Commit 5414bd48ed

aiz <78422626+aizawey672@users.noreply.github.com>
2021-05-17 21:57:51
std.math.Complex: Change `new()` to `init()`
1 parent 04d95ea
lib/std/math/complex/abs.zig
@@ -18,7 +18,7 @@ pub fn abs(z: anytype) @TypeOf(z.re) {
 const epsilon = 0.0001;
 
 test "complex.cabs" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = abs(a);
     try testing.expect(math.approxEqAbs(f32, c, 5.83095, epsilon));
 }
lib/std/math/complex/acos.zig
@@ -13,13 +13,13 @@ const Complex = cmath.Complex;
 pub fn acos(z: anytype) Complex(@TypeOf(z.re)) {
     const T = @TypeOf(z.re);
     const q = cmath.asin(z);
-    return Complex(T).new(@as(T, math.pi) / 2 - q.re, -q.im);
+    return Complex(T).init(@as(T, math.pi) / 2 - q.re, -q.im);
 }
 
 const epsilon = 0.0001;
 
 test "complex.cacos" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = acos(a);
 
     try testing.expect(math.approxEqAbs(f32, c.re, 0.546975, epsilon));
lib/std/math/complex/acosh.zig
@@ -13,13 +13,13 @@ const Complex = cmath.Complex;
 pub fn acosh(z: anytype) Complex(@TypeOf(z.re)) {
     const T = @TypeOf(z.re);
     const q = cmath.acos(z);
-    return Complex(T).new(-q.im, q.re);
+    return Complex(T).init(-q.im, q.re);
 }
 
 const epsilon = 0.0001;
 
 test "complex.cacosh" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = acosh(a);
 
     try testing.expect(math.approxEqAbs(f32, c.re, 2.452914, epsilon));
lib/std/math/complex/arg.zig
@@ -18,7 +18,7 @@ pub fn arg(z: anytype) @TypeOf(z.re) {
 const epsilon = 0.0001;
 
 test "complex.carg" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = arg(a);
     try testing.expect(math.approxEqAbs(f32, c, 0.540420, epsilon));
 }
lib/std/math/complex/asin.zig
@@ -15,17 +15,17 @@ pub fn asin(z: anytype) Complex(@TypeOf(z.re)) {
     const x = z.re;
     const y = z.im;
 
-    const p = Complex(T).new(1.0 - (x - y) * (x + y), -2.0 * x * y);
-    const q = Complex(T).new(-y, x);
+    const p = Complex(T).init(1.0 - (x - y) * (x + y), -2.0 * x * y);
+    const q = Complex(T).init(-y, x);
     const r = cmath.log(q.add(cmath.sqrt(p)));
 
-    return Complex(T).new(r.im, -r.re);
+    return Complex(T).init(r.im, -r.re);
 }
 
 const epsilon = 0.0001;
 
 test "complex.casin" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = asin(a);
 
     try testing.expect(math.approxEqAbs(f32, c.re, 1.023822, epsilon));
lib/std/math/complex/asinh.zig
@@ -12,15 +12,15 @@ const Complex = cmath.Complex;
 /// Returns the hyperbolic arc-sine of z.
 pub fn asinh(z: anytype) Complex(@TypeOf(z.re)) {
     const T = @TypeOf(z.re);
-    const q = Complex(T).new(-z.im, z.re);
+    const q = Complex(T).init(-z.im, z.re);
     const r = cmath.asin(q);
-    return Complex(T).new(r.im, -r.re);
+    return Complex(T).init(r.im, -r.re);
 }
 
 const epsilon = 0.0001;
 
 test "complex.casinh" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = asinh(a);
 
     try testing.expect(math.approxEqAbs(f32, c.re, 2.459831, epsilon));
lib/std/math/complex/atan.zig
@@ -50,14 +50,14 @@ fn atan32(z: Complex(f32)) Complex(f32) {
 
     if ((x == 0.0) and (y > 1.0)) {
         // overflow
-        return Complex(f32).new(maxnum, maxnum);
+        return Complex(f32).init(maxnum, maxnum);
     }
 
     const x2 = x * x;
     var a = 1.0 - x2 - (y * y);
     if (a == 0.0) {
         // overflow
-        return Complex(f32).new(maxnum, maxnum);
+        return Complex(f32).init(maxnum, maxnum);
     }
 
     var t = 0.5 * math.atan2(f32, 2.0 * x, a);
@@ -67,12 +67,12 @@ fn atan32(z: Complex(f32)) Complex(f32) {
     a = x2 + t * t;
     if (a == 0.0) {
         // overflow
-        return Complex(f32).new(maxnum, maxnum);
+        return Complex(f32).init(maxnum, maxnum);
     }
 
     t = y + 1.0;
     a = (x2 + (t * t)) / a;
-    return Complex(f32).new(w, 0.25 * math.ln(a));
+    return Complex(f32).init(w, 0.25 * math.ln(a));
 }
 
 fn redupif64(x: f64) f64 {
@@ -99,14 +99,14 @@ fn atan64(z: Complex(f64)) Complex(f64) {
 
     if ((x == 0.0) and (y > 1.0)) {
         // overflow
-        return Complex(f64).new(maxnum, maxnum);
+        return Complex(f64).init(maxnum, maxnum);
     }
 
     const x2 = x * x;
     var a = 1.0 - x2 - (y * y);
     if (a == 0.0) {
         // overflow
-        return Complex(f64).new(maxnum, maxnum);
+        return Complex(f64).init(maxnum, maxnum);
     }
 
