Commit 4ee1309a8d
Changed files (1)
lib
std
lib/std/unicode.zig
@@ -39,7 +39,16 @@ pub fn utf8ByteSequenceLength(first_byte: u8) !u3 {
/// out: the out buffer to write to. Must have a len >= utf8CodepointSequenceLength(c).
/// Errors: if c cannot be encoded in UTF-8.
/// Returns: the number of bytes written to out.
-pub fn utf8Encode(c: u21, out: []u8) !u3 {
+pub fn utf8Encode(c: u21, out: []u8) error{ Utf8CannotEncodeSurrogateHalf, CodepointTooLarge }!u3 {
+ return utf8EncodeImpl(c, out, .cannot_encode_surrogate_half);
+}
+
+const Surrogates = enum {
+ cannot_encode_surrogate_half,
+ can_encode_surrogate_half,
+};
+
+fn utf8EncodeImpl(c: u21, out: []u8, comptime surrogates: Surrogates) !u3 {
const length = try utf8CodepointSequenceLength(c);
assert(out.len >= length);
switch (length) {
@@ -53,7 +62,9 @@ pub fn utf8Encode(c: u21, out: []u8) !u3 {
out[1] = @as(u8, @intCast(0b10000000 | (c & 0b111111)));
},
3 => {
- if (0xd800 <= c and c <= 0xdfff) return error.Utf8CannotEncodeSurrogateHalf;
+ if (surrogates == .cannot_encode_surrogate_half and isSurrogateCodepoint(c)) {
+ return error.Utf8CannotEncodeSurrogateHalf;
+ }
out[0] = @as(u8, @intCast(0b11100000 | (c >> 12)));
out[1] = @as(u8, @intCast(0b10000000 | ((c >> 6) & 0b111111)));
out[2] = @as(u8, @intCast(0b10000000 | (c & 0b111111)));
@@ -116,12 +127,22 @@ pub fn utf8Decode2(bytes: []const u8) Utf8Decode2Error!u21 {
return value;
}
-const Utf8Decode3Error = error{
- Utf8ExpectedContinuation,
- Utf8OverlongEncoding,
+const Utf8Decode3Error = Utf8Decode3AllowSurrogateHalfError || error{
Utf8EncodesSurrogateHalf,
};
pub fn utf8Decode3(bytes: []const u8) Utf8Decode3Error!u21 {
+ const value = try utf8Decode3AllowSurrogateHalf(bytes);
+
+ if (0xd800 <= value and value <= 0xdfff) return error.Utf8EncodesSurrogateHalf;
+
+ return value;
+}
+
+const Utf8Decode3AllowSurrogateHalfError = error{
+ Utf8ExpectedContinuation,
+ Utf8OverlongEncoding,
+};
+pub fn utf8Decode3AllowSurrogateHalf(bytes: []const u8) Utf8Decode3AllowSurrogateHalfError!u21 {
assert(bytes.len == 3);
assert(bytes[0] & 0b11110000 == 0b11100000);
var value: u21 = bytes[0] & 0b00001111;
@@ -135,7 +156,6 @@ pub fn utf8Decode3(bytes: []const u8) Utf8Decode3Error!u21 {
value |= bytes[2] & 0b00111111;
if (value < 0x800) return error.Utf8OverlongEncoding;
- if (0xd800 <= value and value <= 0xdfff) return error.Utf8EncodesSurrogateHalf;
return value;
}
@@ -213,6 +233,10 @@ pub fn utf8CountCodepoints(s: []const u8) !usize {
/// Returns true if the input consists entirely of UTF-8 codepoints
pub fn utf8ValidateSlice(input: []const u8) bool {
+ return utf8ValidateSliceImpl(input, .cannot_encode_surrogate_half);
+}
+
+fn utf8ValidateSliceImpl(input: []const u8, comptime surrogates: Surrogates) bool {
var remaining = input;
const chunk_len = std.simd.suggestVectorLength(u8) orelse 1;
@@ -240,9 +264,15 @@ pub fn utf8ValidateSlice(input: []const u8) bool {
const xx = 0xF1; // invalid: size 1
const as = 0xF0; // ASCII: size 1
const s1 = 0x02; // accept 0, size 2
- const s2 = 0x13; // accept 1, size 3
+ const s2 = switch (surrogates) {
+ .cannot_encode_surrogate_half => 0x13, // accept 1, size 3
+ .can_encode_surrogate_half => 0x03, // accept 0, size 3
+ };
const s3 = 0x03; // accept 0, size 3
- const s4 = 0x23; // accept 2, size 3
+ const s4 = switch (surrogates) {
+ .cannot_encode_surrogate_half => 0x23, // accept 2, size 3
+ .can_encode_surrogate_half => 0x03, // accept 0, size 3
+ };
const s5 = 0x34; // accept 3, size 4
const s6 = 0x04; // accept 0, size 4
const s7 = 0x44; // accept 4, size 4
@@ -770,11 +800,9 @@ fn testDecode(bytes: []const u8) !u21 {
return utf8Decode(bytes);
}
-/// Caller must free returned memory.
