Commit 716d6a026f
Changed files (4)
lib
lib/std/math/copysign.zig
@@ -4,17 +4,16 @@ const expect = std.testing.expect;
/// Returns a value with the magnitude of `magnitude` and the sign of `sign`.
pub fn copysign(magnitude: anytype, sign: @TypeOf(magnitude)) @TypeOf(magnitude) {
- const bits = math.floatBits(@TypeOf(magnitude));
- const FBits = @Type(.{ .Float = .{ .bits = bits } });
- const TBits = @Type(.{ .Int = .{ .signedness = .unsigned, .bits = bits } });
- const sign_bit_mask = @as(TBits, 1) << (bits - 1);
- const mag = @bitCast(TBits, @as(FBits, magnitude)) & ~sign_bit_mask;
- const sgn = @bitCast(TBits, @as(FBits, sign)) & sign_bit_mask;
- return @bitCast(FBits, mag | sgn);
+ const T = @TypeOf(magnitude);
+ const TBits = std.meta.Int(.unsigned, @typeInfo(T).Float.bits);
+ const sign_bit_mask = @as(TBits, 1) << (@bitSizeOf(T) - 1);
+ const mag = @bitCast(TBits, magnitude) & ~sign_bit_mask;
+ const sgn = @bitCast(TBits, sign) & sign_bit_mask;
+ return @bitCast(T, mag | sgn);
}
test "math.copysign" {
- inline for ([_]type{ f16, f32, f64, f80, f128, c_longdouble, comptime_float }) |T| {
+ inline for ([_]type{ f16, f32, f64, f80, f128 }) |T| {
try expect(copysign(@as(T, 1.0), @as(T, 1.0)) == 1.0);
try expect(copysign(@as(T, 2.0), @as(T, -2.0)) == -2.0);
try expect(copysign(@as(T, -3.0), @as(T, 3.0)) == 3.0);
lib/std/math/float.zig
@@ -4,29 +4,21 @@ const expect = std.testing.expect;
/// Creates a raw "1.0" mantissa for floating point type T. Used to dedupe f80 logic.
inline fn mantissaOne(comptime T: type) comptime_int {
- return 1 << floatFractionalBits(T) & ((1 << floatMantissaBits(T)) - 1);
+ return if (@typeInfo(T).Float.bits == 80) 1 << floatFractionalBits(T) else 0;
}
/// Creates floating point type T from an unbiased exponent and raw mantissa.
inline fn reconstructFloat(comptime T: type, comptime exponent: comptime_int, comptime mantissa: comptime_int) T {
- const FBits = @Type(.{ .Float = .{ .bits = floatBits(T) } });
- const TBits = @Type(.{ .Int = .{ .signedness = .unsigned, .bits = floatBits(T) } });
+ const TBits = @Type(.{ .Int = .{ .signedness = .unsigned, .bits = @bitSizeOf(T) } });
const biased_exponent = @as(TBits, exponent + floatExponentMax(T));
- return @bitCast(FBits, (biased_exponent << floatMantissaBits(T)) | @as(TBits, mantissa));
-}
-
-/// Returns the number of bits in floating point type T.
-pub inline fn floatBits(comptime T: type) comptime_int {
- return switch (@typeInfo(T)) {
- .Float => |info| info.bits,
- .ComptimeFloat => 128,
- else => @compileError(@typeName(T) ++ " is not a floating point type"),
- };
+ return @bitCast(T, (biased_exponent << floatMantissaBits(T)) | @as(TBits, mantissa));
}
/// Returns the number of bits in the exponent of floating point type T.
pub inline fn floatExponentBits(comptime T: type) comptime_int {
- return switch (floatBits(T)) {
+ comptime assert(@typeInfo(T) == .Float);
+
+ return switch (@typeInfo(T).Float.bits) {
16 => 5,
32 => 8,
64 => 11,
@@ -38,7 +30,9 @@ pub inline fn floatExponentBits(comptime T: type) comptime_int {
/// Returns the number of bits in the mantissa of floating point type T.
pub inline fn floatMantissaBits(comptime T: type) comptime_int {
- return switch (floatBits(T)) {
+ comptime assert(@typeInfo(T) == .Float);
+
+ return switch (@typeInfo(T).Float.bits) {
16 => 10,
32 => 23,
64 => 52,
@@ -50,10 +44,12 @@ pub inline fn floatMantissaBits(comptime T: type) comptime_int {
/// Returns the number of fractional bits in the mantissa of floating point type T.
pub inline fn floatFractionalBits(comptime T: type) comptime_int {
+ comptime assert(@typeInfo(T) == .Float);
+
// standard IEEE floats have an implicit 0.m or 1.m integer part
// f80 is special and has an explicitly stored bit in the MSB
// this function corresponds to `MANT_DIG - 1' from C
- return switch (floatBits(T)) {
+ return switch (@typeInfo(T).Float.bits) {
16 => 10,
32 => 23,
64 => 52,
@@ -105,7 +101,6 @@ test "float bits" {
inline for ([_]type{ f16, f32, f64, f80, f128, c_longdouble }) |T| {
// (1 +) for the sign bit, since it is separate from the other bits
const size = 1 + floatExponentBits(T) + floatMantissaBits(T);
- try expect(floatBits(T) == size);
try expect(@bitSizeOf(T) == size);
// for machine epsilon, assert expmin <= -prec <= expmax
lib/std/math/nan.zig
@@ -2,13 +2,13 @@ const math = @import("../math.zig");
/// Returns the nan representation for type T.
pub inline fn nan(comptime T: type) T {
- return switch (math.floatBits(T)) {
+ return switch (@typeInfo(T).Float.bits) {
16 => math.nan_f16,
32 => math.nan_f32,
64 => math.nan_f64,
80 => math.nan_f80,
128 => math.nan_f128,
- else => @compileError("unknown floating point type " ++ @typeName(T)),
+ else => @compileError("unreachable"),
};
}
lib/std/math.zig
@@ -37,7 +37,6 @@ pub const sqrt2 = 1.414213562373095048801688724209698079;
/// 1/sqrt(2)
pub const sqrt1_2 = 0.707106781186547524400844362104849039;
-pub const floatBits = @import("math/float.zig").floatBits;
pub const floatExponentBits = @import("math/float.zig").floatExponentBits;
pub const floatMantissaBits = @import("math/float.zig").floatMantissaBits;
pub const floatFractionalBits = @import("math/float.zig").floatFractionalBits;