     var t = 0.5 * math.atan2(f64, 2.0 * x, a);
@@ -116,18 +116,18 @@ fn atan64(z: Complex(f64)) Complex(f64) {
     a = x2 + t * t;
     if (a == 0.0) {
         // overflow
-        return Complex(f64).new(maxnum, maxnum);
+        return Complex(f64).init(maxnum, maxnum);
     }
 
     t = y + 1.0;
     a = (x2 + (t * t)) / a;
-    return Complex(f64).new(w, 0.25 * math.ln(a));
+    return Complex(f64).init(w, 0.25 * math.ln(a));
 }
 
 const epsilon = 0.0001;
 
 test "complex.catan32" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = atan(a);
 
     try testing.expect(math.approxEqAbs(f32, c.re, 1.423679, epsilon));
@@ -135,7 +135,7 @@ test "complex.catan32" {
 }
 
 test "complex.catan64" {
-    const a = Complex(f64).new(5, 3);
+    const a = Complex(f64).init(5, 3);
     const c = atan(a);
 
     try testing.expect(math.approxEqAbs(f64, c.re, 1.423679, epsilon));
lib/std/math/complex/atanh.zig
@@ -12,15 +12,15 @@ const Complex = cmath.Complex;
 /// Returns the hyperbolic arc-tangent of z.
 pub fn atanh(z: anytype) Complex(@TypeOf(z.re)) {
     const T = @TypeOf(z.re);
-    const q = Complex(T).new(-z.im, z.re);
+    const q = Complex(T).init(-z.im, z.re);
     const r = cmath.atan(q);
-    return Complex(T).new(r.im, -r.re);
+    return Complex(T).init(r.im, -r.re);
 }
 
 const epsilon = 0.0001;
 
 test "complex.catanh" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = atanh(a);
 
     try testing.expect(math.approxEqAbs(f32, c.re, 0.146947, epsilon));
lib/std/math/complex/conj.zig
@@ -12,11 +12,11 @@ const Complex = cmath.Complex;
 /// Returns the complex conjugate of z.
 pub fn conj(z: anytype) Complex(@TypeOf(z.re)) {
     const T = @TypeOf(z.re);
-    return Complex(T).new(z.re, -z.im);
+    return Complex(T).init(z.re, -z.im);
 }
 
 test "complex.conj" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = a.conjugate();
 
     try testing.expect(c.re == 5 and c.im == -3);
lib/std/math/complex/cos.zig
@@ -12,14 +12,14 @@ const Complex = cmath.Complex;
 /// Returns the cosine of z.
 pub fn cos(z: anytype) Complex(@TypeOf(z.re)) {
     const T = @TypeOf(z.re);
-    const p = Complex(T).new(-z.im, z.re);
+    const p = Complex(T).init(-z.im, z.re);
     return cmath.cosh(p);
 }
 
 const epsilon = 0.0001;
 
 test "complex.ccos" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = cos(a);
 
     try testing.expect(math.approxEqAbs(f32, c.re, 2.855815, epsilon));
lib/std/math/complex/cosh.zig
@@ -40,55 +40,55 @@ fn cosh32(z: Complex(f32)) Complex(f32) {
 
     if (ix < 0x7f800000 and iy < 0x7f800000) {
         if (iy == 0) {
-            return Complex(f32).new(math.cosh(x), y);
+            return Complex(f32).init(math.cosh(x), y);
         }
         // small x: normal case
         if (ix < 0x41100000) {
-            return Complex(f32).new(math.cosh(x) * math.cos(y), math.sinh(x) * math.sin(y));
+            return Complex(f32).init(math.cosh(x) * math.cos(y), math.sinh(x) * math.sin(y));
         }
 
         // |x|>= 9, so cosh(x) ~= exp(|x|)
         if (ix < 0x42b17218) {
             // x < 88.7: exp(|x|) won't overflow
             const h = math.exp(math.fabs(x)) * 0.5;
-            return Complex(f32).new(math.copysign(f32, h, x) * math.cos(y), h * math.sin(y));
+            return Complex(f32).init(math.copysign(f32, h, x) * math.cos(y), h * math.sin(y));
         }
         // x < 192.7: scale to avoid overflow
         else if (ix < 0x4340b1e7) {
-            const v = Complex(f32).new(math.fabs(x), y);
+            const v = Complex(f32).init(math.fabs(x), y);
             const r = ldexp_cexp(v, -1);
-            return Complex(f32).new(r.re, r.im * math.copysign(f32, 1, x));
+            return Complex(f32).init(r.re, r.im * math.copysign(f32, 1, x));
         }
         // x >= 192.7: result always overflows
         else {
             const h = 0x1p127 * x;
-            return Complex(f32).new(h * h * math.cos(y), h * math.sin(y));
+            return Complex(f32).init(h * h * math.cos(y), h * math.sin(y));
         }
     }
 
     if (ix == 0 and iy >= 0x7f800000) {
-        return Complex(f32).new(y - y, math.copysign(f32, 0, x * (y - y)));
+        return Complex(f32).init(y - y, math.copysign(f32, 0, x * (y - y)));
     }
 
     if (iy == 0 and ix >= 0x7f800000) {
         if (hx & 0x7fffff == 0) {
-            return Complex(f32).new(x * x, math.copysign(f32, 0, x) * y);
+            return Complex(f32).init(x * x, math.copysign(f32, 0, x) * y);
         }
-        return Complex(f32).new(x, math.copysign(f32, 0, (x + x) * y));
+        return Complex(f32).init(x, math.copysign(f32, 0, (x + x) * y));
     }
 
     if (ix < 0x7f800000 and iy >= 0x7f800000) {
-        return Complex(f32).new(y - y, x * (y - y));
+        return Complex(f32).init(y - y, x * (y - y));
     }
 
     if (ix >= 0x7f800000 and (hx & 0x7fffff) == 0) {
         if (iy >= 0x7f800000) {
-            return Complex(f32).new(x * x, x * (y - y));
+            return Complex(f32).init(x * x, x * (y - y));
         }
-        return Complex(f32).new((x * x) * math.cos(y), x * math.sin(y));
+        return Complex(f32).init((x * x) * math.cos(y), x * math.sin(y));
     }
 