-pub fn utf16leToUtf8Alloc(allocator: mem.Allocator, utf16le: []const u16) ![]u8 {
+fn utf16LeToUtf8ArrayListImpl(array_list: *std.ArrayList(u8), utf16le: []const u16, comptime surrogates: Surrogates) !void {
// optimistically guess that it will all be ascii.
- var result = try std.ArrayList(u8).initCapacity(allocator, utf16le.len);
- errdefer result.deinit();
+ try array_list.ensureTotalCapacityPrecise(utf16le.len);
var remaining = utf16le;
if (builtin.zig_backend != .stage2_x86_64) {
@@ -796,68 +824,69 @@ pub fn utf16leToUtf8Alloc(allocator: mem.Allocator, utf16le: []const u16) ![]u8
// We allocated enough space to encode every UTF-16 code unit
// as ASCII, so if the entire string is ASCII then we are
// guaranteed to have enough space allocated
- result.appendSliceAssumeCapacity(&ascii_bytes);
+ array_list.appendSliceAssumeCapacity(&ascii_bytes);
remaining = remaining[chunk_len..];
}
}
- var out_index: usize = result.items.len;
- var it = Utf16LeIterator.init(remaining);
- while (try it.nextCodepoint()) |codepoint| {
- const utf8_len = utf8CodepointSequenceLength(codepoint) catch unreachable;
- try result.resize(result.items.len + utf8_len);
- assert((utf8Encode(codepoint, result.items[out_index..]) catch unreachable) == utf8_len);
- out_index += utf8_len;
+ var out_index: usize = array_list.items.len;
+ switch (surrogates) {
+ .cannot_encode_surrogate_half => {
+ var it = Utf16LeIterator.init(remaining);
+ while (try it.nextCodepoint()) |codepoint| {
+ const utf8_len = utf8CodepointSequenceLength(codepoint) catch unreachable;
+ try array_list.resize(array_list.items.len + utf8_len);
+ assert((utf8Encode(codepoint, array_list.items[out_index..]) catch unreachable) == utf8_len);
+ out_index += utf8_len;
+ }
+ },
+ .can_encode_surrogate_half => {
+ var it = Wtf16LeIterator.init(remaining);
+ while (it.nextCodepoint()) |codepoint| {
+ const utf8_len = utf8CodepointSequenceLength(codepoint) catch unreachable;
+ try array_list.resize(array_list.items.len + utf8_len);
+ assert((wtf8Encode(codepoint, array_list.items[out_index..]) catch unreachable) == utf8_len);
+ out_index += utf8_len;
+ }
+ },
}
+}
+
+pub fn utf16LeToUtf8ArrayList(array_list: *std.ArrayList(u8), utf16le: []const u16) !void {
+ return utf16LeToUtf8ArrayListImpl(array_list, utf16le, .cannot_encode_surrogate_half);
+}
+
+/// Deprecated; renamed to utf16LeToUtf8Alloc
+pub const utf16leToUtf8Alloc = utf16LeToUtf8Alloc;
+
+/// Caller must free returned memory.
+pub fn utf16LeToUtf8Alloc(allocator: mem.Allocator, utf16le: []const u16) ![]u8 {
+ // optimistically guess that it will all be ascii.
+ var result = try std.ArrayList(u8).initCapacity(allocator, utf16le.len);
+ errdefer result.deinit();
+
+ try utf16LeToUtf8ArrayList(&result, utf16le);
return result.toOwnedSlice();
}
+/// Deprecated; renamed to utf16LeToUtf8AllocZ
+pub const utf16leToUtf8AllocZ = utf16LeToUtf8AllocZ;
+
/// Caller must free returned memory.
-pub fn utf16leToUtf8AllocZ(allocator: mem.Allocator, utf16le: []const u16) ![:0]u8 {
+pub fn utf16LeToUtf8AllocZ(allocator: mem.Allocator, utf16le: []const u16) ![:0]u8 {
// optimistically guess that it will all be ascii (and allocate space for the null terminator)
var result = try std.ArrayList(u8).initCapacity(allocator, utf16le.len + 1);
errdefer result.deinit();
- var remaining = utf16le;
- if (builtin.zig_backend != .stage2_x86_64) {
- const chunk_len = std.simd.suggestVectorLength(u16) orelse 1;
- const Chunk = @Vector(chunk_len, u16);
+ try utf16LeToUtf8ArrayList(&result, utf16le);
- // Fast path. Check for and encode ASCII characters at the start of the input.
