_count = next_stack_offset;
+            result.stack_align = 16;
+        },
+        else => return self.fail("TODO implement function parameters for {} on x86_64", .{cc}),
+    }
+
+    if (ret_ty.zigTypeTag() == .NoReturn) {
+        result.return_value = .{ .unreach = {} };
+    } else if (!ret_ty.hasCodeGenBits()) {
+        result.return_value = .{ .none = {} };
+    } else switch (cc) {
+        .Naked => unreachable,
+        .Unspecified, .C => {
+            const ret_ty_size = @intCast(u32, ret_ty.abiSize(self.target.*));
+            const aliased_reg = registerAlias(c_abi_int_return_regs[0], ret_ty_size);
+            result.return_value = .{ .register = aliased_reg };
+        },
+        else => return self.fail("TODO implement function return values for {}", .{cc}),
+    }
+    return result;
+}
+
+/// TODO support scope overrides. Also note this logic is duplicated with `Module.wantSafety`.
+fn wantSafety(self: *Self) bool {
+    return switch (self.bin_file.options.optimize_mode) {
+        .Debug => true,
+        .ReleaseSafe => true,
+        .ReleaseFast => false,
+        .ReleaseSmall => false,
+    };
+}
+
+fn fail(self: *Self, comptime format: []const u8, args: anytype) InnerError {
+    @setCold(true);
+    assert(self.err_msg == null);
+    self.err_msg = try ErrorMsg.create(self.bin_file.allocator, self.src_loc, format, args);
+    return error.CodegenFail;
+}
+
+fn failSymbol(self: *Self, comptime format: []const u8, args: anytype) InnerError {
+    @setCold(true);
+    assert(self.err_msg == null);
+    self.err_msg = try ErrorMsg.create(self.bin_file.allocator, self.src_loc, format, args);
+    return error.CodegenFail;
+}
+
+const Register = @import("bits.zig").Register;
+
+const Instruction = void;
+
+const Condition = void;
+
+const callee_preserved_regs = @import("bits.zig").callee_preserved_regs;
+
+const c_abi_int_param_regs = @import("bits.zig").c_abi_int_param_regs;
+
+const c_abi_int_return_regs = @import("bits.zig").c_abi_int_return_regs;
+
+fn parseRegName(name: []const u8) ?Register {
+    if (@hasDecl(Register, "parseRegName")) {
+        return Register.parseRegName(name);
+    }
+    return std.meta.stringToEnum(Register, name);
+}
+
+fn registerAlias(reg: Register, size_bytes: u32) Register {
+    // For x86_64 we have to pick a smaller register alias depending on abi size.
+    switch (size_bytes) {
+        1 => return reg.to8(),
+        2 => return reg.to16(),
+        4 => return reg.to32(),
+        8 => return reg.to64(),
+        else => unreachable,
+    }
+}
src/codegen.zig
@@ -22,8 +22,6 @@ const log = std.log.scoped(.codegen);
 const build_options = @import("build_options");
 const RegisterManager = @import("register_manager.zig").RegisterManager;
 
-const X8664Encoder = @import("arch/x86_64/bits.zig").Encoder;
-
 pub const FnResult = union(enum) {
     /// The `code` parameter passed to `generateSymbol` has the value appended.
     appended: void,
@@ -118,7 +116,7 @@ pub fn generateFunction(
         //.thumb => return Function(.thumb).generate(bin_file, src_loc, func, air, liveness, code, debug_output),
         //.thumbeb => return Function(.thumbeb).generate(bin_file, src_loc, func, air, liveness, code, debug_output),
         //.i386 => return Function(.i386).generate(bin_file, src_loc, func, air, liveness, code, debug_output),
-        .x86_64 => return Function(.x86_64).generate(bin_file, src_loc, func, air, liveness, code, debug_output),
+        .x86_64 => return @import("arch/x86_64/CodeGen.zig").generate(.x86_64, bin_file, src_loc, func, air, liveness, code, debug_output),
         //.xcore => return Function(.xcore).generate(bin_file, src_loc, func, air, liveness, code, debug_output),
         //.nvptx => return Function(.nvptx).generate(bin_file, src_loc, func, air, liveness, code, debug_output),
         //.nvptx64 => return Function(.nvptx64).generate(bin_file, src_loc, func, air, liveness, code, debug_output),
@@ -598,69 +596,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
 
         fn gen(self: *Self) !void {
             switch (arch) {
-                .x86_64 => {
-                    try self.code.ensureUnusedCapacity(11);
-
-                    const cc = self.fn_type.fnCallingConvention();
-                    if (cc != .Naked) {
-                        // We want to subtract the aligned stack frame size from rsp here, but we don't
-                        // yet know how big it will be, so we leave room for a 4-byte stack size.
-                        // TODO During semantic analysis, check if there are no function calls. If there
-                        // are none, here we can omit the part where we subtract and then add rsp.
-                        self.code.appendSliceAssumeCapacity(&[_]u8{
-                            0x55, // push rbp
-                            0x48, 0x89, 0xe5, // mov rbp, rsp
-                            0x48, 0x81, 0xec, // sub rsp, imm32 (with reloc)
-                        });
-                        const reloc_index = self.code.items.len;
-                        self.code.items.len += 4;
-
-                        try self.dbgSetPrologueEnd();
-                        try self.genBody(self.air.getMainBody());
-
-                        const stack_end = self.max_end_stack;
-                        if (stack_end > math.maxInt(i32))
-                            return self.failSymbol("too much stack used in call parameters", .{});
-                        const aligned_stack_end = mem.alignForward(stack_end, self.stack_align);
-                        mem.writeIntLittle(u32, self.code.items[reloc_index..][0..4], @intCast(u32, aligned_stack_end));
-
-                        if (self.code.items.len >= math.maxInt(i32)) {
-                            return self.failSymbol("unable to perform relocation: jump too far", .{});
-                        }
-                        if (self.exitlude_jump_relocs.items.len == 1) {
-                            self.code.items.len -= 5;
-                        } else for (self.exitlude_jump_relocs.items) |jmp_reloc| {
-                            const amt = self.code.items.len - (jmp_reloc + 4);
-                            const s32_amt = @intCast(i32, amt);
-                            mem.writeIntLittle(i32, self.code.items[jmp_reloc..][0..4], s32_amt);
-                        }
-
-                        // Important to be after the possible self.code.items.len -= 5 above.
-                        try self.dbgSetEpilogueBegin();
-
-                        try self.code.ensureUnusedCapacity(9);
-                        // add rsp, x
-                        if (aligned_stack_end > math.maxInt(i8)) {
-                            // example: 48 81 c4 ff ff ff 7f  add    rsp,0x7fffffff
-                            self.code.appendSliceAssumeCapacity(&[_]u8{ 0x48, 0x81, 0xc4 });
-                            const x = @intCast(u32, aligned_stack_end);
-                            mem.writeIntLittle(u32, self.code.addManyAsArrayAssumeCapacity(4), x);
-                        } else if (aligned_stack_end != 0) {
-                            // example: 48 83 c4 7f           add    rsp,0x7f
-                            const x = @intCast(u8, aligned_stack_end);
-                            self.code.appendSliceAssumeCapacity(&[_]u8{ 0x48, 0x83, 0xc4, x });
-                        }
-
-                        self.code.appendSliceAssumeCapacity(&[_]u8{
-                            0x5d, // pop rbp
-                            0xc3, // ret
-                        });
-                    } else {
-                        try self.dbgSetPrologueEnd();
-                        try self.genBody(self.air.getMainBody());
-                        try self.dbgSetEpilogueBegin();
-                    }
-                },
                 .arm, .armeb => {
                     const cc = self.fn_type.fnCallingConvention();
                     if (cc != .Naked) {
@@ -969,8 +904,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
             branch.inst_table.putAssumeCapacity(inst, .dead);
             switch (prev_value) {
                 .register => |reg| {
-                    const canon_reg = toCanonicalReg(reg);
-                    self.register_manager.freeReg(canon_reg);
+                    self.register_manager.freeReg(reg);
                 },
                 else => {}, // TODO process stack allocation death
             }
@@ -1086,7 +1020,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
                 const ptr_bytes: u64 = @divExact(ptr_bits, 8);
                 if (abi_size <= ptr_bytes) {
                     if (self.register_manager.tryAllocReg(inst, &.{})) |reg| {
-                        return MCValue{ .register = registerAlias(reg, abi_size) };
+                        return MCValue{ .register = reg };
                     }
                 }
             }
@@ -1098,7 +1032,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
             const stack_mcv = try self.allocRegOrMem(inst, false);
             log.debug("spilling {d} to stack mcv {any}", .{ inst, stack_mcv });
             const reg_mcv = self.getResolvedInstValue(inst);
-            assert(reg == toCanonicalReg(reg_mcv.register));
+            assert(reg == reg_mcv.register);
             const branch = &self.branch_stack.items[self.branch_stack.items.len - 1];
             try branch.inst_table.put(self.gpa, inst, stack_mcv);
             try self.genSetStack(self.air.typeOfIndex(inst), stack_mcv.stack_offset, reg_mcv);
@@ -1226,9 +1160,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
                 }
 