-    return Complex(f32).new((x * x) * (y - y), (x + x) * (y - y));
+    return Complex(f32).init((x * x) * (y - y), (x + x) * (y - y));
 }
 
 fn cosh64(z: Complex(f64)) Complex(f64) {
@@ -108,61 +108,61 @@ fn cosh64(z: Complex(f64)) Complex(f64) {
     // nearly non-exceptional case where x, y are finite
     if (ix < 0x7ff00000 and iy < 0x7ff00000) {
         if (iy | ly == 0) {
-            return Complex(f64).new(math.cosh(x), x * y);
+            return Complex(f64).init(math.cosh(x), x * y);
         }
         // small x: normal case
         if (ix < 0x40360000) {
-            return Complex(f64).new(math.cosh(x) * math.cos(y), math.sinh(x) * math.sin(y));
+            return Complex(f64).init(math.cosh(x) * math.cos(y), math.sinh(x) * math.sin(y));
         }
 
         // |x|>= 22, so cosh(x) ~= exp(|x|)
         if (ix < 0x40862e42) {
             // x < 710: exp(|x|) won't overflow
             const h = math.exp(math.fabs(x)) * 0.5;
-            return Complex(f64).new(h * math.cos(y), math.copysign(f64, h, x) * math.sin(y));
+            return Complex(f64).init(h * math.cos(y), math.copysign(f64, h, x) * math.sin(y));
         }
         // x < 1455: scale to avoid overflow
         else if (ix < 0x4096bbaa) {
-            const v = Complex(f64).new(math.fabs(x), y);
+            const v = Complex(f64).init(math.fabs(x), y);
             const r = ldexp_cexp(v, -1);
-            return Complex(f64).new(r.re, r.im * math.copysign(f64, 1, x));
+            return Complex(f64).init(r.re, r.im * math.copysign(f64, 1, x));
         }
         // x >= 1455: result always overflows
         else {
             const h = 0x1p1023;
-            return Complex(f64).new(h * h * math.cos(y), h * math.sin(y));
+            return Complex(f64).init(h * h * math.cos(y), h * math.sin(y));
         }
     }
 
     if (ix | lx == 0 and iy >= 0x7ff00000) {
-        return Complex(f64).new(y - y, math.copysign(f64, 0, x * (y - y)));
+        return Complex(f64).init(y - y, math.copysign(f64, 0, x * (y - y)));
     }
 
     if (iy | ly == 0 and ix >= 0x7ff00000) {
         if ((hx & 0xfffff) | lx == 0) {
-            return Complex(f64).new(x * x, math.copysign(f64, 0, x) * y);
+            return Complex(f64).init(x * x, math.copysign(f64, 0, x) * y);
         }
-        return Complex(f64).new(x * x, math.copysign(f64, 0, (x + x) * y));
+        return Complex(f64).init(x * x, math.copysign(f64, 0, (x + x) * y));
     }
 
     if (ix < 0x7ff00000 and iy >= 0x7ff00000) {
-        return Complex(f64).new(y - y, x * (y - y));
+        return Complex(f64).init(y - y, x * (y - y));
     }
 
     if (ix >= 0x7ff00000 and (hx & 0xfffff) | lx == 0) {
         if (iy >= 0x7ff00000) {
-            return Complex(f64).new(x * x, x * (y - y));
+            return Complex(f64).init(x * x, x * (y - y));
         }
-        return Complex(f64).new(x * x * math.cos(y), x * math.sin(y));
+        return Complex(f64).init(x * x * math.cos(y), x * math.sin(y));
     }
 
-    return Complex(f64).new((x * x) * (y - y), (x + x) * (y - y));
+    return Complex(f64).init((x * x) * (y - y), (x + x) * (y - y));
 }
 
 const epsilon = 0.0001;
 
 test "complex.ccosh32" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = cosh(a);
 
     try testing.expect(math.approxEqAbs(f32, c.re, -73.467300, epsilon));
@@ -170,7 +170,7 @@ test "complex.ccosh32" {
 }
 
 test "complex.ccosh64" {
-    const a = Complex(f64).new(5, 3);
+    const a = Complex(f64).init(5, 3);
     const c = cosh(a);
 
     try testing.expect(math.approxEqAbs(f64, c.re, -73.467300, epsilon));
lib/std/math/complex/exp.zig
@@ -39,25 +39,25 @@ fn exp32(z: Complex(f32)) Complex(f32) {
     const hy = @bitCast(u32, y) & 0x7fffffff;
     // cexp(x + i0) = exp(x) + i0
     if (hy == 0) {
-        return Complex(f32).new(math.exp(x), y);
+        return Complex(f32).init(math.exp(x), y);
     }
 
     const hx = @bitCast(u32, x);
     // cexp(0 + iy) = cos(y) + isin(y)
     if ((hx & 0x7fffffff) == 0) {
-        return Complex(f32).new(math.cos(y), math.sin(y));
+        return Complex(f32).init(math.cos(y), math.sin(y));
     }
 
     if (hy >= 0x7f800000) {
         // cexp(finite|nan +- i inf|nan) = nan + i nan
         if ((hx & 0x7fffffff) != 0x7f800000) {
-            return Complex(f32).new(y - y, y - y);
+            return Complex(f32).init(y - y, y - y);
         } // cexp(-inf +- i inf|nan) = 0 + i0
         else if (hx & 0x80000000 != 0) {
-            return Complex(f32).new(0, 0);
+            return Complex(f32).init(0, 0);
         } // cexp(+inf +- i inf|nan) = inf + i nan
         else {
-            return Complex(f32).new(x, y - y);
+            return Complex(f32).init(x, y - y);
         }
     }
 