- while (remaining.len >= chunk_len) {
- const chunk: Chunk = remaining[0..chunk_len].*;
- const mask: Chunk = @splat(std.mem.nativeToLittle(u16, 0x7F));
- if (@reduce(.Or, chunk | mask != mask)) {
- // found a non ASCII code unit
- break;
- }
- const chunk_byte_len = chunk_len * 2;
- const chunk_bytes: @Vector(chunk_byte_len, u8) = (std.mem.sliceAsBytes(remaining)[0..chunk_byte_len]).*;
- const deinterlaced_bytes = std.simd.deinterlace(2, chunk_bytes);
- const ascii_bytes: [chunk_len]u8 = deinterlaced_bytes[0];
- // We allocated enough space to encode every UTF-16 code unit
- // as ASCII, so if the entire string is ASCII then we are
- // guaranteed to have enough space allocated
- result.appendSliceAssumeCapacity(&ascii_bytes);
- remaining = remaining[chunk_len..];
- }
- }
-
- var out_index = result.items.len;
- var it = Utf16LeIterator.init(remaining);
- while (try it.nextCodepoint()) |codepoint| {
- const utf8_len = utf8CodepointSequenceLength(codepoint) catch unreachable;
- try result.resize(result.items.len + utf8_len);
- assert((utf8Encode(codepoint, result.items[out_index..]) catch unreachable) == utf8_len);
- out_index += utf8_len;
- }
return result.toOwnedSliceSentinel(0);
}
/// Asserts that the output buffer is big enough.
/// Returns end byte index into utf8.
-pub fn utf16leToUtf8(utf8: []u8, utf16le: []const u16) !usize {
+fn utf16LeToUtf8Impl(utf8: []u8, utf16le: []const u16, comptime surrogates: Surrogates) !usize {
var end_index: usize = 0;
var remaining = utf16le;
@@ -883,30 +912,56 @@ pub fn utf16leToUtf8(utf8: []u8, utf16le: []const u16) !usize {
}
}
- var it = Utf16LeIterator.init(remaining);
- while (try it.nextCodepoint()) |codepoint| {
- end_index += try utf8Encode(codepoint, utf8[end_index..]);
+ switch (surrogates) {
+ .cannot_encode_surrogate_half => {
+ var it = Utf16LeIterator.init(remaining);
+ while (try it.nextCodepoint()) |codepoint| {
+ end_index += utf8Encode(codepoint, utf8[end_index..]) catch |err| switch (err) {
+ // The maximum possible codepoint encoded by UTF-16 is U+10FFFF,
+ // which is within the valid codepoint range.
+ error.CodepointTooLarge => unreachable,
+ else => |e| return e,
+ };
+ }
+ },
+ .can_encode_surrogate_half => {
+ var it = Wtf16LeIterator.init(remaining);
+ while (it.nextCodepoint()) |codepoint| {
+ end_index += wtf8Encode(codepoint, utf8[end_index..]) catch |err| switch (err) {
+ // The maximum possible codepoint encoded by UTF-16 is U+10FFFF,
+ // which is within the valid codepoint range.
+ error.CodepointTooLarge => unreachable,
+ };
+ }
+ },
}
return end_index;
}
-test "utf16leToUtf8" {
+/// Deprecated; renamed to utf16LeToUtf8
+pub const utf16leToUtf8 = utf16LeToUtf8;
+
+pub fn utf16LeToUtf8(utf8: []u8, utf16le: []const u16) !usize {
+ return utf16LeToUtf8Impl(utf8, utf16le, .cannot_encode_surrogate_half);
+}
+
+test utf16LeToUtf8 {
var utf16le: [2]u16 = undefined;
const utf16le_as_bytes = mem.sliceAsBytes(utf16le[0..]);
{
mem.writeInt(u16, utf16le_as_bytes[0..2], 'A', .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 'a', .little);
- const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
- defer std.testing.allocator.free(utf8);
+ const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le);
+ defer testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "Aa"));
}
{
mem.writeInt(u16, utf16le_as_bytes[0..2], 0x80, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xffff, .little);
- const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
- defer std.testing.allocator.free(utf8);
+ const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le);
+ defer testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xc2\x80" ++ "\xef\xbf\xbf"));
}
@@ -914,8 +969,8 @@ test "utf16leToUtf8" {
// the values just outside the surrogate half range
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xd7ff, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xe000, .little);
- const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
- defer std.testing.allocator.free(utf8);
+ const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le);
+ defer testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xed\x9f\xbf" ++ "\xee\x80\x80"));
}
@@ -923,8 +978,8 @@ test "utf16leToUtf8" {
// smallest surrogate pair
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xd800, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdc00, .little);
- const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