                 switch (arch) {
-                    .x86_64 => {
-                        break :result try self.genX8664BinMath(inst, ty_op.operand, .bool_true);
-                    },
                     .arm, .armeb => {
                         break :result try self.genArmBinOp(inst, ty_op.operand, .bool_true, .not);
                     },
@@ -1266,7 +1197,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
         fn airAdd(self: *Self, inst: Air.Inst.Index) !void {
             const bin_op = self.air.instructions.items(.data)[inst].bin_op;
             const result: MCValue = if (self.liveness.isUnused(inst)) .dead else switch (arch) {
-                .x86_64 => try self.genX8664BinMath(inst, bin_op.lhs, bin_op.rhs),
                 .arm, .armeb => try self.genArmBinOp(inst, bin_op.lhs, bin_op.rhs, .add),
                 else => return self.fail("TODO implement add for {}", .{self.target.cpu.arch}),
             };
@@ -1292,7 +1222,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
         fn airSub(self: *Self, inst: Air.Inst.Index) !void {
             const bin_op = self.air.instructions.items(.data)[inst].bin_op;
             const result: MCValue = if (self.liveness.isUnused(inst)) .dead else switch (arch) {
-                .x86_64 => try self.genX8664BinMath(inst, bin_op.lhs, bin_op.rhs),
                 .arm, .armeb => try self.genArmBinOp(inst, bin_op.lhs, bin_op.rhs, .sub),
                 else => return self.fail("TODO implement sub for {}", .{self.target.cpu.arch}),
             };
@@ -1318,7 +1247,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
         fn airMul(self: *Self, inst: Air.Inst.Index) !void {
             const bin_op = self.air.instructions.items(.data)[inst].bin_op;
             const result: MCValue = if (self.liveness.isUnused(inst)) .dead else switch (arch) {
-                .x86_64 => try self.genX8664BinMath(inst, bin_op.lhs, bin_op.rhs),
                 .arm, .armeb => try self.genArmMul(inst, bin_op.lhs, bin_op.rhs),
                 else => return self.fail("TODO implement mul for {}", .{self.target.cpu.arch}),
             };
@@ -1369,7 +1297,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
             const bin_op = self.air.instructions.items(.data)[inst].bin_op;
             const result: MCValue = if (self.liveness.isUnused(inst)) .dead else switch (arch) {
                 .arm, .armeb => try self.genArmBinOp(inst, bin_op.lhs, bin_op.rhs, .bit_and),
-                .x86_64 => try self.genX8664BinMath(inst, bin_op.lhs, bin_op.rhs),
                 else => return self.fail("TODO implement bitwise and for {}", .{self.target.cpu.arch}),
             };
             return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
@@ -1379,7 +1306,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
             const bin_op = self.air.instructions.items(.data)[inst].bin_op;
             const result: MCValue = if (self.liveness.isUnused(inst)) .dead else switch (arch) {
                 .arm, .armeb => try self.genArmBinOp(inst, bin_op.lhs, bin_op.rhs, .bit_or),
-                .x86_64 => try self.genX8664BinMath(inst, bin_op.lhs, bin_op.rhs),
                 else => return self.fail("TODO implement bitwise or for {}", .{self.target.cpu.arch}),
             };
             return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
@@ -2088,496 +2014,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
             return dst_mcv;
         }
 