@@ -70,7 +70,7 @@ fn exp32(z: Complex(f32)) Complex(f32) {
     // - x = nan
     else {
         const exp_x = math.exp(x);
-        return Complex(f32).new(exp_x * math.cos(y), exp_x * math.sin(y));
+        return Complex(f32).init(exp_x * math.cos(y), exp_x * math.sin(y));
     }
 }
 
@@ -87,7 +87,7 @@ fn exp64(z: Complex(f64)) Complex(f64) {
 
     // cexp(x + i0) = exp(x) + i0
     if (hy | ly == 0) {
-        return Complex(f64).new(math.exp(x), y);
+        return Complex(f64).init(math.exp(x), y);
     }
 
     const fx = @bitCast(u64, x);
@@ -96,19 +96,19 @@ fn exp64(z: Complex(f64)) Complex(f64) {
 
     // cexp(0 + iy) = cos(y) + isin(y)
     if ((hx & 0x7fffffff) | lx == 0) {
-        return Complex(f64).new(math.cos(y), math.sin(y));
+        return Complex(f64).init(math.cos(y), math.sin(y));
     }
 
     if (hy >= 0x7ff00000) {
         // cexp(finite|nan +- i inf|nan) = nan + i nan
         if (lx != 0 or (hx & 0x7fffffff) != 0x7ff00000) {
-            return Complex(f64).new(y - y, y - y);
+            return Complex(f64).init(y - y, y - y);
         } // cexp(-inf +- i inf|nan) = 0 + i0
         else if (hx & 0x80000000 != 0) {
-            return Complex(f64).new(0, 0);
+            return Complex(f64).init(0, 0);
         } // cexp(+inf +- i inf|nan) = inf + i nan
         else {
-            return Complex(f64).new(x, y - y);
+            return Complex(f64).init(x, y - y);
         }
     }
 
@@ -121,14 +121,14 @@ fn exp64(z: Complex(f64)) Complex(f64) {
     // - x = nan
     else {
         const exp_x = math.exp(x);
-        return Complex(f64).new(exp_x * math.cos(y), exp_x * math.sin(y));
+        return Complex(f64).init(exp_x * math.cos(y), exp_x * math.sin(y));
     }
 }
 
 const epsilon = 0.0001;
 
 test "complex.cexp32" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = exp(a);
 
     try testing.expect(math.approxEqAbs(f32, c.re, -146.927917, epsilon));
@@ -136,7 +136,7 @@ test "complex.cexp32" {
 }
 
 test "complex.cexp64" {
-    const a = Complex(f64).new(5, 3);
+    const a = Complex(f64).init(5, 3);
     const c = exp(a);
 
     try testing.expect(math.approxEqAbs(f64, c.re, -146.927917, epsilon));
lib/std/math/complex/ldexp.zig
@@ -48,7 +48,7 @@ fn ldexp_cexp32(z: Complex(f32), expt: i32) Complex(f32) {
     const half_expt2 = exptf - half_expt1;
     const scale2 = @bitCast(f32, (0x7f + half_expt2) << 23);
 
-    return Complex(f32).new(math.cos(z.im) * exp_x * scale1 * scale2, math.sin(z.im) * exp_x * scale1 * scale2);
+    return Complex(f32).init(math.cos(z.im) * exp_x * scale1 * scale2, math.sin(z.im) * exp_x * scale1 * scale2);
 }
 
 fn frexp_exp64(x: f64, expt: *i32) f64 {
@@ -78,7 +78,7 @@ fn ldexp_cexp64(z: Complex(f64), expt: i32) Complex(f64) {
     const half_expt2 = exptf - half_expt1;
     const scale2 = @bitCast(f64, (0x3ff + half_expt2) << 20);
 
-    return Complex(f64).new(
+    return Complex(f64).init(
         math.cos(z.im) * exp_x * scale1 * scale2,
         math.sin(z.im) * exp_x * scale1 * scale2,
     );
lib/std/math/complex/log.zig
@@ -15,13 +15,13 @@ pub fn log(z: anytype) Complex(@TypeOf(z.re)) {
     const r = cmath.abs(z);
     const phi = cmath.arg(z);
 
-    return Complex(T).new(math.ln(r), phi);
+    return Complex(T).init(math.ln(r), phi);
 }
 
 const epsilon = 0.0001;
 
 test "complex.clog" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = log(a);
 
     try testing.expect(math.approxEqAbs(f32, c.re, 1.763180, epsilon));
lib/std/math/complex/pow.zig
@@ -19,8 +19,8 @@ pub fn pow(comptime T: type, z: T, c: T) T {
 const epsilon = 0.0001;
 
 test "complex.cpow" {
-    const a = Complex(f32).new(5, 3);
-    const b = Complex(f32).new(2.3, -1.3);
+    const a = Complex(f32).init(5, 3);
+    const b = Complex(f32).init(2.3, -1.3);
     const c = pow(Complex(f32), a, b);
 
     try testing.expect(math.approxEqAbs(f32, c.re, 58.049110, epsilon));
lib/std/math/complex/proj.zig
@@ -14,16 +14,16 @@ pub fn proj(z: anytype) Complex(@TypeOf(z.re)) {
     const T = @TypeOf(z.re);
 
     if (math.isInf(z.re) or math.isInf(z.im)) {
-        return Complex(T).new(math.inf(T), math.copysign(T, 0, z.re));
+        return Complex(T).init(math.inf(T), math.copysign(T, 0, z.re));
     }
 
