Commit 62323eeb75

Andrew Kelley <superjoe30@gmail.com>
2017-06-18 02:39:45
std: refactor pow to be generic
1 parent 4c16f9a
Changed files (4)
std/math/exp.zig
@@ -11,7 +11,7 @@ pub fn exp(x: var) -> @typeOf(x) {
 }
 
 fn exp32(x_: f32) -> f32 {
-    const half = []const f32 { 0.5, -0.5 };
+    const half = []f32 { 0.5, -0.5 };
     const ln2hi = 6.9314575195e-1;
     const ln2lo = 1.4286067653e-6;
     const invln2  = 1.4426950216e+0;
std/math/ln.zig
@@ -120,12 +120,12 @@ fn lnd(x_: f64) -> f64 {
     s * (hfsq + R) + dk * ln2_lo - hfsq + f + dk * ln2_hi
 }
 
-test "log" {
+test "math.ln" {
     assert(ln(f32(0.2)) == lnf(0.2));
     assert(ln(f64(0.2)) == lnd(0.2));
 }
 
-test "logf" {
+test "math.ln32" {
     const epsilon = 0.000001;
 
     assert(math.approxEq(f32, lnf(0.2), -1.609438, epsilon));
@@ -136,7 +136,7 @@ test "logf" {
     assert(math.approxEq(f32, lnf(123123.234375), 11.720941, epsilon));
 }
 
-test "logd" {
+test "math.ln64" {
     const epsilon = 0.000001;
 
     assert(math.approxEq(f64, lnd(0.2), -1.609438, epsilon));
std/math/pow.zig
@@ -1,21 +1,12 @@
 const math = @import("index.zig");
 const assert = @import("../debug.zig").assert;
 
+// This implementation is taken from the go stlib, musl is a bit more complex.
 pub fn pow(comptime T: type, x: T, y: T) -> T {
-    switch (T) {
-        f32 => @inlineCall(pow32, x, y),
-        f64 => @inlineCall(pow64, x, y),
-        else => @compileError("pow not implemented for " ++ @typeName(T)),
+    if (T != f32 and T != f64) {
+        @compileError("pow not implemented for " ++ @typeName(T));
     }
-}
 
-fn isOddInteger(x: f64) -> bool {
-    const r = math.modf(x);
-    r.fpart == 0.0 and i64(r.ipart) & 1 == 1
-}
-
-// This implementation is taken from the go stlib, musl is a bit more complex.
-fn pow32(x: f32, y: f32) -> f32 {
     // pow(x, +-0) = 1      for all x
     // pow(1, y) = 1        for all y
     if (y == 0 or x == 1) {
@@ -25,7 +16,7 @@ fn pow32(x: f32, y: f32) -> f32 {
     // pow(nan, y) = nan    for all y
     // pow(x, nan) = nan    for all x
     if (math.isNan(x) or math.isNan(y)) {
-        return math.nan(f32);
+        return math.nan(T);
     }
 
     // pow(x, 1) = x        for all x
@@ -46,11 +37,11 @@ fn pow32(x: f32, y: f32) -> f32 {
         if (y < 0) {
             // pow(+-0, y) = +- 0   for y an odd integer
             if (isOddInteger(y)) {
-                return math.copysign(f32, math.inf(f32), x);
+                return math.copysign(T, math.inf(T), x);
             }
             // pow(+-0, y) = +inf   for y an even integer
             else {
-                return math.inf(f32);
+                return math.inf(T);
             }
         } else {
             if (isOddInteger(y)) {
@@ -74,13 +65,13 @@ fn pow32(x: f32, y: f32) -> f32 {
         // pow(x, -inf) = +inf  for |x| < 1
         // pow(x, +inf) = +inf  for |x| > 1
         else {
-            return math.inf(f32);
+            return math.inf(T);
         }
     }
 
     if (math.isInf(x)) {
         if (math.isNegativeInf(x)) {
-            return pow32(1 / x, -y);
+            return pow(T, 1 / x, -y);
         }
         // pow(+inf, y) = +0    for y < 0
         else if (y < 0) {
@@ -88,7 +79,7 @@ fn pow32(x: f32, y: f32) -> f32 {
         }
         // pow(+inf, y) = +0    for y > 0
         else if (y > 0) {
-            return math.inf(f32);
+            return math.inf(T);
         }
     }
 
@@ -104,14 +95,14 @@ fn pow32(x: f32, y: f32) -> f32 {
     var yf = r1.fpart;
 
     if (yf != 0 and x < 0) {
-        return math.nan(f32);
+        return math.nan(T);
     }
-    if (yi >= 1 << 31) {
+    if (yi >= 1 << (T.bit_count - 1)) {
         return math.exp(y * math.ln(x));
     }
 