-        /// Perform "binary" operators, excluding comparisons.
-        /// Currently, the following ops are supported:
-        /// ADD, SUB, XOR, OR, AND
-        fn genX8664BinMath(self: *Self, inst: Air.Inst.Index, op_lhs: Air.Inst.Ref, op_rhs: Air.Inst.Ref) !MCValue {
-            // We'll handle these ops in two steps.
-            // 1) Prepare an output location (register or memory)
-            //    This location will be the location of the operand that dies (if one exists)
-            //    or just a temporary register (if one doesn't exist)
-            // 2) Perform the op with the other argument
-            // 3) Sometimes, the output location is memory but the op doesn't support it.
-            //    In this case, copy that location to a register, then perform the op to that register instead.
-            //
-            // TODO: make this algorithm less bad
-
-            try self.code.ensureUnusedCapacity(8);
-
-            const lhs = try self.resolveInst(op_lhs);
-            const rhs = try self.resolveInst(op_rhs);
-
-            // There are 2 operands, destination and source.
-            // Either one, but not both, can be a memory operand.
-            // Source operand can be an immediate, 8 bits or 32 bits.
-            // So, if either one of the operands dies with this instruction, we can use it
-            // as the result MCValue.
-            var dst_mcv: MCValue = undefined;
-            var src_mcv: MCValue = undefined;
-            var src_inst: Air.Inst.Ref = undefined;
-            if (self.reuseOperand(inst, op_lhs, 0, lhs)) {
-                // LHS dies; use it as the destination.
-                // Both operands cannot be memory.
-                src_inst = op_rhs;
-                if (lhs.isMemory() and rhs.isMemory()) {
-                    dst_mcv = try self.copyToNewRegister(inst, lhs);
-                    src_mcv = rhs;
-                } else {
-                    dst_mcv = lhs;
-                    src_mcv = rhs;
-                }
-            } else if (self.reuseOperand(inst, op_rhs, 1, rhs)) {
-                // RHS dies; use it as the destination.
-                // Both operands cannot be memory.
-                src_inst = op_lhs;
-                if (lhs.isMemory() and rhs.isMemory()) {
-                    dst_mcv = try self.copyToNewRegister(inst, rhs);
-                    src_mcv = lhs;
-                } else {
-                    dst_mcv = rhs;
-                    src_mcv = lhs;
-                }
-            } else {
-                if (lhs.isMemory()) {
-                    dst_mcv = try self.copyToNewRegister(inst, lhs);
-                    src_mcv = rhs;
-                    src_inst = op_rhs;
-                } else {
-                    dst_mcv = try self.copyToNewRegister(inst, rhs);
-                    src_mcv = lhs;
-                    src_inst = op_lhs;
-                }
-            }
-            // This instruction supports only signed 32-bit immediates at most. If the immediate
-            // value is larger than this, we put it in a register.
-            // A potential opportunity for future optimization here would be keeping track
-            // of the fact that the instruction is available both as an immediate
-            // and as a register.
-            switch (src_mcv) {
-                .immediate => |imm| {
-                    if (imm > math.maxInt(u31)) {
-                        src_mcv = MCValue{ .register = try self.copyToTmpRegister(Type.initTag(.u64), src_mcv) };
-                    }
-                },
-                else => {},
-            }
-
-            // Now for step 2, we perform the actual op
-            const inst_ty = self.air.typeOfIndex(inst);
-            const air_tags = self.air.instructions.items(.tag);
-            switch (air_tags[inst]) {
-                // TODO: Generate wrapping and non-wrapping versions separately
-                .add, .addwrap => try self.genX8664BinMathCode(inst_ty, dst_mcv, src_mcv, 0, 0x00),
-                .bool_or, .bit_or => try self.genX8664BinMathCode(inst_ty, dst_mcv, src_mcv, 1, 0x08),
-                .bool_and, .bit_and => try self.genX8664BinMathCode(inst_ty, dst_mcv, src_mcv, 4, 0x20),
-                .sub, .subwrap => try self.genX8664BinMathCode(inst_ty, dst_mcv, src_mcv, 5, 0x28),
-                .xor, .not => try self.genX8664BinMathCode(inst_ty, dst_mcv, src_mcv, 6, 0x30),
-
-                .mul, .mulwrap => try self.genX8664Imul(inst_ty, dst_mcv, src_mcv),
-                else => unreachable,
-            }
-
-            return dst_mcv;
-        }
-
-        /// Wrap over Instruction.encodeInto to translate errors
-        fn encodeX8664Instruction(self: *Self, inst: Instruction) !void {
-            inst.encodeInto(self.code) catch |err| {
-                if (err == error.OutOfMemory)
-                    return error.OutOfMemory
-                else
-                    return self.fail("Instruction.encodeInto failed because {s}", .{@errorName(err)});
-            };
-        }
-
-        /// This function encodes a binary operation for x86_64
-        /// intended for use with the following opcode ranges
-        /// because they share the same structure.
-        ///
-        /// Thus not all binary operations can be used here
-        /// -- multiplication needs to be done with imul,
-        /// which doesn't have as convenient an interface.
-        ///
-        /// "opx"-style instructions use the opcode extension field to indicate which instruction to execute:
-        ///
-        /// opx = /0: add
-        /// opx = /1: or
-        /// opx = /2: adc
-        /// opx = /3: sbb
-        /// opx = /4: and
-        /// opx = /5: sub
-        /// opx = /6: xor
-        /// opx = /7: cmp
-        ///
-        /// opcode  | operand shape
-        /// --------+----------------------
-        /// 80 /opx | *r/m8*,        imm8
-        /// 81 /opx | *r/m16/32/64*, imm16/32
-        /// 83 /opx | *r/m16/32/64*, imm8
-        ///
-        /// "mr"-style instructions use the low bits of opcode to indicate shape of instruction:
-        ///
-        /// mr = 00: add
-        /// mr = 08: or
-        /// mr = 10: adc
-        /// mr = 18: sbb
-        /// mr = 20: and
-        /// mr = 28: sub
-        /// mr = 30: xor
-        /// mr = 38: cmp
-        ///
-        /// opcode | operand shape
-        /// -------+-------------------------
-        /// mr + 0 | *r/m8*,        r8
-        /// mr + 1 | *r/m16/32/64*, r16/32/64
-        /// mr + 2 | *r8*,          r/m8
-        /// mr + 3 | *r16/32/64*,   r/m16/32/64
-        /// mr + 4 | *AL*,          imm8
-        /// mr + 5 | *rAX*,         imm16/32
-        ///
-        /// TODO: rotates and shifts share the same structure, so we can potentially implement them
-        ///       at a later date with very similar code.
-        ///       They have "opx"-style instructions, but no "mr"-style instructions.
-        ///
-        /// opx = /0: rol,
-        /// opx = /1: ror,
-        /// opx = /2: rcl,
-        /// opx = /3: rcr,
-        /// opx = /4: shl sal,
-        /// opx = /5: shr,
-        /// opx = /6: sal shl,
-        /// opx = /7: sar,
-        ///
-        /// opcode  | operand shape
-        /// --------+------------------
-        /// c0 /opx | *r/m8*,        imm8
-        /// c1 /opx | *r/m16/32/64*, imm8
-        /// d0 /opx | *r/m8*,        1
-        /// d1 /opx | *r/m16/32/64*, 1
-        /// d2 /opx | *r/m8*,        CL    (for context, CL is register 1)
-        /// d3 /opx | *r/m16/32/64*, CL    (for context, CL is register 1)
-        fn genX8664BinMathCode(
-            self: *Self,
-            dst_ty: Type,
-            dst_mcv: MCValue,
-            src_mcv: MCValue,
-            opx: u3,
-            mr: u8,
-        ) !void {
-            switch (dst_mcv) {
-                .none => unreachable,
-                .undef => unreachable,
-                .dead, .unreach, .immediate => unreachable,
-                .compare_flags_unsigned => unreachable,
-                .compare_flags_signed => unreachable,
-                .ptr_stack_offset => unreachable,
-                .ptr_embedded_in_code => unreachable,
-                .register => |dst_reg| {
-                    switch (src_mcv) {
-                        .none => unreachable,
-                        .undef => try self.genSetReg(dst_ty, dst_reg, .undef),
-                        .dead, .unreach => unreachable,
-                        .ptr_stack_offset => unreachable,
-                        .ptr_embedded_in_code => unreachable,
-                        .register => |src_reg| {
-                            // for register, register use mr + 1
-                            // addressing mode: *r/m16/32/64*, r16/32/64
-                            const abi_size = dst_ty.abiSize(self.target.*);
-                            const encoder = try X8664Encoder.init(self.code, 3);
-                            encoder.rex(.{
-                                .w = abi_size == 8,
-                                .r = src_reg.isExtended(),
-                                .b = dst_reg.isExtended(),
-                            });
-                            encoder.opcode_1byte(mr + 1);
-                            encoder.modRm_direct(
-                                src_reg.low_id(),
-                                dst_reg.low_id(),
-                            );
-                        },
-                        .immediate => |imm| {
-                            // register, immediate use opx = 81 or 83 addressing modes:
-                            // opx = 81: r/m16/32/64, imm16/32
-                            // opx = 83: r/m16/32/64, imm8
-                            const imm32 = @intCast(i32, imm); // This case must be handled before calling genX8664BinMathCode.
-                            if (imm32 <= math.maxInt(i8)) {
-                                const abi_size = dst_ty.abiSize(self.target.*);
-                                const encoder = try X8664Encoder.init(self.code, 4);
-                                encoder.rex(.{
-                                    .w = abi_size == 8,
-                                    .b = dst_reg.isExtended(),
-                                });
-                                encoder.opcode_1byte(0x83);
-                                encoder.modRm_direct(
-                                    opx,
-                                    dst_reg.low_id(),
-                                );
-                                encoder.imm8(@intCast(i8, imm32));
-                            } else {
-                                const abi_size = dst_ty.abiSize(self.target.*);
-                                const encoder = try X8664Encoder.init(self.code, 7);
-                                encoder.rex(.{
-                                    .w = abi_size == 8,
-                                    .b = dst_reg.isExtended(),
-                                });
-                                encoder.opcode_1byte(0x81);
-                                encoder.modRm_direct(
-                                    opx,
-                                    dst_reg.low_id(),
-                                );
-                                encoder.imm32(@intCast(i32, imm32));
-                            }
-                        },
-                        .embedded_in_code, .memory => {
-                            return self.fail("TODO implement x86 ADD/SUB/CMP source memory", .{});
-                        },
-                        .stack_offset => |off| {
-                            // register, indirect use mr + 3
-                            // addressing mode: *r16/32/64*, r/m16/32/64
-                            const abi_size = dst_ty.abiSize(self.target.*);
-                            const adj_off = off + abi_size;
-                            if (off > math.maxInt(i32)) {
-                                return self.fail("stack offset too large", .{});
-                            }
-                            const encoder = try X8664Encoder.init(self.code, 7);
-                            encoder.rex(.{
-                                .w = abi_size == 8,
-                                .r = dst_reg.isExtended(),
-                            });
-                            encoder.opcode_1byte(mr + 3);
-                            if (adj_off <= std.math.maxInt(i8)) {
-                                encoder.modRm_indirectDisp8(
-                                    dst_reg.low_id(),
-                                    Register.ebp.low_id(),
-                                );
-                                encoder.disp8(-@intCast(i8, adj_off));
-                            } else {
-                                encoder.modRm_indirectDisp32(
-                                    dst_reg.low_id(),
-                                    Register.ebp.low_id(),
-                                );
-                                encoder.disp32(-@intCast(i32, adj_off));
-                            }
-                        },
-                        .compare_flags_unsigned => {
-                            return self.fail("TODO implement x86 ADD/SUB/CMP source compare flag (unsigned)", .{});
-                        },
-                        .compare_flags_signed => {
-                            return self.fail("TODO implement x86 ADD/SUB/CMP source compare flag (signed)", .{});
-                        },
-                    }
-                },
-                .stack_offset => |off| {
-                    switch (src_mcv) {
-                        .none => unreachable,
-                        .undef => return self.genSetStack(dst_ty, off, .undef),
-                        .dead, .unreach => unreachable,
-                        .ptr_stack_offset => unreachable,
-                        .ptr_embedded_in_code => unreachable,
-                        .register => |src_reg| {
-                            try self.genX8664ModRMRegToStack(dst_ty, off, src_reg, mr + 0x1);
-                        },
-                        .immediate => |imm| {
-                            _ = imm;
-                            return self.fail("TODO implement x86 ADD/SUB/CMP source immediate", .{});
-                        },
-                        .embedded_in_code, .memory, .stack_offset => {
-                            return self.fail("TODO implement x86 ADD/SUB/CMP source memory", .{});
-                        },
-                        .compare_flags_unsigned => {
-                            return self.fail("TODO implement x86 ADD/SUB/CMP source compare flag (unsigned)", .{});
-                        },
-                        .compare_flags_signed => {
-                            return self.fail("TODO implement x86 ADD/SUB/CMP source compare flag (signed)", .{});
-                        },
-                    }
-                },
-                .embedded_in_code, .memory => {
-                    return self.fail("TODO implement x86 ADD/SUB/CMP destination memory", .{});
-                },
-            }
-        }
-
-        /// Performs integer multiplication between dst_mcv and src_mcv, storing the result in dst_mcv.
-        fn genX8664Imul(
-            self: *Self,
-            dst_ty: Type,
-            dst_mcv: MCValue,
-            src_mcv: MCValue,
-        ) !void {
-            switch (dst_mcv) {
-                .none => unreachable,
-                .undef => unreachable,
-                .dead, .unreach, .immediate => unreachable,
-                .compare_flags_unsigned => unreachable,
-                .compare_flags_signed => unreachable,
-                .ptr_stack_offset => unreachable,
-                .ptr_embedded_in_code => unreachable,
-                .register => |dst_reg| {
-                    switch (src_mcv) {
-                        .none => unreachable,
-                        .undef => try self.genSetReg(dst_ty, dst_reg, .undef),
-                        .dead, .unreach => unreachable,
-                        .ptr_stack_offset => unreachable,
-                        .ptr_embedded_in_code => unreachable,
-                        .register => |src_reg| {
-                            // register, register
-                            //
-                            // Use the following imul opcode
-                            // 0F AF /r: IMUL r32/64, r/m32/64
-                            const abi_size = dst_ty.abiSize(self.target.*);
-                            const encoder = try X8664Encoder.init(self.code, 4);
-                            encoder.rex(.{
-                                .w = abi_size == 8,
-                                .r = dst_reg.isExtended(),
-                                .b = src_reg.isExtended(),
-                            });
-                            encoder.opcode_2byte(0x0f, 0xaf);
-                            encoder.modRm_direct(
-                                dst_reg.low_id(),
-                                src_reg.low_id(),
-                            );
-                        },
-                        .immediate => |imm| {
-                            // register, immediate:
-                            // depends on size of immediate.
-                            //
-                            // immediate fits in i8:
-                            // 6B /r ib: IMUL r32/64, r/m32/64, imm8
-                            //
-                            // immediate fits in i32:
-                            // 69 /r id: IMUL r32/64, r/m32/64, imm32
-                            //
-                            // immediate is huge:
-                            // split into 2 instructions
-                            // 1) copy the 64 bit immediate into a tmp register
-                            // 2) perform register,register mul
-                            // 0F AF /r: IMUL r32/64, r/m32/64
-                            if (math.minInt(i8) <= imm and imm <= math.maxInt(i8)) {
-                                const abi_size = dst_ty.abiSize(self.target.*);
-                                const encoder = try X8664Encoder.init(self.code, 4);
-                                encoder.rex(.{
-                                    .w = abi_size == 8,
-                                    .r = dst_reg.isExtended(),
-                                    .b = dst_reg.isExtended(),
-                                });
-                                encoder.opcode_1byte(0x6B);
-                                encoder.modRm_direct(
-                                    dst_reg.low_id(),
-                                    dst_reg.low_id(),
-                                );
-                                encoder.imm8(@intCast(i8, imm));
-                            } else if (math.minInt(i32) <= imm and imm <= math.maxInt(i32)) {
-                                const abi_size = dst_ty.abiSize(self.target.*);
-                                const encoder = try X8664Encoder.init(self.code, 7);
-                                encoder.rex(.{
-                                    .w = abi_size == 8,
-                                    .r = dst_reg.isExtended(),
-                                    .b = dst_reg.isExtended(),
-                                });
-                                encoder.opcode_1byte(0x69);
-                                encoder.modRm_direct(
-                                    dst_reg.low_id(),
-                                    dst_reg.low_id(),
-                                );
-                                encoder.imm32(@intCast(i32, imm));
-                            } else {
-                                const src_reg = try self.copyToTmpRegister(dst_ty, src_mcv);
-                                return self.genX8664Imul(dst_ty, dst_mcv, MCValue{ .register = src_reg });
-                            }
-                        },
-                        .embedded_in_code, .memory, .stack_offset => {
-                            return self.fail("TODO implement x86 multiply source memory", .{});
-                        },
-                        .compare_flags_unsigned => {
-                            return self.fail("TODO implement x86 multiply source compare flag (unsigned)", .{});
-                        },
-                        .compare_flags_signed => {
-                            return self.fail("TODO implement x86 multiply source compare flag (signed)", .{});
-                        },
-                    }
-                },
-                .stack_offset => |off| {
-                    switch (src_mcv) {
-                        .none => unreachable,
-                        .undef => return self.genSetStack(dst_ty, off, .undef),
-                        .dead, .unreach => unreachable,
-                        .ptr_stack_offset => unreachable,
-                        .ptr_embedded_in_code => unreachable,
-                        .register => |src_reg| {
-                            // copy dst to a register
-                            const dst_reg = try self.copyToTmpRegister(dst_ty, dst_mcv);
-                            // multiply into dst_reg
-                            // register, register
-                            // Use the following imul opcode
-                            // 0F AF /r: IMUL r32/64, r/m32/64
-                            const abi_size = dst_ty.abiSize(self.target.*);
-                            const encoder = try X8664Encoder.init(self.code, 4);
-                            encoder.rex(.{
-                                .w = abi_size == 8,
-                                .r = dst_reg.isExtended(),
-                                .b = src_reg.isExtended(),
-                            });
-                            encoder.opcode_2byte(0x0f, 0xaf);
-                            encoder.modRm_direct(
-                                dst_reg.low_id(),
-                                src_reg.low_id(),
-                            );
-                            // copy dst_reg back out
-                            return self.genSetStack(dst_ty, off, MCValue{ .register = dst_reg });
-                        },
-                        .immediate => |imm| {
-                            _ = imm;
-                            return self.fail("TODO implement x86 multiply source immediate", .{});
-                        },
-                        .embedded_in_code, .memory, .stack_offset => {
-                            return self.fail("TODO implement x86 multiply source memory", .{});
-                        },
-                        .compare_flags_unsigned => {
-                            return self.fail("TODO implement x86 multiply source compare flag (unsigned)", .{});
-                        },
-                        .compare_flags_signed => {
-                            return self.fail("TODO implement x86 multiply source compare flag (signed)", .{});
-                        },
-                    }
-                },
-                .embedded_in_code, .memory => {
-                    return self.fail("TODO implement x86 multiply destination memory", .{});
-                },
-            }
-        }
-
-        fn genX8664ModRMRegToStack(self: *Self, ty: Type, off: u32, reg: Register, opcode: u8) !void {
-            const abi_size = ty.abiSize(self.target.*);
-            const adj_off = off + abi_size;
-            if (off > math.maxInt(i32)) {
-                return self.fail("stack offset too large", .{});
-            }
-
-            const i_adj_off = -@intCast(i32, adj_off);
-            const encoder = try X8664Encoder.init(self.code, 7);
-            encoder.rex(.{
-                .w = abi_size == 8,
-                .r = reg.isExtended(),
-            });
-            encoder.opcode_1byte(opcode);
-            if (i_adj_off < std.math.maxInt(i8)) {
-                // example: 48 89 55 7f           mov    QWORD PTR [rbp+0x7f],rdx
-                encoder.modRm_indirectDisp8(
-                    reg.low_id(),
-                    Register.ebp.low_id(),
-                );
-                encoder.disp8(@intCast(i8, i_adj_off));
-            } else {
-                // example: 48 89 95 80 00 00 00  mov    QWORD PTR [rbp+0x80],rdx
-                encoder.modRm_indirectDisp32(
-                    reg.low_id(),
-                    Register.ebp.low_id(),
-                );
-                encoder.disp32(i_adj_off);
-            }
-        }
-
         fn genArgDbgInfo(self: *Self, inst: Air.Inst.Index, mcv: MCValue) !void {
             const ty_str = self.air.instructions.items(.data)[inst].ty_str;
             const zir = &self.mod_fn.owner_decl.getFileScope().zir;
@@ -2674,7 +2110,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
 