-    return Complex(T).new(z.re, z.im);
+    return Complex(T).init(z.re, z.im);
 }
 
 const epsilon = 0.0001;
 
 test "complex.cproj" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = proj(a);
 
     try testing.expect(c.re == 5 and c.im == 3);
lib/std/math/complex/sin.zig
@@ -12,15 +12,15 @@ const Complex = cmath.Complex;
 /// Returns the sine of z.
 pub fn sin(z: anytype) Complex(@TypeOf(z.re)) {
     const T = @TypeOf(z.re);
-    const p = Complex(T).new(-z.im, z.re);
+    const p = Complex(T).init(-z.im, z.re);
     const q = cmath.sinh(p);
-    return Complex(T).new(q.im, -q.re);
+    return Complex(T).init(q.im, -q.re);
 }
 
 const epsilon = 0.0001;
 
 test "complex.csin" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = sin(a);
 
     try testing.expect(math.approxEqAbs(f32, c.re, -9.654126, epsilon));
lib/std/math/complex/sinh.zig
@@ -40,55 +40,55 @@ fn sinh32(z: Complex(f32)) Complex(f32) {
 
     if (ix < 0x7f800000 and iy < 0x7f800000) {
         if (iy == 0) {
-            return Complex(f32).new(math.sinh(x), y);
+            return Complex(f32).init(math.sinh(x), y);
         }
         // small x: normal case
         if (ix < 0x41100000) {
-            return Complex(f32).new(math.sinh(x) * math.cos(y), math.cosh(x) * math.sin(y));
+            return Complex(f32).init(math.sinh(x) * math.cos(y), math.cosh(x) * math.sin(y));
         }
 
         // |x|>= 9, so cosh(x) ~= exp(|x|)
         if (ix < 0x42b17218) {
             // x < 88.7: exp(|x|) won't overflow
             const h = math.exp(math.fabs(x)) * 0.5;
-            return Complex(f32).new(math.copysign(f32, h, x) * math.cos(y), h * math.sin(y));
+            return Complex(f32).init(math.copysign(f32, h, x) * math.cos(y), h * math.sin(y));
         }
         // x < 192.7: scale to avoid overflow
         else if (ix < 0x4340b1e7) {
-            const v = Complex(f32).new(math.fabs(x), y);
+            const v = Complex(f32).init(math.fabs(x), y);
             const r = ldexp_cexp(v, -1);
-            return Complex(f32).new(r.re * math.copysign(f32, 1, x), r.im);
+            return Complex(f32).init(r.re * math.copysign(f32, 1, x), r.im);
         }
         // x >= 192.7: result always overflows
         else {
             const h = 0x1p127 * x;
-            return Complex(f32).new(h * math.cos(y), h * h * math.sin(y));
+            return Complex(f32).init(h * math.cos(y), h * h * math.sin(y));
         }
     }
 
     if (ix == 0 and iy >= 0x7f800000) {
-        return Complex(f32).new(math.copysign(f32, 0, x * (y - y)), y - y);
+        return Complex(f32).init(math.copysign(f32, 0, x * (y - y)), y - y);
     }
 
     if (iy == 0 and ix >= 0x7f800000) {
         if (hx & 0x7fffff == 0) {
-            return Complex(f32).new(x, y);
+            return Complex(f32).init(x, y);
         }
-        return Complex(f32).new(x, math.copysign(f32, 0, y));
+        return Complex(f32).init(x, math.copysign(f32, 0, y));
     }
 
     if (ix < 0x7f800000 and iy >= 0x7f800000) {
-        return Complex(f32).new(y - y, x * (y - y));
+        return Complex(f32).init(y - y, x * (y - y));
     }
 
     if (ix >= 0x7f800000 and (hx & 0x7fffff) == 0) {
         if (iy >= 0x7f800000) {
-            return Complex(f32).new(x * x, x * (y - y));
+            return Complex(f32).init(x * x, x * (y - y));
         }
-        return Complex(f32).new(x * math.cos(y), math.inf_f32 * math.sin(y));
+        return Complex(f32).init(x * math.cos(y), math.inf_f32 * math.sin(y));
     }
 
-    return Complex(f32).new((x * x) * (y - y), (x + x) * (y - y));
+    return Complex(f32).init((x * x) * (y - y), (x + x) * (y - y));
 }
 
 fn sinh64(z: Complex(f64)) Complex(f64) {
@@ -107,61 +107,61 @@ fn sinh64(z: Complex(f64)) Complex(f64) {
 
     if (ix < 0x7ff00000 and iy < 0x7ff00000) {
         if (iy | ly == 0) {
-            return Complex(f64).new(math.sinh(x), y);
+            return Complex(f64).init(math.sinh(x), y);
         }
         // small x: normal case
         if (ix < 0x40360000) {
-            return Complex(f64).new(math.sinh(x) * math.cos(y), math.cosh(x) * math.sin(y));
+            return Complex(f64).init(math.sinh(x) * math.cos(y), math.cosh(x) * math.sin(y));
         }
 