- defer std.testing.allocator.free(utf8);
+ const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le);
+ defer testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xf0\x90\x80\x80"));
}
@@ -932,31 +987,30 @@ test "utf16leToUtf8" {
// largest surrogate pair
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xdbff, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdfff, .little);
- const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
- defer std.testing.allocator.free(utf8);
+ const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le);
+ defer testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xf4\x8f\xbf\xbf"));
}
{
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xdbff, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdc00, .little);
- const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
- defer std.testing.allocator.free(utf8);
+ const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le);
+ defer testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xf4\x8f\xb0\x80"));
}
{
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xdcdc, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdcdc, .little);
- const result = utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
- try std.testing.expectError(error.UnexpectedSecondSurrogateHalf, result);
+ const result = utf16LeToUtf8Alloc(testing.allocator, &utf16le);
+ try testing.expectError(error.UnexpectedSecondSurrogateHalf, result);
}
}
-pub fn utf8ToUtf16LeWithNull(allocator: mem.Allocator, utf8: []const u8) ![:0]u16 {
+fn utf8ToUtf16LeArrayListImpl(array_list: *std.ArrayList(u16), utf8: []const u8, comptime surrogates: Surrogates) !void {
// optimistically guess that it will not require surrogate pairs
- var result = try std.ArrayList(u16).initCapacity(allocator, utf8.len + 1);
- errdefer result.deinit();
+ try array_list.ensureTotalCapacityPrecise(utf8.len);
var remaining = utf8;
// Need support for std.simd.interlace
@@ -974,26 +1028,54 @@ pub fn utf8ToUtf16LeWithNull(allocator: mem.Allocator, utf8: []const u8) ![:0]u1
}
const zeroes: Chunk = @splat(0);
const utf16_chunk: [chunk_len * 2]u8 align(@alignOf(u16)) = std.simd.interlace(.{ chunk, zeroes });
- result.appendSliceAssumeCapacity(std.mem.bytesAsSlice(u16, &utf16_chunk));
+ array_list.appendSliceAssumeCapacity(std.mem.bytesAsSlice(u16, &utf16_chunk));
remaining = remaining[chunk_len..];
}
}
- const view = try Utf8View.init(remaining);
+ const view = switch (surrogates) {
+ .cannot_encode_surrogate_half => try Utf8View.init(remaining),
+ .can_encode_surrogate_half => try Wtf8View.init(remaining),
+ };
var it = view.iterator();
while (it.nextCodepoint()) |codepoint| {
if (codepoint < 0x10000) {
const short = @as(u16, @intCast(codepoint));
- try result.append(mem.nativeToLittle(u16, short));
+ try array_list.append(mem.nativeToLittle(u16, short));
} else {
const high = @as(u16, @intCast((codepoint - 0x10000) >> 10)) + 0xD800;
const low = @as(u16, @intCast(codepoint & 0x3FF)) + 0xDC00;
var out: [2]u16 = undefined;
out[0] = mem.nativeToLittle(u16, high);
out[1] = mem.nativeToLittle(u16, low);
- try result.appendSlice(out[0..]);
+ try array_list.appendSlice(out[0..]);
}
}
+}
+
+pub fn utf8ToUtf16LeArrayList(array_list: *std.ArrayList(u16), utf8: []const u8) !void {
+ return utf8ToUtf16LeArrayListImpl(array_list, utf8, .cannot_encode_surrogate_half);
+}
+
+pub fn utf8ToUtf16LeAlloc(allocator: mem.Allocator, utf8: []const u8) ![]u16 {
+ // optimistically guess that it will not require surrogate pairs
+ var result = try std.ArrayList(u16).initCapacity(allocator, utf8.len);
+ errdefer result.deinit();
+
+ try utf8ToUtf16LeArrayListImpl(&result, utf8, .cannot_encode_surrogate_half);
+
+ return result.toOwnedSlice();
+}
+
+/// Deprecated; renamed to utf8ToUtf16LeAllocZ
+pub const utf8ToUtf16LeWithNull = utf8ToUtf16LeAllocZ;
+
+pub fn utf8ToUtf16LeAllocZ(allocator: mem.Allocator, utf8: []const u8) ![:0]u16 {
+ // optimistically guess that it will not require surrogate pairs
+ var result = try std.ArrayList(u16).initCapacity(allocator, utf8.len + 1);
+ errdefer result.deinit();
+
+ try utf8ToUtf16LeArrayListImpl(&result, utf8, .cannot_encode_surrogate_half);
return result.toOwnedSliceSentinel(0);
}
@@ -1001,6 +1083,10 @@ pub fn utf8ToUtf16LeWithNull(allocator: mem.Allocator, utf8: []const u8) ![:0]u1
/// Returns index of next character. If exact fit, returned index equals output slice length.
/// Assumes there is enough space for the output.