             switch (mcv) {
                 .register => |reg| {
-                    self.register_manager.getRegAssumeFree(toCanonicalReg(reg), inst);
+                    self.register_manager.getRegAssumeFree(reg, inst);
                 },
                 else => {},
             }
@@ -2684,7 +2120,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
 
         fn airBreakpoint(self: *Self) !void {
             switch (arch) {
-                .i386, .x86_64 => {
+                .i386 => {
                     try self.code.append(0xcc); // int3
                 },
                 .riscv64 => {
@@ -2717,68 +2153,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
             // on linking.
             if (self.bin_file.tag == link.File.Elf.base_tag or self.bin_file.tag == link.File.Coff.base_tag) {
                 switch (arch) {
-                    .x86_64 => {
-                        for (info.args) |mc_arg, arg_i| {
-                            const arg = args[arg_i];
-                            const arg_ty = self.air.typeOf(arg);
-                            const arg_mcv = try self.resolveInst(args[arg_i]);
-                            // Here we do not use setRegOrMem even though the logic is similar, because
-                            // the function call will move the stack pointer, so the offsets are different.
-                            switch (mc_arg) {
-                                .none => continue,
-                                .register => |reg| {
-                                    try self.register_manager.getReg(reg, null);
-                                    try self.genSetReg(arg_ty, reg, arg_mcv);
-                                },
-                                .stack_offset => |off| {
-                                    // Here we need to emit instructions like this:
-                                    // mov     qword ptr [rsp + stack_offset], x
-                                    try self.genSetStack(arg_ty, off, arg_mcv);
-                                },
-                                .ptr_stack_offset => {
-                                    return self.fail("TODO implement calling with MCValue.ptr_stack_offset arg", .{});
-                                },
-                                .ptr_embedded_in_code => {
-                                    return self.fail("TODO implement calling with MCValue.ptr_embedded_in_code arg", .{});
-                                },
-                                .undef => unreachable,
-                                .immediate => unreachable,
-                                .unreach => unreachable,
-                                .dead => unreachable,
-                                .embedded_in_code => unreachable,
-                                .memory => unreachable,
-                                .compare_flags_signed => unreachable,
-                                .compare_flags_unsigned => unreachable,
-                            }
-                        }
-
-                        if (self.air.value(callee)) |func_value| {
-                            if (func_value.castTag(.function)) |func_payload| {
-                                const func = func_payload.data;
-
-                                const ptr_bits = self.target.cpu.arch.ptrBitWidth();
-                                const ptr_bytes: u64 = @divExact(ptr_bits, 8);
-                                const got_addr = if (self.bin_file.cast(link.File.Elf)) |elf_file| blk: {
-                                    const got = &elf_file.program_headers.items[elf_file.phdr_got_index.?];
-                                    break :blk @intCast(u32, got.p_vaddr + func.owner_decl.link.elf.offset_table_index * ptr_bytes);
-                                } else if (self.bin_file.cast(link.File.Coff)) |coff_file|
-                                    @intCast(u32, coff_file.offset_table_virtual_address + func.owner_decl.link.coff.offset_table_index * ptr_bytes)
-                                else
-                                    unreachable;
-
-                                // ff 14 25 xx xx xx xx    call [addr]
-                                try self.code.ensureUnusedCapacity(7);
-                                self.code.appendSliceAssumeCapacity(&[3]u8{ 0xff, 0x14, 0x25 });
-                                mem.writeIntLittle(u32, self.code.addManyAsArrayAssumeCapacity(4), got_addr);
-                            } else if (func_value.castTag(.extern_fn)) |_| {
-                                return self.fail("TODO implement calling extern functions", .{});
-                            } else {
-                                return self.fail("TODO implement calling bitcasted functions", .{});
-                            }
-                        } else {
-                            return self.fail("TODO implement calling runtime known function pointer", .{});
-                        }
-                    },
                     .riscv64 => {
                         if (info.args.len > 0) return self.fail("TODO implement fn args for {}", .{self.target.cpu.arch});
 