         // |x|>= 22, so cosh(x) ~= exp(|x|)
         if (ix < 0x40862e42) {
             // x < 710: exp(|x|) won't overflow
             const h = math.exp(math.fabs(x)) * 0.5;
-            return Complex(f64).new(math.copysign(f64, h, x) * math.cos(y), h * math.sin(y));
+            return Complex(f64).init(math.copysign(f64, h, x) * math.cos(y), h * math.sin(y));
         }
         // x < 1455: scale to avoid overflow
         else if (ix < 0x4096bbaa) {
-            const v = Complex(f64).new(math.fabs(x), y);
+            const v = Complex(f64).init(math.fabs(x), y);
             const r = ldexp_cexp(v, -1);
-            return Complex(f64).new(r.re * math.copysign(f64, 1, x), r.im);
+            return Complex(f64).init(r.re * math.copysign(f64, 1, x), r.im);
         }
         // x >= 1455: result always overflows
         else {
             const h = 0x1p1023 * x;
-            return Complex(f64).new(h * math.cos(y), h * h * math.sin(y));
+            return Complex(f64).init(h * math.cos(y), h * h * math.sin(y));
         }
     }
 
     if (ix | lx == 0 and iy >= 0x7ff00000) {
-        return Complex(f64).new(math.copysign(f64, 0, x * (y - y)), y - y);
+        return Complex(f64).init(math.copysign(f64, 0, x * (y - y)), y - y);
     }
 
     if (iy | ly == 0 and ix >= 0x7ff00000) {
         if ((hx & 0xfffff) | lx == 0) {
-            return Complex(f64).new(x, y);
+            return Complex(f64).init(x, y);
         }
-        return Complex(f64).new(x, math.copysign(f64, 0, y));
+        return Complex(f64).init(x, math.copysign(f64, 0, y));
     }
 
     if (ix < 0x7ff00000 and iy >= 0x7ff00000) {
-        return Complex(f64).new(y - y, x * (y - y));
+        return Complex(f64).init(y - y, x * (y - y));
     }
 
     if (ix >= 0x7ff00000 and (hx & 0xfffff) | lx == 0) {
         if (iy >= 0x7ff00000) {
-            return Complex(f64).new(x * x, x * (y - y));
+            return Complex(f64).init(x * x, x * (y - y));
         }
-        return Complex(f64).new(x * math.cos(y), math.inf_f64 * math.sin(y));
+        return Complex(f64).init(x * math.cos(y), math.inf_f64 * math.sin(y));
     }
 
-    return Complex(f64).new((x * x) * (y - y), (x + x) * (y - y));
+    return Complex(f64).init((x * x) * (y - y), (x + x) * (y - y));
 }
 
 const epsilon = 0.0001;
 
 test "complex.csinh32" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = sinh(a);
 
     try testing.expect(math.approxEqAbs(f32, c.re, -73.460617, epsilon));
@@ -169,7 +169,7 @@ test "complex.csinh32" {
 }
 
 test "complex.csinh64" {
-    const a = Complex(f64).new(5, 3);
+    const a = Complex(f64).init(5, 3);
     const c = sinh(a);
 
     try testing.expect(math.approxEqAbs(f64, c.re, -73.460617, epsilon));
lib/std/math/complex/sqrt.zig
@@ -32,15 +32,15 @@ fn sqrt32(z: Complex(f32)) Complex(f32) {
     const y = z.im;
 
     if (x == 0 and y == 0) {
-        return Complex(f32).new(0, y);
+        return Complex(f32).init(0, y);
     }
     if (math.isInf(y)) {
-        return Complex(f32).new(math.inf(f32), y);
+        return Complex(f32).init(math.inf(f32), y);
     }
     if (math.isNan(x)) {
         // raise invalid if y is not nan
         const t = (y - y) / (y - y);
-        return Complex(f32).new(x, t);
+        return Complex(f32).init(x, t);
     }
     if (math.isInf(x)) {
         // sqrt(inf + i nan)    = inf + nan i
@@ -48,9 +48,9 @@ fn sqrt32(z: Complex(f32)) Complex(f32) {
         // sqrt(-inf + i nan)   = nan +- inf i
         // sqrt(-inf + iy)      = 0 + inf i
         if (math.signbit(x)) {
-            return Complex(f32).new(math.fabs(x - y), math.copysign(f32, x, y));
+            return Complex(f32).init(math.fabs(x - y), math.copysign(f32, x, y));
         } else {
-            return Complex(f32).new(x, math.copysign(f32, y - y, y));
+            return Complex(f32).init(x, math.copysign(f32, y - y, y));
         }
     }
 
@@ -62,13 +62,13 @@ fn sqrt32(z: Complex(f32)) Complex(f32) {
 
     if (dx >= 0) {
         const t = math.sqrt((dx + math.hypot(f64, dx, dy)) * 0.5);
-        return Complex(f32).new(
+        return Complex(f32).init(
             @floatCast(f32, t),
             @floatCast(f32, dy / (2.0 * t)),
         );
     } else {
         const t = math.sqrt((-dx + math.hypot(f64, dx, dy)) * 0.5);
-        return Complex(f32).new(
+        return Complex(f32).init(
             @floatCast(f32, math.fabs(y) / (2.0 * t)),
             @floatCast(f32, math.copysign(f64, t, y)),
         );
@@ -83,15 +83,15 @@ fn sqrt64(z: Complex(f64)) Complex(f64) {
     var y = z.im;
 
     if (x == 0 and y == 0) {
-        return Complex(f64).new(0, y);
+        return Complex(f64).init(0, y);
     }
     if (math.isInf(y)) {
-        return Complex(f64).new(math.inf(f64), y);
+        return Complex(f64).init(math.inf(f64), y);
     }
     if (math.isNan(x)) {
         // raise invalid if y is not nan
         const t = (y - y) / (y - y);
-        return Complex(f64).new(x, t);
+        return Complex(f64).init(x, t);
     }
     if (math.isInf(x)) {
         // sqrt(inf + i nan)    = inf + nan i
@@ -99,9 +99,9 @@ fn sqrt64(z: Complex(f64)) Complex(f64) {
         // sqrt(-inf + i nan)   = nan +- inf i
         // sqrt(-inf + iy)      = 0 + inf i
         if (math.signbit(x)) {
-            return Complex(f64).new(math.fabs(x - y), math.copysign(f64, x, y));
+            return Complex(f64).init(math.fabs(x - y), math.copysign(f64, x, y));
         } else {
-            return Complex(f64).new(x, math.copysign(f64, y - y, y));
+            return Complex(f64).init(x, math.copysign(f64, y - y, y));
         }
     }
 