pub fn utf8ToUtf16Le(utf16le: []u16, utf8: []const u8) !usize {
+ return utf8ToUtf16LeImpl(utf16le, utf8, .cannot_encode_surrogate_half);
+}
+
+pub fn utf8ToUtf16LeImpl(utf16le: []u16, utf8: []const u8, comptime surrogates: Surrogates) !usize {
var dest_i: usize = 0;
var remaining = utf8;
@@ -1029,7 +1115,10 @@ pub fn utf8ToUtf16Le(utf16le: []u16, utf8: []const u8) !usize {
while (src_i < remaining.len) {
const n = utf8ByteSequenceLength(remaining[src_i]) catch return error.InvalidUtf8;
const next_src_i = src_i + n;
- const codepoint = utf8Decode(remaining[src_i..next_src_i]) catch return error.InvalidUtf8;
+ const codepoint = switch (surrogates) {
+ .cannot_encode_surrogate_half => utf8Decode(remaining[src_i..next_src_i]) catch return error.InvalidUtf8,
+ .can_encode_surrogate_half => wtf8Decode(remaining[src_i..next_src_i]) catch return error.InvalidUtf8,
+ };
if (codepoint < 0x10000) {
const short = @as(u16, @intCast(codepoint));
utf16le[dest_i] = mem.nativeToLittle(u16, short);
@@ -1064,21 +1153,59 @@ test "utf8ToUtf16Le" {
}
}
-test "utf8ToUtf16LeWithNull" {
+test utf8ToUtf16LeArrayList {
+ {
+ var list = std.ArrayList(u16).init(testing.allocator);
+ defer list.deinit();
+ try utf8ToUtf16LeArrayList(&list, "𐐷");
+ try testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(list.items));
+ }
+ {
+ var list = std.ArrayList(u16).init(testing.allocator);
+ defer list.deinit();
+ try utf8ToUtf16LeArrayList(&list, "\u{10FFFF}");
+ try testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(list.items));
+ }
+ {
+ var list = std.ArrayList(u16).init(testing.allocator);
+ defer list.deinit();
+ const result = utf8ToUtf16LeArrayList(&list, "\xf4\x90\x80\x80");
+ try testing.expectError(error.InvalidUtf8, result);
+ }
+}
+
+test utf8ToUtf16LeAlloc {
+ {
+ const utf16 = try utf8ToUtf16LeAlloc(testing.allocator, "𐐷");
+ defer testing.allocator.free(utf16);
+ try testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(utf16[0..]));
+ }
+ {
+ const utf16 = try utf8ToUtf16LeAlloc(testing.allocator, "\u{10FFFF}");
+ defer testing.allocator.free(utf16);
+ try testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(utf16[0..]));
+ }
+ {
+ const result = utf8ToUtf16LeAlloc(testing.allocator, "\xf4\x90\x80\x80");
+ try testing.expectError(error.InvalidUtf8, result);
+ }
+}
+
+test utf8ToUtf16LeAllocZ {
{
- const utf16 = try utf8ToUtf16LeWithNull(testing.allocator, "𐐷");
+ const utf16 = try utf8ToUtf16LeAllocZ(testing.allocator, "𐐷");
defer testing.allocator.free(utf16);
try testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(utf16[0..]));
try testing.expect(utf16[2] == 0);
}
{
- const utf16 = try utf8ToUtf16LeWithNull(testing.allocator, "\u{10FFFF}");
+ const utf16 = try utf8ToUtf16LeAllocZ(testing.allocator, "\u{10FFFF}");
defer testing.allocator.free(utf16);
try testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(utf16[0..]));
try testing.expect(utf16[2] == 0);
}
{
- const result = utf8ToUtf16LeWithNull(testing.allocator, "\xf4\x90\x80\x80");
+ const result = utf8ToUtf16LeAllocZ(testing.allocator, "\xf4\x90\x80\x80");
try testing.expectError(error.InvalidUtf8, result);
}
}
@@ -1127,8 +1254,9 @@ test "calculate utf16 string length of given utf8 string in u16" {
try comptime testCalcUtf16LeLen();
}
-/// Print the given `utf16le` string
-fn formatUtf16le(
+/// Print the given `utf16le` string, encoded as UTF-8 bytes.
+/// Unpaired surrogates are replaced by the replacement character (U+FFFD).
+fn formatUtf16Le(
utf16le: []const u16,
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
@@ -1150,22 +1278,25 @@ fn formatUtf16le(
try writer.writeAll(buf[0..u8len]);
}
+/// Deprecated; renamed to fmtUtf16Le
+pub const fmtUtf16le = fmtUtf16Le;
+
/// Return a Formatter for a Utf16le string
-pub fn fmtUtf16le(utf16le: []const u16) std.fmt.Formatter(formatUtf16le) {