@@ -2873,149 +2247,10 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
                     },
                     else => return self.fail("TODO implement call for {}", .{self.target.cpu.arch}),
                 }
-            } else if (self.bin_file.cast(link.File.MachO)) |macho_file| {
-                for (info.args) |mc_arg, arg_i| {
-                    const arg = args[arg_i];
-                    const arg_ty = self.air.typeOf(arg);
-                    const arg_mcv = try self.resolveInst(args[arg_i]);
-                    // Here we do not use setRegOrMem even though the logic is similar, because
-                    // the function call will move the stack pointer, so the offsets are different.
-                    switch (mc_arg) {
-                        .none => continue,
-                        .register => |reg| {
-                            // TODO prevent this macho if block to be generated for all archs
-                            switch (arch) {
-                                .x86_64 => try self.register_manager.getReg(reg, null),
-                                else => unreachable,
-                            }
-                            try self.genSetReg(arg_ty, reg, arg_mcv);
-                        },
-                        .stack_offset => {
-                            // Here we need to emit instructions like this:
-                            // mov     qword ptr [rsp + stack_offset], x
-                            return self.fail("TODO implement calling with parameters in memory", .{});
-                        },
-                        .ptr_stack_offset => {
-                            return self.fail("TODO implement calling with MCValue.ptr_stack_offset arg", .{});
-                        },
-                        .ptr_embedded_in_code => {
-                            return self.fail("TODO implement calling with MCValue.ptr_embedded_in_code arg", .{});
-                        },
-                        .undef => unreachable,
-                        .immediate => unreachable,
-                        .unreach => unreachable,
-                        .dead => unreachable,
-                        .embedded_in_code => unreachable,
-                        .memory => unreachable,
-                        .compare_flags_signed => unreachable,
-                        .compare_flags_unsigned => unreachable,
-                    }
-                }
-
-                if (self.air.value(callee)) |func_value| {
-                    if (func_value.castTag(.function)) |func_payload| {
-                        const func = func_payload.data;
-                        // TODO I'm hacking my way through here by repurposing .memory for storing
-                        // index to the GOT target symbol index.
-                        switch (arch) {
-                            .x86_64 => {
-                                try self.genSetReg(Type.initTag(.u64), .rax, .{
-                                    .memory = func.owner_decl.link.macho.local_sym_index,
-                                });
-                                // callq *%rax
-                                try self.code.ensureUnusedCapacity(2);
-                                self.code.appendSliceAssumeCapacity(&[2]u8{ 0xff, 0xd0 });
-                            },
-                            else => unreachable, // unsupported architecture on MachO
-                        }
-                    } else if (func_value.castTag(.extern_fn)) |func_payload| {
-                        const decl = func_payload.data;
-                        const n_strx = try macho_file.addExternFn(mem.spanZ(decl.name));
-                        const offset = blk: {
-                            switch (arch) {
-                                .x86_64 => {
-                                    // callq
-                                    try self.code.ensureUnusedCapacity(5);
-                                    self.code.appendSliceAssumeCapacity(&[5]u8{ 0xe8, 0x0, 0x0, 0x0, 0x0 });
-                                    break :blk @intCast(u32, self.code.items.len) - 4;
-                                },
-                                else => unreachable, // unsupported architecture on MachO
-                            }
-                        };
-                        // Add relocation to the decl.
-                        try macho_file.active_decl.?.link.macho.relocs.append(self.bin_file.allocator, .{
-                            .offset = offset,
-                            .target = .{ .global = n_strx },
-                            .addend = 0,
-                            .subtractor = null,
-                            .pcrel = true,
-                            .length = 2,
-                            .@"type" = switch (arch) {
-                                .x86_64 => @enumToInt(std.macho.reloc_type_x86_64.X86_64_RELOC_BRANCH),
-                                else => unreachable,
-                            },
-                        });
-                    } else {
-                        return self.fail("TODO implement calling bitcasted functions", .{});
-                    }
-                } else {
-                    return self.fail("TODO implement calling runtime known function pointer", .{});
-                }
-            } else if (self.bin_file.cast(link.File.Plan9)) |p9| {
-                switch (arch) {
-                    .x86_64 => {
-                        for (info.args) |mc_arg, arg_i| {
-                            const arg = args[arg_i];
-                            const arg_ty = self.air.typeOf(arg);
-                            const arg_mcv = try self.resolveInst(args[arg_i]);
-                            // Here we do not use setRegOrMem even though the logic is similar, because
-                            // the function call will move the stack pointer, so the offsets are different.
-                            switch (mc_arg) {
-                                .none => continue,
-                                .register => |reg| {
-                                    try self.register_manager.getReg(reg, null);
-                                    try self.genSetReg(arg_ty, reg, arg_mcv);
-                                },
-                                .stack_offset => {
-                                    // Here we need to emit instructions like this:
-                                    // mov     qword ptr [rsp + stack_offset], x
-                                    return self.fail("TODO implement calling with parameters in memory", .{});
-                                },
-                                .ptr_stack_offset => {
-                                    return self.fail("TODO implement calling with MCValue.ptr_stack_offset arg", .{});
-                                },
-                                .ptr_embedded_in_code => {
-                                    return self.fail("TODO implement calling with MCValue.ptr_embedded_in_code arg", .{});
-                                },
-                                .undef => unreachable,
-                                .immediate => unreachable,
-                                .unreach => unreachable,
-                                .dead => unreachable,
-                                .embedded_in_code => unreachable,
-                                .memory => unreachable,
-                                .compare_flags_signed => unreachable,
-                                .compare_flags_unsigned => unreachable,
-                            }
-                        }
-                        if (self.air.value(callee)) |func_value| {
-                            if (func_value.castTag(.function)) |func_payload| {
-                                try p9.seeDecl(func_payload.data.owner_decl);
-                                const ptr_bits = self.target.cpu.arch.ptrBitWidth();
-                                const ptr_bytes: u64 = @divExact(ptr_bits, 8);
-                                const got_addr = p9.bases.data;
-                                const got_index = func_payload.data.owner_decl.link.plan9.got_index.?;
-                                // ff 14 25 xx xx xx xx    call [addr]
-                                try self.code.ensureUnusedCapacity(7);
-                                self.code.appendSliceAssumeCapacity(&[3]u8{ 0xff, 0x14, 0x25 });
-                                const fn_got_addr = got_addr + got_index * ptr_bytes;
-                                mem.writeIntLittle(u32, self.code.addManyAsArrayAssumeCapacity(4), @intCast(u32, fn_got_addr));
-                            } else return self.fail("TODO implement calling extern fn on plan9", .{});
-                        } else {
-                            return self.fail("TODO implement calling runtime known function pointer", .{});
-                        }
-                    },
-                    else => return self.fail("TODO implement call on plan9 for {}", .{self.target.cpu.arch}),
-                }
+            } else if (self.bin_file.cast(link.File.MachO)) |_| {
+                unreachable; // unsupported architecture for MachO
+            } else if (self.bin_file.cast(link.File.Plan9)) |_| {
+                return self.fail("TODO implement call on plan9 for {}", .{self.target.cpu.arch});
             } else unreachable;
 