@@ -118,10 +118,10 @@ fn sqrt64(z: Complex(f64)) Complex(f64) {
     var result: Complex(f64) = undefined;
     if (x >= 0) {
         const t = math.sqrt((x + math.hypot(f64, x, y)) * 0.5);
-        result = Complex(f64).new(t, y / (2.0 * t));
+        result = Complex(f64).init(t, y / (2.0 * t));
     } else {
         const t = math.sqrt((-x + math.hypot(f64, x, y)) * 0.5);
-        result = Complex(f64).new(math.fabs(y) / (2.0 * t), math.copysign(f64, t, y));
+        result = Complex(f64).init(math.fabs(y) / (2.0 * t), math.copysign(f64, t, y));
     }
 
     if (scale) {
@@ -135,7 +135,7 @@ fn sqrt64(z: Complex(f64)) Complex(f64) {
 const epsilon = 0.0001;
 
 test "complex.csqrt32" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = sqrt(a);
 
     try testing.expect(math.approxEqAbs(f32, c.re, 2.327117, epsilon));
@@ -143,7 +143,7 @@ test "complex.csqrt32" {
 }
 
 test "complex.csqrt64" {
-    const a = Complex(f64).new(5, 3);
+    const a = Complex(f64).init(5, 3);
     const c = sqrt(a);
 
     try testing.expect(math.approxEqAbs(f64, c.re, 2.3271175190399496, epsilon));
lib/std/math/complex/tan.zig
@@ -12,15 +12,15 @@ const Complex = cmath.Complex;
 /// Returns the tanget of z.
 pub fn tan(z: anytype) Complex(@TypeOf(z.re)) {
     const T = @TypeOf(z.re);
-    const q = Complex(T).new(-z.im, z.re);
+    const q = Complex(T).init(-z.im, z.re);
     const r = cmath.tanh(q);
-    return Complex(T).new(r.im, -r.re);
+    return Complex(T).init(r.im, -r.re);
 }
 
 const epsilon = 0.0001;
 
 test "complex.ctan" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = tan(a);
 
     try testing.expect(math.approxEqAbs(f32, c.re, -0.002708233, epsilon));
lib/std/math/complex/tanh.zig
@@ -36,22 +36,22 @@ fn tanh32(z: Complex(f32)) Complex(f32) {
     if (ix >= 0x7f800000) {
         if (ix & 0x7fffff != 0) {
             const r = if (y == 0) y else x * y;
-            return Complex(f32).new(x, r);
+            return Complex(f32).init(x, r);
         }
         const xx = @bitCast(f32, hx - 0x40000000);
         const r = if (math.isInf(y)) y else math.sin(y) * math.cos(y);
-        return Complex(f32).new(xx, math.copysign(f32, 0, r));
+        return Complex(f32).init(xx, math.copysign(f32, 0, r));
     }
 
     if (!math.isFinite(y)) {
         const r = if (ix != 0) y - y else x;
-        return Complex(f32).new(r, y - y);
+        return Complex(f32).init(r, y - y);
     }
 
     // x >= 11
     if (ix >= 0x41300000) {
         const exp_mx = math.exp(-math.fabs(x));
-        return Complex(f32).new(math.copysign(f32, 1, x), 4 * math.sin(y) * math.cos(y) * exp_mx * exp_mx);
+        return Complex(f32).init(math.copysign(f32, 1, x), 4 * math.sin(y) * math.cos(y) * exp_mx * exp_mx);
     }
 
     // Kahan's algorithm
@@ -61,7 +61,7 @@ fn tanh32(z: Complex(f32)) Complex(f32) {
     const rho = math.sqrt(1 + s * s);
     const den = 1 + beta * s * s;
 
-    return Complex(f32).new((beta * rho * s) / den, t / den);
+    return Complex(f32).init((beta * rho * s) / den, t / den);
 }
 
 fn tanh64(z: Complex(f64)) Complex(f64) {
@@ -78,23 +78,23 @@ fn tanh64(z: Complex(f64)) Complex(f64) {
     if (ix >= 0x7ff00000) {
         if ((ix & 0x7fffff) | lx != 0) {
             const r = if (y == 0) y else x * y;
-            return Complex(f64).new(x, r);
+            return Complex(f64).init(x, r);
         }
 
         const xx = @bitCast(f64, (@as(u64, hx - 0x40000000) << 32) | lx);
         const r = if (math.isInf(y)) y else math.sin(y) * math.cos(y);
-        return Complex(f64).new(xx, math.copysign(f64, 0, r));
+        return Complex(f64).init(xx, math.copysign(f64, 0, r));
     }
 
     if (!math.isFinite(y)) {
         const r = if (ix != 0) y - y else x;
-        return Complex(f64).new(r, y - y);
+        return Complex(f64).init(r, y - y);
     }
 