+pub fn fmtUtf16Le(utf16le: []const u16) std.fmt.Formatter(formatUtf16Le) {
return .{ .data = utf16le };
}
-test "fmtUtf16le" {
- const expectFmt = std.testing.expectFmt;
- try expectFmt("", "{}", .{fmtUtf16le(utf8ToUtf16LeStringLiteral(""))});
- try expectFmt("foo", "{}", .{fmtUtf16le(utf8ToUtf16LeStringLiteral("foo"))});
- try expectFmt("𐐷", "{}", .{fmtUtf16le(utf8ToUtf16LeStringLiteral("𐐷"))});
- try expectFmt("", "{}", .{fmtUtf16le(&[_]u16{std.mem.readInt(u16, "\xff\xd7", native_endian)})});
- try expectFmt("�", "{}", .{fmtUtf16le(&[_]u16{std.mem.readInt(u16, "\x00\xd8", native_endian)})});
- try expectFmt("�", "{}", .{fmtUtf16le(&[_]u16{std.mem.readInt(u16, "\xff\xdb", native_endian)})});
- try expectFmt("�", "{}", .{fmtUtf16le(&[_]u16{std.mem.readInt(u16, "\x00\xdc", native_endian)})});
- try expectFmt("�", "{}", .{fmtUtf16le(&[_]u16{std.mem.readInt(u16, "\xff\xdf", native_endian)})});
- try expectFmt("", "{}", .{fmtUtf16le(&[_]u16{std.mem.readInt(u16, "\x00\xe0", native_endian)})});
+test "fmtUtf16Le" {
+ const expectFmt = testing.expectFmt;
+ try expectFmt("", "{}", .{fmtUtf16Le(utf8ToUtf16LeStringLiteral(""))});
+ try expectFmt("foo", "{}", .{fmtUtf16Le(utf8ToUtf16LeStringLiteral("foo"))});
+ try expectFmt("𐐷", "{}", .{fmtUtf16Le(utf8ToUtf16LeStringLiteral("𐐷"))});
+ try expectFmt("", "{}", .{fmtUtf16Le(&[_]u16{std.mem.readInt(u16, "\xff\xd7", native_endian)})});
+ try expectFmt("�", "{}", .{fmtUtf16Le(&[_]u16{std.mem.readInt(u16, "\x00\xd8", native_endian)})});
+ try expectFmt("�", "{}", .{fmtUtf16Le(&[_]u16{std.mem.readInt(u16, "\xff\xdb", native_endian)})});
+ try expectFmt("�", "{}", .{fmtUtf16Le(&[_]u16{std.mem.readInt(u16, "\x00\xdc", native_endian)})});
+ try expectFmt("�", "{}", .{fmtUtf16Le(&[_]u16{std.mem.readInt(u16, "\xff\xdf", native_endian)})});
+ try expectFmt("", "{}", .{fmtUtf16Le(&[_]u16{std.mem.readInt(u16, "\x00\xe0", native_endian)})});
}
test "utf8ToUtf16LeStringLiteral" {
@@ -1248,3 +1379,534 @@ test "utf8 valid codepoint" {
try testUtf8ValidCodepoint();
try comptime testUtf8ValidCodepoint();
}
+
+/// Returns true if the codepoint is a surrogate (U+DC00 to U+DFFF)
+pub fn isSurrogateCodepoint(c: u21) bool {
+ return switch (c) {
+ 0xD800...0xDFFF => true,
+ else => false,
+ };
+}
+
+/// Encodes the given codepoint into a WTF-8 byte sequence.
+/// c: the codepoint.
+/// out: the out buffer to write to. Must have a len >= utf8CodepointSequenceLength(c).
+/// Errors: if c cannot be encoded in WTF-8.
+/// Returns: the number of bytes written to out.
+pub fn wtf8Encode(c: u21, out: []u8) error{CodepointTooLarge}!u3 {
+ return utf8EncodeImpl(c, out, .can_encode_surrogate_half);
+}
+
+const Wtf8DecodeError = Utf8Decode2Error || Utf8Decode3AllowSurrogateHalfError || Utf8Decode4Error;
+
+pub fn wtf8Decode(bytes: []const u8) Wtf8DecodeError!u21 {
+ return switch (bytes.len) {
+ 1 => @as(u21, bytes[0]),
+ 2 => utf8Decode2(bytes),
+ 3 => utf8Decode3AllowSurrogateHalf(bytes),
+ 4 => utf8Decode4(bytes),
+ else => unreachable,
+ };
+}
+
+/// Returns true if the input consists entirely of WTF-8 codepoints
+/// (all the same restrictions as UTF-8, but allows surrogate codepoints
+/// U+D800 to U+DFFF).
+/// Does not check for well-formed WTF-8, meaning that this function
+/// does not check that all surrogate halves are unpaired.
+pub fn wtf8ValidateSlice(input: []const u8) bool {
+ return utf8ValidateSliceImpl(input, .can_encode_surrogate_half);
+}
+
+test "validate WTF-8 slice" {
+ try testValidateWtf8Slice();
+ try comptime testValidateWtf8Slice();
+
+ // We skip a variable (based on recommended vector size) chunks of
+ // ASCII characters. Let's make sure we're chunking correctly.
+ const str = [_]u8{'a'} ** 550 ++ "\xc0";
+ for (0..str.len - 3) |i| {
+ try testing.expect(!wtf8ValidateSlice(str[i..]));
+ }
+}
+fn testValidateWtf8Slice() !void {
+ // These are valid/invalid under both UTF-8 and WTF-8 rules.