             const result: MCValue = result: {
@@ -3052,14 +2287,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
                 .i386 => {
                     try self.code.append(0xc3); // ret
                 },
-                .x86_64 => {
-                    // TODO when implementing defer, this will need to jump to the appropriate defer expression.
-                    // TODO optimization opportunity: figure out when we can emit this as a 2 byte instruction
-                    // which is available if the jump is 127 bytes or less forward.
-                    try self.code.resize(self.code.items.len + 5);
-                    self.code.items[self.code.items.len - 5] = 0xe9; // jmp rel32
-                    try self.exitlude_jump_relocs.append(self.gpa, self.code.items.len - 4);
-                },
                 .riscv64 => {
                     mem.writeIntLittle(u32, try self.code.addManyAsArray(4), Instruction.jalr(.zero, 0, .ra).toU32());
                 },
@@ -3099,25 +2326,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
             const lhs = try self.resolveInst(bin_op.lhs);
             const rhs = try self.resolveInst(bin_op.rhs);
             const result: MCValue = switch (arch) {
-                .x86_64 => result: {
-                    try self.code.ensureUnusedCapacity(8);
-
-                    // There are 2 operands, destination and source.
-                    // Either one, but not both, can be a memory operand.
-                    // Source operand can be an immediate, 8 bits or 32 bits.
-                    const dst_mcv = if (lhs.isImmediate() or (lhs.isMemory() and rhs.isMemory()))
-                        try self.copyToNewRegister(inst, lhs)
-                    else
-                        lhs;
-                    // This instruction supports only signed 32-bit immediates at most.
-                    const src_mcv = try self.limitImmediateType(bin_op.rhs, i32);
-
-                    try self.genX8664BinMathCode(Type.initTag(.bool), dst_mcv, src_mcv, 7, 0x38);
-                    break :result switch (ty.isSignedInt()) {
-                        true => MCValue{ .compare_flags_signed = op },
-                        false => MCValue{ .compare_flags_unsigned = op },
-                    };
-                },
                 .arm, .armeb => result: {
                     const lhs_is_register = lhs == .register;
                     const rhs_is_register = rhs == .register;
@@ -3183,7 +2391,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
             const liveness_condbr = self.liveness.getCondBr(inst);
 
             const reloc: Reloc = switch (arch) {
-                .i386, .x86_64 => reloc: {
+                .i386 => reloc: {
                     try self.code.ensureUnusedCapacity(6);
 
                     const opcode: u8 = switch (cond) {
@@ -3214,7 +2422,8 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
                         .register => |reg| blk: {
                             // test reg, 1
                             // TODO detect al, ax, eax
-                            const encoder = try X8664Encoder.init(self.code, 4);
+                            const Encoder = @import("arch/x86_64/bits.zig").Encoder;
+                            const encoder = try Encoder.init(self.code, 4);
                             encoder.rex(.{
                                 // TODO audit this codegen: we force w = true here to make
                                 // the value affect the big register
@@ -3543,7 +2752,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
         /// Send control flow to the `index` of `self.code`.
         fn jump(self: *Self, index: usize) !void {
             switch (arch) {
-                .i386, .x86_64 => {
+                .i386 => {
                     try self.code.ensureUnusedCapacity(5);
                     if (math.cast(i8, @intCast(i32, index) - (@intCast(i32, self.code.items.len + 2)))) |delta| {
                         self.code.appendAssumeCapacity(0xeb); // jmp rel8
@@ -3639,13 +2848,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
             const bin_op = self.air.instructions.items(.data)[inst].bin_op;
             const air_tags = self.air.instructions.items(.tag);
             const result: MCValue = if (self.liveness.isUnused(inst)) .dead else switch (arch) {
-                .x86_64 => switch (air_tags[inst]) {
-                    // lhs AND rhs
-                    .bool_and => try self.genX8664BinMath(inst, bin_op.lhs, bin_op.rhs),
-                    // lhs OR rhs
-                    .bool_or => try self.genX8664BinMath(inst, bin_op.lhs, bin_op.rhs),
-                    else => unreachable, // Not a boolean operation
-                },
                 .arm, .armeb => switch (air_tags[inst]) {
                     .bool_and => try self.genArmBinOp(inst, bin_op.lhs, bin_op.rhs, .bool_and),
                     .bool_or => try self.genArmBinOp(inst, bin_op.lhs, bin_op.rhs, .bool_or),
@@ -3678,7 +2880,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
             try block_data.relocs.ensureUnusedCapacity(self.gpa, 1);
 