     // a = a1 * 2^ae
-    var a1: f32 = 1.0;
+    var a1: T = 1.0;
     var ae: i32 = 0;
 
     // a *= x^yf
@@ -151,166 +142,26 @@ fn pow32(x: f32, y: f32) -> f32 {
     math.scalbn(a1, ae)
 }
 
-// This implementation is taken from the go stlib, musl is a bit more complex.
-fn pow64(x: f64, y: f64) -> f64 {
-    // pow(x, +-0) = 1      for all x
-    // pow(1, y) = 1        for all y
-    if (y == 0 or x == 1) {
-        return 1;
-    }
-
-    // pow(nan, y) = nan    for all y
-    // pow(x, nan) = nan    for all x
-    if (math.isNan(x) or math.isNan(y)) {
-        return math.nan(f64);
-    }
-
-    // pow(x, 1) = x        for all x
-    if (y == 1) {
-        return x;
-    }
-
-    // special case sqrt
-    if (y == 0.5) {
-        return math.sqrt(x);
-    }
-
-    if (y == -0.5) {
-        return 1 / math.sqrt(x);
-    }
-
-    if (x == 0) {
-        if (y < 0) {
-            // pow(+-0, y) = +- 0   for y an odd integer
-            if (isOddInteger(y)) {
-                return math.copysign(f64, math.inf(f64), x);
-            }
-            // pow(+-0, y) = +inf   for y an even integer
-            else {
-                return math.inf(f64);
-            }
-        } else {
-            if (isOddInteger(y)) {
-                return x;
-            } else {
-                return 0;
-            }
-        }
-    }
-
-    if (math.isInf(y)) {
-        // pow(-1, inf) = -1    for all x
-        if (x == -1) {
-            return -1;
-        }
-        // pow(x, +inf) = +0    for |x| < 1
-        // pow(x, -inf) = +0    for |x| > 1
-        else if ((math.fabs(x) < 1) == math.isInf(y)) {
-            return 0;
-        }
-        // pow(x, -inf) = +inf  for |x| < 1
-        // pow(x, +inf) = +inf  for |x| > 1
-        else {
-            return math.inf(f64);
-        }
-    }
-
-    if (math.isInf(x)) {
-        if (math.isInf(x)) {
-            return pow64(1 / x, -y);
-        }
-        // pow(+inf, y) = +0    for y < 0
-        else if (y < 0) {
-            return 0;
-        }
-        // pow(+inf, y) = +0    for y > 0
-        else if (y > 0) {
-            return math.inf(f64);
-        }
-    }
-
-    var ay = y;
-    var flip = false;
-    if (ay < 0) {
-        ay = -ay;
-        flip = true;
-    }
-
-    const r1 = math.modf(ay);
-    var yi = r1.ipart;
-    var yf = r1.fpart;
-
-    if (yf != 0 and x < 0) {
-        return math.nan(f64);
-    }
-    if (yi >= 1 << 63) {
-        return math.exp(y * math.ln(x));
-    }
-
-    // a = a1 * 2^ae
-    var a1: f64 = 1.0;
-    var ae: i32 = 0;
-
-    // a *= x^yf
-    if (yf != 0) {
-        if (yf > 0.5) {
-            yf -= 1;
-            yi += 1;
-        }
-        a1 = math.exp(yf * math.ln(x));
-    }
-
-    // a *= x^yi
-    const r2 = math.frexp(x);
-    var xe = r2.exponent;
-    var x1 = r2.significand;
-
-    var i = i64(yi);
-    while (i != 0) : (i >>= 1) {
-        if (i & 1 == 1) {
-            a1 *= x1;
-            ae += xe;
-        }
-        x1 *= x1;
-        xe <<= 1;
-        if (x1 < 0.5) {
-            x1 += x1;
-            xe -= 1;
-        }
-    }
-
-    // a *= a1 * 2^ae
-    if (flip) {
-        a1 = 1 / a1;
-        ae = -ae;
-    }
-
-    math.scalbn(a1, ae)
-}
-
-test "pow" {
-    assert(pow(f32, 0.2, 3.3) == pow32(0.2, 3.3));
-    assert(pow(f64, 0.2, 3.3) == pow64(0.2, 3.3));
+fn isOddInteger(x: f64) -> bool {
+    const r = math.modf(x);
+    r.fpart == 0.0 and i64(r.ipart) & 1 == 1
 }
 
-test "pow32" {
+test "math.pow" {
     const epsilon = 0.000001;
 