+ try testing.expect(wtf8ValidateSlice("abc"));
+ try testing.expect(wtf8ValidateSlice("abc\xdf\xbf"));
+ try testing.expect(wtf8ValidateSlice(""));
+ try testing.expect(wtf8ValidateSlice("a"));
+ try testing.expect(wtf8ValidateSlice("abc"));
+ try testing.expect(wtf8ValidateSlice("Ж"));
+ try testing.expect(wtf8ValidateSlice("ЖЖ"));
+ try testing.expect(wtf8ValidateSlice("брэд-ЛГТМ"));
+ try testing.expect(wtf8ValidateSlice("☺☻☹"));
+ try testing.expect(wtf8ValidateSlice("a\u{fffdb}"));
+ try testing.expect(wtf8ValidateSlice("\xf4\x8f\xbf\xbf"));
+ try testing.expect(wtf8ValidateSlice("abc\xdf\xbf"));
+
+ try testing.expect(!wtf8ValidateSlice("abc\xc0"));
+ try testing.expect(!wtf8ValidateSlice("abc\xc0abc"));
+ try testing.expect(!wtf8ValidateSlice("aa\xe2"));
+ try testing.expect(!wtf8ValidateSlice("\x42\xfa"));
+ try testing.expect(!wtf8ValidateSlice("\x42\xfa\x43"));
+ try testing.expect(!wtf8ValidateSlice("abc\xc0"));
+ try testing.expect(!wtf8ValidateSlice("abc\xc0abc"));
+ try testing.expect(!wtf8ValidateSlice("\xf4\x90\x80\x80"));
+ try testing.expect(!wtf8ValidateSlice("\xf7\xbf\xbf\xbf"));
+ try testing.expect(!wtf8ValidateSlice("\xfb\xbf\xbf\xbf\xbf"));
+ try testing.expect(!wtf8ValidateSlice("\xc0\x80"));
+
+ // But surrogate codepoints are only valid in WTF-8.
+ try testing.expect(wtf8ValidateSlice("\xed\xa0\x80"));
+ try testing.expect(wtf8ValidateSlice("\xed\xbf\xbf"));
+}
+
+/// Wtf8View iterates the code points of a WTF-8 encoded string,
+/// including surrogate halves.
+///
+/// ```
+/// var wtf8 = (try std.unicode.Wtf8View.init("hi there")).iterator();
+/// while (wtf8.nextCodepointSlice()) |codepoint| {
+/// // note: codepoint could be a surrogate half which is invalid
+/// // UTF-8, avoid printing or otherwise sending/emitting this directly
+/// }
+/// ```
+pub const Wtf8View = struct {
+ bytes: []const u8,
+
+ pub fn init(s: []const u8) !Wtf8View {
+ if (!wtf8ValidateSlice(s)) {
+ return error.InvalidUtf8;
+ }
+
+ return initUnchecked(s);
+ }
+
+ pub fn initUnchecked(s: []const u8) Wtf8View {
+ return Wtf8View{ .bytes = s };
+ }
+
+ pub inline fn initComptime(comptime s: []const u8) Wtf8View {
+ return comptime if (init(s)) |r| r else |err| switch (err) {
+ error.InvalidUtf8 => {
+ @compileError("invalid utf8 detected in wtf8 string");
+ },
+ };
+ }
+
+ pub fn iterator(s: Wtf8View) Wtf8Iterator {
+ return Wtf8Iterator{
+ .bytes = s.bytes,
+ .i = 0,
+ };
+ }
+};
+
+/// Asserts that `bytes` is valid WTF-8
+pub const Wtf8Iterator = struct {
+ bytes: []const u8,
+ i: usize,
+
+ pub fn nextCodepointSlice(it: *Wtf8Iterator) ?[]const u8 {
+ if (it.i >= it.bytes.len) {
+ return null;
+ }
+
+ const cp_len = utf8ByteSequenceLength(it.bytes[it.i]) catch unreachable;
+ it.i += cp_len;
+ return it.bytes[it.i - cp_len .. it.i];
+ }
+
+ pub fn nextCodepoint(it: *Wtf8Iterator) ?u21 {
+ const slice = it.nextCodepointSlice() orelse return null;
+ return wtf8Decode(slice) catch unreachable;
+ }
+
+ /// Look ahead at the next n codepoints without advancing the iterator.
+ /// If fewer than n codepoints are available, then return the remainder of the string.
+ pub fn peek(it: *Wtf8Iterator, n: usize) []const u8 {
+ const original_i = it.i;
+ defer it.i = original_i;
+
+ var end_ix = original_i;
+ var found: usize = 0;
+ while (found < n) : (found += 1) {
+ const next_codepoint = it.nextCodepointSlice() orelse return it.bytes[original_i..];
+ end_ix += next_codepoint.len;
+ }
+
+ return it.bytes[original_i..end_ix];
+ }
+};
+
+pub fn wtf16LeToWtf8ArrayList(array_list: *std.ArrayList(u8), utf16le: []const u16) !void {
+ return utf16LeToUtf8ArrayListImpl(array_list, utf16le, .can_encode_surrogate_half);
+}
+
+/// Caller must free returned memory.
+pub fn wtf16LeToWtf8Alloc(allocator: mem.Allocator, wtf16le: []const u16) ![]u8 {
+ // optimistically guess that it will all be ascii.
+ var result = try std.ArrayList(u8).initCapacity(allocator, wtf16le.len);
+ errdefer result.deinit();
+
+ try wtf16LeToWtf8ArrayList(&result, wtf16le);
+
+ return result.toOwnedSlice();
+}
+
+/// Caller must free returned memory.