     // x >= 22
     if (ix >= 0x40360000) {
         const exp_mx = math.exp(-math.fabs(x));
-        return Complex(f64).new(math.copysign(f64, 1, x), 4 * math.sin(y) * math.cos(y) * exp_mx * exp_mx);
+        return Complex(f64).init(math.copysign(f64, 1, x), 4 * math.sin(y) * math.cos(y) * exp_mx * exp_mx);
     }
 
     // Kahan's algorithm
@@ -104,13 +104,13 @@ fn tanh64(z: Complex(f64)) Complex(f64) {
     const rho = math.sqrt(1 + s * s);
     const den = 1 + beta * s * s;
 
-    return Complex(f64).new((beta * rho * s) / den, t / den);
+    return Complex(f64).init((beta * rho * s) / den, t / den);
 }
 
 const epsilon = 0.0001;
 
 test "complex.ctanh32" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = tanh(a);
 
     try testing.expect(math.approxEqAbs(f32, c.re, 0.999913, epsilon));
@@ -118,7 +118,7 @@ test "complex.ctanh32" {
 }
 
 test "complex.ctanh64" {
-    const a = Complex(f64).new(5, 3);
+    const a = Complex(f64).init(5, 3);
     const c = tanh(a);
 
     try testing.expect(math.approxEqAbs(f64, c.re, 0.999913, epsilon));
lib/std/math/complex.zig
@@ -38,9 +38,12 @@ pub fn Complex(comptime T: type) type {
 
         /// Imaginary part.
         im: T,
+        
+        /// Deprecated, use init()
+        pub const new = init;
 
         /// Create a new Complex number from the given real and imaginary parts.
-        pub fn new(re: T, im: T) Self {
+        pub fn init(re: T, im: T) Self {
             return Self{
                 .re = re,
                 .im = im,
@@ -110,32 +113,32 @@ pub fn Complex(comptime T: type) type {
 const epsilon = 0.0001;
 
 test "complex.add" {
-    const a = Complex(f32).new(5, 3);
-    const b = Complex(f32).new(2, 7);
+    const a = Complex(f32).init(5, 3);
+    const b = Complex(f32).init(2, 7);
     const c = a.add(b);
 
     try testing.expect(c.re == 7 and c.im == 10);
 }
 
 test "complex.sub" {
-    const a = Complex(f32).new(5, 3);
-    const b = Complex(f32).new(2, 7);
+    const a = Complex(f32).init(5, 3);
+    const b = Complex(f32).init(2, 7);
     const c = a.sub(b);
 
     try testing.expect(c.re == 3 and c.im == -4);
 }
 
 test "complex.mul" {
-    const a = Complex(f32).new(5, 3);
-    const b = Complex(f32).new(2, 7);
+    const a = Complex(f32).init(5, 3);
+    const b = Complex(f32).init(2, 7);
     const c = a.mul(b);
 
     try testing.expect(c.re == -11 and c.im == 41);
 }
 
 test "complex.div" {
-    const a = Complex(f32).new(5, 3);
-    const b = Complex(f32).new(2, 7);
+    const a = Complex(f32).init(5, 3);
+    const b = Complex(f32).init(2, 7);
     const c = a.div(b);
 
     try testing.expect(math.approxEqAbs(f32, c.re, @as(f32, 31) / 53, epsilon) and
@@ -143,14 +146,14 @@ test "complex.div" {
 }
 
 test "complex.conjugate" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = a.conjugate();
 
     try testing.expect(c.re == 5 and c.im == -3);
 }
 
 test "complex.reciprocal" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = a.reciprocal();
 
     try testing.expect(math.approxEqAbs(f32, c.re, @as(f32, 5) / 34, epsilon) and
@@ -158,7 +161,7 @@ test "complex.reciprocal" {
 }
 
 test "complex.magnitude" {
-    const a = Complex(f32).new(5, 3);
+    const a = Complex(f32).init(5, 3);
     const c = a.magnitude();
 
     try testing.expect(math.approxEqAbs(f32, c, 5.83095, epsilon));
lib/std/zig/parser_test.zig
@@ -1608,13 +1608,13 @@ test "zig fmt: if-else with comment before else" {
         \\comptime {
         \\    // cexp(finite|nan +- i inf|nan) = nan + i nan
         \\    if ((hx & 0x7fffffff) != 0x7f800000) {
-        \\        return Complex(f32).new(y - y, y - y);
+        \\        return Complex(f32).init(y - y, y - y);
         \\    } // cexp(-inf +- i inf|nan) = 0 + i0
         \\    else if (hx & 0x80000000 != 0) {
-        \\        return Complex(f32).new(0, 0);
+        \\        return Complex(f32).init(0, 0);
         \\    } // cexp(+inf +- i inf|nan) = inf + i nan
         \\    else {
-        \\        return Complex(f32).new(x, y - y);
+        \\        return Complex(f32).init(x, y - y);
         \\    }
         \\}
         \\
@@ -2267,16 +2267,16 @@ test "zig fmt: line comment between if block and else keyword" {
         \\test "aoeu" {
         \\    // cexp(finite|nan +- i inf|nan) = nan + i nan
         \\    if ((hx & 0x7fffffff) != 0x7f800000) {
-        \\        return Complex(f32).new(y - y, y - y);
+        \\        return Complex(f32).init(y - y, y - y);
         \\    }
         \\    // cexp(-inf +- i inf|nan) = 0 + i0
         \\    else if (hx & 0x80000000 != 0) {
-        \\        return Complex(f32).new(0, 0);
+        \\        return Complex(f32).init(0, 0);
         \\    }
         \\    // cexp(+inf +- i inf|nan) = inf + i nan
         \\    // another comment
         \\    else {
-        \\        return Complex(f32).new(x, y - y);
+        \\        return Complex(f32).init(x, y - y);
         \\    }
         \\}
         \\