             switch (arch) {
-                .i386, .x86_64 => {
+                .i386 => {
                     // TODO optimization opportunity: figure out when we can emit this as a 2 byte instruction
                     // which is available if the jump is 127 bytes or less forward.
                     try self.code.resize(self.code.items.len + 5);
@@ -3803,7 +3005,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
                         break :result MCValue{ .none = {} };
                     }
                 },
-                .x86_64, .i386 => result: {
+                .i386 => result: {
                     for (args) |arg| {
                         const input = zir.extraData(Zir.Inst.Asm.Input, extra_i);
                         extra_i = input.end;
@@ -3990,104 +3192,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
                         return self.genSetStack(ty, stack_offset, MCValue{ .register = reg });
                     },
                 },
-                .x86_64 => switch (mcv) {
-                    .dead => unreachable,
-                    .ptr_stack_offset => unreachable,
-                    .ptr_embedded_in_code => unreachable,
-                    .unreach, .none => return, // Nothing to do.
-                    .undef => {
-                        if (!self.wantSafety())
-                            return; // The already existing value will do just fine.
-                        // TODO Upgrade this to a memset call when we have that available.
-                        switch (ty.abiSize(self.target.*)) {
-                            1 => return self.genSetStack(ty, stack_offset, .{ .immediate = 0xaa }),
-                            2 => return self.genSetStack(ty, stack_offset, .{ .immediate = 0xaaaa }),
-                            4 => return self.genSetStack(ty, stack_offset, .{ .immediate = 0xaaaaaaaa }),
-                            8 => return self.genSetStack(ty, stack_offset, .{ .immediate = 0xaaaaaaaaaaaaaaaa }),
-                            else => return self.fail("TODO implement memset", .{}),
-                        }
-                    },
-                    .compare_flags_unsigned => |op| {
-                        _ = op;
-                        return self.fail("TODO implement set stack variable with compare flags value (unsigned)", .{});
-                    },
-                    .compare_flags_signed => |op| {
-                        _ = op;
-                        return self.fail("TODO implement set stack variable with compare flags value (signed)", .{});
-                    },
-                    .immediate => |x_big| {
-                        const abi_size = ty.abiSize(self.target.*);
-                        const adj_off = stack_offset + abi_size;
-                        if (adj_off > 128) {
-                            return self.fail("TODO implement set stack variable with large stack offset", .{});
-                        }
-                        try self.code.ensureUnusedCapacity(8);
-                        switch (abi_size) {
-                            1 => {
-                                return self.fail("TODO implement set abi_size=1 stack variable with immediate", .{});
-                            },
-                            2 => {
-                                return self.fail("TODO implement set abi_size=2 stack variable with immediate", .{});
-                            },
-                            4 => {
-                                const x = @intCast(u32, x_big);
-                                // We have a positive stack offset value but we want a twos complement negative
-                                // offset from rbp, which is at the top of the stack frame.
-                                const negative_offset = @intCast(i8, -@intCast(i32, adj_off));
-                                const twos_comp = @bitCast(u8, negative_offset);
-                                // mov    DWORD PTR [rbp+offset], immediate
-                                self.code.appendSliceAssumeCapacity(&[_]u8{ 0xc7, 0x45, twos_comp });
-                                mem.writeIntLittle(u32, self.code.addManyAsArrayAssumeCapacity(4), x);
-                            },
-                            8 => {
-                                // We have a positive stack offset value but we want a twos complement negative
-                                // offset from rbp, which is at the top of the stack frame.
-                                const negative_offset = @intCast(i8, -@intCast(i32, adj_off));
-                                const twos_comp = @bitCast(u8, negative_offset);
-
-                                // 64 bit write to memory would take two mov's anyways so we
-                                // insted just use two 32 bit writes to avoid register allocation
-                                try self.code.ensureUnusedCapacity(14);
-                                var buf: [8]u8 = undefined;
-                                mem.writeIntLittle(u64, &buf, x_big);
-
-                                // mov    DWORD PTR [rbp+offset+4], immediate
-                                self.code.appendSliceAssumeCapacity(&[_]u8{ 0xc7, 0x45, twos_comp + 4 });
-                                self.code.appendSliceAssumeCapacity(buf[4..8]);
-
-                                // mov    DWORD PTR [rbp+offset], immediate
-                                self.code.appendSliceAssumeCapacity(&[_]u8{ 0xc7, 0x45, twos_comp });
-                                self.code.appendSliceAssumeCapacity(buf[0..4]);
-                            },
-                            else => {
-                                return self.fail("TODO implement set abi_size=large stack variable with immediate", .{});
-                            },
-                        }
-                    },
-                    .embedded_in_code => {
-                        // TODO this and `.stack_offset` below need to get improved to support types greater than
-                        // register size, and do general memcpy
-                        const reg = try self.copyToTmpRegister(ty, mcv);
-                        return self.genSetStack(ty, stack_offset, MCValue{ .register = reg });
-                    },
-                    .register => |reg| {
-                        try self.genX8664ModRMRegToStack(ty, stack_offset, reg, 0x89);
-                    },
-                    .memory => |vaddr| {
-                        _ = vaddr;
-                        return self.fail("TODO implement set stack variable from memory vaddr", .{});
-                    },
-                    .stack_offset => |off| {
-                        // TODO this and `.embedded_in_code` above need to get improved to support types greater than
-                        // register size, and do general memcpy
-
-                        if (stack_offset == off)
-                            return; // Copy stack variable to itself; nothing to do.
-
-                        const reg = try self.copyToTmpRegister(ty, mcv);
-                        return self.genSetStack(ty, stack_offset, MCValue{ .register = reg });
-                    },
-                },
                 else => return self.fail("TODO implement getSetStack for {}", .{self.target.cpu.arch}),
             }
         }
@@ -4250,284 +3354,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
                     },
                     else => return self.fail("TODO implement getSetReg for riscv64 {}", .{mcv}),
                 },
-                .x86_64 => switch (mcv) {
-                    .dead => unreachable,
-                    .ptr_stack_offset => unreachable,
-                    .ptr_embedded_in_code => unreachable,
-                    .unreach, .none => return, // Nothing to do.
-                    .undef => {
-                        if (!self.wantSafety())
-                            return; // The already existing value will do just fine.
-                        // Write the debug undefined value.
-                        switch (reg.size()) {
-                            8 => return self.genSetReg(ty, reg, .{ .immediate = 0xaa }),
-                            16 => return self.genSetReg(ty, reg, .{ .immediate = 0xaaaa }),
-                            32 => return self.genSetReg(ty, reg, .{ .immediate = 0xaaaaaaaa }),
-                            64 => return self.genSetReg(ty, reg, .{ .immediate = 0xaaaaaaaaaaaaaaaa }),
-                            else => unreachable,
-                        }
-                    },
-                    .compare_flags_unsigned => |op| {
-                        const encoder = try X8664Encoder.init(self.code, 7);
-                        // TODO audit this codegen: we force w = true here to make
-                        // the value affect the big register
-                        encoder.rex(.{
-                            .w = true,
-                            .b = reg.isExtended(),
-                        });
-                        encoder.opcode_2byte(0x0f, switch (op) {
-                            .gte => 0x93,
-                            .gt => 0x97,
-                            .neq => 0x95,
-                            .lt => 0x92,
-                            .lte => 0x96,
-                            .eq => 0x94,
-                        });
-                        encoder.modRm_direct(
-                            0,
-                            reg.low_id(),
-                        );
-                    },
-                    .compare_flags_signed => |op| {
-                        _ = op;
-                        return self.fail("TODO set register with compare flags value (signed)", .{});
-                    },
-                    .immediate => |x| {
-                        // 32-bit moves zero-extend to 64-bit, so xoring the 32-bit
-                        // register is the fastest way to zero a register.
-                        if (x == 0) {
-                            // The encoding for `xor r32, r32` is `0x31 /r`.
-                            const encoder = try X8664Encoder.init(self.code, 3);
-
-                            // If we're accessing e.g. r8d, we need to use a REX prefix before the actual operation. Since
-                            // this is a 32-bit operation, the W flag is set to zero. X is also zero, as we're not using a SIB.
-                            // Both R and B are set, as we're extending, in effect, the register bits *and* the operand.
-                            encoder.rex(.{
-                                .r = reg.isExtended(),
-                                .b = reg.isExtended(),
-                            });
-                            encoder.opcode_1byte(0x31);
-                            // Section 3.1.1.1 of the Intel x64 Manual states that "/r indicates that the
-                            // ModR/M byte of the instruction contains a register operand and an r/m operand."
-                            encoder.modRm_direct(
-                                reg.low_id(),
-                                reg.low_id(),
-                            );
-
-                            return;
-                        }
-                        if (x <= math.maxInt(i32)) {
-                            // Next best case: if we set the lower four bytes, the upper four will be zeroed.
-                            //
-                            // The encoding for `mov IMM32 -> REG` is (0xB8 + R) IMM.
-
-                            const encoder = try X8664Encoder.init(self.code, 6);
-                            // Just as with XORing, we need a REX prefix. This time though, we only
-                            // need the B bit set, as we're extending the opcode's register field,
-                            // and there is no Mod R/M byte.
-                            encoder.rex(.{
-                                .b = reg.isExtended(),
-                            });
-                            encoder.opcode_withReg(0xB8, reg.low_id());
-
-                            // no ModR/M byte
-
-                            // IMM
-                            encoder.imm32(@intCast(i32, x));
-                            return;
-                        }
-                        // Worst case: we need to load the 64-bit register with the IMM. GNU's assemblers calls
-                        // this `movabs`, though this is officially just a different variant of the plain `mov`
-                        // instruction.
-                        //
-                        // This encoding is, in fact, the *same* as the one used for 32-bit loads. The only
-                        // difference is that we set REX.W before the instruction, which extends the load to
-                        // 64-bit and uses the full bit-width of the register.
-                        {
-                            const encoder = try X8664Encoder.init(self.code, 10);
-                            encoder.rex(.{
-                                .w = true,
-                                .b = reg.isExtended(),
-                            });
-                            encoder.opcode_withReg(0xB8, reg.low_id());
-                            encoder.imm64(x);
-                        }
-                    },
-                    .embedded_in_code => |code_offset| {
-                        // We need the offset from RIP in a signed i32 twos complement.
-                        // The instruction is 7 bytes long and RIP points to the next instruction.
-
-                        // 64-bit LEA is encoded as REX.W 8D /r.
-                        const rip = self.code.items.len + 7;
-                        const big_offset = @intCast(i64, code_offset) - @intCast(i64, rip);
-                        const offset = @intCast(i32, big_offset);
-                        const encoder = try X8664Encoder.init(self.code, 7);
-
-                        // byte 1, always exists because w = true
-                        encoder.rex(.{
-                            .w = true,
-                            .r = reg.isExtended(),
-                        });
-                        // byte 2
-                        encoder.opcode_1byte(0x8D);
-                        // byte 3
-                        encoder.modRm_RIPDisp32(reg.low_id());
-                        // byte 4-7
-                        encoder.disp32(offset);
-
-                        // Double check that we haven't done any math errors
-                        assert(rip == self.code.items.len);
-                    },
-                    .register => |src_reg| {
-                        // If the registers are the same, nothing to do.
-                        if (src_reg.id() == reg.id())
-                            return;
-
-                        // This is a variant of 8B /r.
-                        const abi_size = ty.abiSize(self.target.*);
-                        const encoder = try X8664Encoder.init(self.code, 3);
-                        encoder.rex(.{
-                            .w = abi_size == 8,
-                            .r = reg.isExtended(),
-                            .b = src_reg.isExtended(),
-                        });
-                        encoder.opcode_1byte(0x8B);
-                        encoder.modRm_direct(reg.low_id(), src_reg.low_id());
-                    },
-                    .memory => |x| {
-                        if (self.bin_file.options.pie) {
-                            // RIP-relative displacement to the entry in the GOT table.
-                            const abi_size = ty.abiSize(self.target.*);
-                            const encoder = try X8664Encoder.init(self.code, 10);
-
-                            // LEA reg, [<offset>]
-
-                            // We encode the instruction FIRST because prefixes may or may not appear.
-                            // After we encode the instruction, we will know that the displacement bytes
-                            // for [<offset>] will be at self.code.items.len - 4.
-                            encoder.rex(.{
-                                .w = true, // force 64 bit because loading an address (to the GOT)
-                                .r = reg.isExtended(),
-                            });
-                            encoder.opcode_1byte(0x8D);
-                            encoder.modRm_RIPDisp32(reg.low_id());
-                            encoder.disp32(0);
-
-                            const offset = @intCast(u32, self.code.items.len);
-
-                            if (self.bin_file.cast(link.File.MachO)) |macho_file| {
-                                // TODO I think the reloc might be in the wrong place.
-                                const decl = macho_file.active_decl.?;
-                                // Load reloc for LEA instruction.
-                                try decl.link.macho.relocs.append(self.bin_file.allocator, .{
-                                    .offset = offset - 4,
-                                    .target = .{ .local = @intCast(u32, x) },
-                                    .addend = 0,
-                                    .subtractor = null,
-                                    .pcrel = true,
-                                    .length = 2,
-                                    .@"type" = @enumToInt(std.macho.reloc_type_x86_64.X86_64_RELOC_GOT),
-                                });
-                            } else {
-                                return self.fail("TODO implement genSetReg for PIE GOT indirection on this platform", .{});
-                            }
-
-                            // MOV reg, [reg]
-                            encoder.rex(.{
-                                .w = abi_size == 8,
-                                .r = reg.isExtended(),
-                                .b = reg.isExtended(),
-                            });
-                            encoder.opcode_1byte(0x8B);
-                            encoder.modRm_indirectDisp0(reg.low_id(), reg.low_id());
-                        } else if (x <= math.maxInt(i32)) {
-                            // Moving from memory to a register is a variant of `8B /r`.
-                            // Since we're using 64-bit moves, we require a REX.
-                            // This variant also requires a SIB, as it would otherwise be RIP-relative.
-                            // We want mode zero with the lower three bits set to four to indicate an SIB with no other displacement.
-                            // The SIB must be 0x25, to indicate a disp32 with no scaled index.
-                            // 0b00RRR100, where RRR is the lower three bits of the register ID.
-                            // The instruction is thus eight bytes; REX 0x8B 0b00RRR100 0x25 followed by a four-byte disp32.
-                            const abi_size = ty.abiSize(self.target.*);
-                            const encoder = try X8664Encoder.init(self.code, 8);
-                            encoder.rex(.{
-                                .w = abi_size == 8,
-                                .r = reg.isExtended(),
-                            });
-                            encoder.opcode_1byte(0x8B);
-                            // effective address = [SIB]
-                            encoder.modRm_SIBDisp0(reg.low_id());
-                            // SIB = disp32
-                            encoder.sib_disp32();
-                            encoder.disp32(@intCast(i32, x));
-                        } else {
-                            // If this is RAX, we can use a direct load; otherwise, we need to load the address, then indirectly load
-                            // the value.
-                            if (reg.id() == 0) {
-                                // REX.W 0xA1 moffs64*
-                                // moffs64* is a 64-bit offset "relative to segment base", which really just means the
-                                // absolute address for all practical purposes.
-
-                                const encoder = try X8664Encoder.init(self.code, 10);
-                                encoder.rex(.{
-                                    .w = true,
-                                });
-                                encoder.opcode_1byte(0xA1);
-                                encoder.writeIntLittle(u64, x);
-                            } else {
-                                // This requires two instructions; a move imm as used above, followed by an indirect load using the register
-                                // as the address and the register as the destination.
-                                //
-                                // This cannot be used if the lower three bits of the id are equal to four or five, as there
-                                // is no way to possibly encode it. This means that RSP, RBP, R12, and R13 cannot be used with
-                                // this instruction.
-                                const id3 = @truncate(u3, reg.id());
-                                assert(id3 != 4 and id3 != 5);
-
-                                // Rather than duplicate the logic used for the move, we just use a self-call with a new MCValue.
-                                try self.genSetReg(ty, reg, MCValue{ .immediate = x });
-
-                                // Now, the register contains the address of the value to load into it
-                                // Currently, we're only allowing 64-bit registers, so we need the `REX.W 8B /r` variant.
-                                // TODO: determine whether to allow other sized registers, and if so, handle them properly.
-
-                                // mov reg, [reg]
-                                const abi_size = ty.abiSize(self.target.*);
-                                const encoder = try X8664Encoder.init(self.code, 3);
-                                encoder.rex(.{
-                                    .w = abi_size == 8,
-                                    .r = reg.isExtended(),
-                                    .b = reg.isExtended(),
-                                });
-                                encoder.opcode_1byte(0x8B);
-                                encoder.modRm_indirectDisp0(reg.low_id(), reg.low_id());
-                            }
-                        }
-                    },
-                    .stack_offset => |unadjusted_off| {
-                        const abi_size = ty.abiSize(self.target.*);
-                        const off = unadjusted_off + abi_size;
-                        if (off < std.math.minInt(i32) or off > std.math.maxInt(i32)) {
-                            return self.fail("stack offset too large", .{});
-                        }
-                        const ioff = -@intCast(i32, off);
-                        const encoder = try X8664Encoder.init(self.code, 3);
-                        encoder.rex(.{
-                            .w = abi_size == 8,
-                            .r = reg.isExtended(),
-                        });
-                        encoder.opcode_1byte(0x8B);
-                        if (std.math.minInt(i8) <= ioff and ioff <= std.math.maxInt(i8)) {
-                            // Example: 48 8b 4d 7f           mov    rcx,QWORD PTR [rbp+0x7f]
-                            encoder.modRm_indirectDisp8(reg.low_id(), Register.ebp.low_id());
-                            encoder.disp8(@intCast(i8, ioff));
-                        } else {
-                            // Example: 48 8b 8d 80 00 00 00  mov    rcx,QWORD PTR [rbp+0x80]
-                            encoder.modRm_indirectDisp32(reg.low_id(), Register.ebp.low_id());
-                            encoder.disp32(ioff);
-                        }
-                    },
-                },
                 else => return self.fail("TODO implement getSetReg for {}", .{self.target.cpu.arch}),
             }
         }
@@ -4840,61 +3666,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
             const ret_ty = fn_ty.fnReturnType();
 