-    // assert(math.approxEq(f32, pow32(0.0, 3.3), 0.0, epsilon)); // TODO: Handle div zero
-    assert(math.approxEq(f32, pow32(0.8923, 3.3), 0.686572, epsilon));
-    assert(math.approxEq(f32, pow32(0.2, 3.3), 0.004936, epsilon));
-    assert(math.approxEq(f32, pow32(1.5, 3.3), 3.811546, epsilon));
-    assert(math.approxEq(f32, pow32(37.45, 3.3), 155736.703125, epsilon));
-    assert(math.approxEq(f32, pow32(89.123, 3.3), 2722489.5, epsilon));
-}
+    // assert(math.approxEq(f32, pow(f32, 0.0, 3.3), 0.0, epsilon)); // TODO: Handle div zero
+    assert(math.approxEq(f32, pow(f32, 0.8923, 3.3), 0.686572, epsilon));
+    assert(math.approxEq(f32, pow(f32, 0.2, 3.3), 0.004936, epsilon));
+    assert(math.approxEq(f32, pow(f32, 1.5, 3.3), 3.811546, epsilon));
+    assert(math.approxEq(f32, pow(f32, 37.45, 3.3), 155736.703125, epsilon));
+    assert(math.approxEq(f32, pow(f32, 89.123, 3.3), 2722489.5, epsilon));
 
-test "pow64" {
-    const epsilon = 0.000001;
 
-    // assert(math.approxEq(f32, pow32(0.0, 3.3), 0.0, epsilon)); // TODO: Handle div zero
-    assert(math.approxEq(f64, pow64(0.8923, 3.3), 0.686572, epsilon));
-    assert(math.approxEq(f64, pow64(0.2, 3.3), 0.004936, epsilon));
-    assert(math.approxEq(f64, pow64(1.5, 3.3), 3.811546, epsilon));
-    assert(math.approxEq(f64, pow64(37.45, 3.3), 155736.7160616, epsilon));
-    assert(math.approxEq(f64, pow64(89.123, 3.3), 2722490.231436, epsilon));
+    // assert(math.approxEq(f32, pow(f64, 0.0, 3.3), 0.0, epsilon)); // TODO: Handle div zero
+    assert(math.approxEq(f64, pow(f64, 0.8923, 3.3), 0.686572, epsilon));
+    assert(math.approxEq(f64, pow(f64, 0.2, 3.3), 0.004936, epsilon));
+    assert(math.approxEq(f64, pow(f64, 1.5, 3.3), 3.811546, epsilon));
+    assert(math.approxEq(f64, pow(f64, 37.45, 3.3), 155736.7160616, epsilon));
+    assert(math.approxEq(f64, pow(f64, 89.123, 3.3), 2722490.231436, epsilon));
 }
std/special/builtin.zig
@@ -60,7 +60,7 @@ fn generic_fmod(comptime T: type, x: T, y: T) -> T {
     if (ex == 0) {
         i = ux <<% exp_bits;
         while (i >> bits_minus_1 == 0) : ({ex -= 1; i <<%= 1}) {}
-        ux <<%= twosComplementCast(uint, -ex + 1);
+        ux <<%= @bitCast(u32, -ex + 1);
     } else {
         ux &= @maxValue(uint) >> exp_bits;
         ux |= 1 <<% digits;
@@ -68,7 +68,7 @@ fn generic_fmod(comptime T: type, x: T, y: T) -> T {
     if (ey == 0) {
         i = uy <<% exp_bits;
         while (i >> bits_minus_1 == 0) : ({ey -= 1; i <<%= 1}) {}
-        uy <<= twosComplementCast(uint, -ey + 1);
+        uy <<= @bitCast(u32, -ey + 1);
     } else {
         uy &= @maxValue(uint) >> exp_bits;
         uy |= 1 <<% digits;
@@ -95,9 +95,9 @@ fn generic_fmod(comptime T: type, x: T, y: T) -> T {
     // scale result up
     if (ex > 0) {
         ux -%= 1 <<% digits;
-        ux |= twosComplementCast(uint, ex) <<% digits;
+        ux |= @bitCast(u32, ex) <<% digits;
     } else {
-        ux >>= twosComplementCast(uint, -ex + 1);
+        ux >>= @bitCast(u32, -ex + 1);
     }
     if (T == f32) {
         ux |= sx;
@@ -116,8 +116,3 @@ fn isNan(comptime T: type, bits: T) -> bool {
         unreachable;
     }
 }
-
-// TODO this should be a builtin function and it shouldn't do a ptr cast
-fn twosComplementCast(comptime T: type, src: var) -> T {
-    return *@ptrCast(&const @IntType(T.is_signed, @typeOf(src).bit_count), &src);
-}