             switch (arch) {
-                .x86_64 => {
-                    switch (cc) {
-                        .Naked => {
-                            assert(result.args.len == 0);
-                            result.return_value = .{ .unreach = {} };
-                            result.stack_byte_count = 0;
-                            result.stack_align = 1;
-                            return result;
-                        },
-                        .Unspecified, .C => {
-                            var next_int_reg: usize = 0;
-                            var next_stack_offset: u32 = 0;
-
-                            for (param_types) |ty, i| {
-                                if (!ty.hasCodeGenBits()) {
-                                    assert(cc != .C);
-                                    result.args[i] = .{ .none = {} };
-                                    continue;
-                                }
-                                const param_size = @intCast(u32, ty.abiSize(self.target.*));
-                                const pass_in_reg = switch (ty.zigTypeTag()) {
-                                    .Bool => true,
-                                    .Int => param_size <= 8,
-                                    .Pointer => ty.ptrSize() != .Slice,
-                                    .Optional => ty.isPtrLikeOptional(),
-                                    else => false,
-                                };
-                                if (pass_in_reg) {
-                                    if (next_int_reg >= c_abi_int_param_regs.len) {
-                                        result.args[i] = .{ .stack_offset = next_stack_offset };
-                                        next_stack_offset += param_size;
-                                    } else {
-                                        const aliased_reg = registerAlias(
-                                            c_abi_int_param_regs[next_int_reg],
-                                            param_size,
-                                        );
-                                        result.args[i] = .{ .register = aliased_reg };
-                                        next_int_reg += 1;
-                                    }
-                                } else {
-                                    // For simplicity of codegen, slices and other types are always pushed onto the stack.
-                                    // TODO: look into optimizing this by passing things as registers sometimes,
-                                    // such as ptr and len of slices as separate registers.
-                                    // TODO: also we need to honor the C ABI for relevant types rather than passing on
-                                    // the stack here.
-                                    result.args[i] = .{ .stack_offset = next_stack_offset };
-                                    next_stack_offset += param_size;
-                                }
-                            }
-                            result.stack_byte_count = next_stack_offset;
-                            result.stack_align = 16;
-                        },
-                        else => return self.fail("TODO implement function parameters for {} on x86_64", .{cc}),
-                    }
-                },
                 .arm, .armeb => {
                     switch (cc) {
                         .Naked => {
@@ -4948,15 +3719,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
             } else if (!ret_ty.hasCodeGenBits()) {
                 result.return_value = .{ .none = {} };
             } else switch (arch) {
-                .x86_64 => switch (cc) {
-                    .Naked => unreachable,
-                    .Unspecified, .C => {
-                        const ret_ty_size = @intCast(u32, ret_ty.abiSize(self.target.*));
-                        const aliased_reg = registerAlias(c_abi_int_return_regs[0], ret_ty_size);
-                        result.return_value = .{ .register = aliased_reg };
-                    },
-                    else => return self.fail("TODO implement function return values for {}", .{cc}),
-                },
                 .arm, .armeb => switch (cc) {
                     .Naked => unreachable,
                     .Unspecified, .C => {
@@ -5000,7 +3762,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
 
         const Register = switch (arch) {
             .i386 => @import("arch/x86/bits.zig").Register,
-            .x86_64 => @import("arch/x86_64/bits.zig").Register,
             .riscv64 => @import("arch/riscv64/bits.zig").Register,
             .arm, .armeb => @import("arch/arm/bits.zig").Register,
             else => enum {
@@ -5026,7 +3787,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
 
         const callee_preserved_regs = switch (arch) {
             .i386 => @import("arch/x86/bits.zig").callee_preserved_regs,
-            .x86_64 => @import("arch/x86_64/bits.zig").callee_preserved_regs,
             .riscv64 => @import("arch/riscv64/bits.zig").callee_preserved_regs,
             .arm, .armeb => @import("arch/arm/bits.zig").callee_preserved_regs,
             else => [_]Register{},
@@ -5034,14 +3794,12 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
 
         const c_abi_int_param_regs = switch (arch) {
             .i386 => @import("arch/x86/bits.zig").c_abi_int_param_regs,
-            .x86_64 => @import("arch/x86_64/bits.zig").c_abi_int_param_regs,
             .arm, .armeb => @import("arch/arm/bits.zig").c_abi_int_param_regs,
             else => [_]Register{},
         };
 
         const c_abi_int_return_regs = switch (arch) {
             .i386 => @import("arch/x86/bits.zig").c_abi_int_return_regs,
-            .x86_64 => @import("arch/x86_64/bits.zig").c_abi_int_return_regs,
             .arm, .armeb => @import("arch/arm/bits.zig").c_abi_int_return_regs,
             else => [_]Register{},
         };
@@ -5052,28 +3810,5 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
             }
             return std.meta.stringToEnum(Register, name);
         }
-
-        fn registerAlias(reg: Register, size_bytes: u32) Register {
-            switch (arch) {
-                // For x86_64 we have to pick a smaller register alias depending on abi size.
-                .x86_64 => switch (size_bytes) {
-                    1 => return reg.to8(),
-                    2 => return reg.to16(),
-                    4 => return reg.to32(),
-                    8 => return reg.to64(),
-                    else => unreachable,
-                },
-                else => return reg,
-            }
-        }
-
-        /// For most architectures this does nothing. For x86_64 it resolves any aliased registers
-        /// to the 64-bit wide ones.
-        fn toCanonicalReg(reg: Register) Register {
-            return switch (arch) {
-                .x86_64 => reg.to64(),
-                else => reg,
-            };
-        }
     };
 }