+pub fn wtf16LeToWtf8AllocZ(allocator: mem.Allocator, wtf16le: []const u16) ![:0]u8 {
+ // optimistically guess that it will all be ascii (and allocate space for the null terminator)
+ var result = try std.ArrayList(u8).initCapacity(allocator, wtf16le.len + 1);
+ errdefer result.deinit();
+
+ try wtf16LeToWtf8ArrayList(&result, wtf16le);
+
+ return result.toOwnedSliceSentinel(0);
+}
+
+pub fn wtf16LeToWtf8(wtf8: []u8, wtf16le: []const u16) usize {
+ return utf16LeToUtf8Impl(wtf8, wtf16le, .can_encode_surrogate_half) catch |err| switch (err) {};
+}
+
+pub fn wtf8ToWtf16LeArrayList(array_list: *std.ArrayList(u16), wtf8: []const u8) !void {
+ return utf8ToUtf16LeArrayListImpl(array_list, wtf8, .can_encode_surrogate_half);
+}
+
+pub fn wtf8ToWtf16LeAlloc(allocator: mem.Allocator, wtf8: []const u8) ![]u16 {
+ // optimistically guess that it will not require surrogate pairs
+ var result = try std.ArrayList(u16).initCapacity(allocator, wtf8.len);
+ errdefer result.deinit();
+
+ try utf8ToUtf16LeArrayListImpl(&result, wtf8, .can_encode_surrogate_half);
+
+ return result.toOwnedSlice();
+}
+
+pub fn wtf8ToWtf16LeAllocZ(allocator: mem.Allocator, wtf8: []const u8) ![:0]u16 {
+ // optimistically guess that it will not require surrogate pairs
+ var result = try std.ArrayList(u16).initCapacity(allocator, wtf8.len + 1);
+ errdefer result.deinit();
+
+ try utf8ToUtf16LeArrayListImpl(&result, wtf8, .can_encode_surrogate_half);
+
+ return result.toOwnedSliceSentinel(0);
+}
+
+/// Returns index of next character. If exact fit, returned index equals output slice length.
+/// Assumes there is enough space for the output.
+pub fn wtf8ToWtf16Le(wtf16le: []u16, wtf8: []const u8) !usize {
+ return utf8ToUtf16LeImpl(wtf16le, wtf8, .can_encode_surrogate_half);
+}
+
+/// Surrogate codepoints (U+D800 to U+DFFF) are replaced by the Unicode replacement
+/// character (U+FFFD).
+/// All surrogate codepoints and the replacement character are encoded as three
+/// bytes, meaning the input and output slices will always be the same length.
+/// In-place conversion is supported when `utf8` and `wtf8` refer to the same slice.
+/// Note: If `wtf8` is entirely composed of well-formed UTF-8, then no conversion is necessary.
+/// `utf8ValidateSlice` can be used to check if lossy conversion is worthwhile.
+pub fn wtf8ToUtf8Lossy(utf8: []u8, wtf8: []const u8) !void {
+ assert(utf8.len >= wtf8.len);
+
+ const in_place = utf8.ptr == wtf8.ptr;
+ const replacement_char_bytes = comptime blk: {
+ var buf: [3]u8 = undefined;
+ assert((utf8Encode(replacement_character, &buf) catch unreachable) == 3);
+ break :blk buf;
+ };
+
+ var dest_i: usize = 0;
+ const view = try Wtf8View.init(wtf8);
+ var it = view.iterator();
+ while (it.nextCodepointSlice()) |codepoint_slice| {
+ // All surrogate codepoints are encoded as 3 bytes
+ if (codepoint_slice.len == 3) {
+ const codepoint = wtf8Decode(codepoint_slice) catch unreachable;
+ if (isSurrogateCodepoint(codepoint)) {
+ @memcpy(utf8[dest_i..][0..replacement_char_bytes.len], &replacement_char_bytes);
+ dest_i += replacement_char_bytes.len;
+ continue;
+ }
+ }
+ if (!in_place) {
+ @memcpy(utf8[dest_i..][0..codepoint_slice.len], codepoint_slice);
+ }
+ dest_i += codepoint_slice.len;
+ }
+}
+
+pub fn wtf8ToUtf8LossyAlloc(allocator: mem.Allocator, wtf8: []const u8) ![]u8 {
+ const utf8 = try allocator.alloc(u8, wtf8.len);
+ errdefer allocator.free(utf8);
+
+ try wtf8ToUtf8Lossy(utf8, wtf8);
+
+ return utf8;
+}
+
+pub fn wtf8ToUtf8LossyAllocZ(allocator: mem.Allocator, wtf8: []const u8) ![:0]u8 {
+ const utf8 = try allocator.allocSentinel(u8, wtf8.len, 0);
+ errdefer allocator.free(utf8);
+
+ try wtf8ToUtf8Lossy(utf8, wtf8);
+
+ return utf8;
+}
+
+test wtf8ToUtf8Lossy {
+ var buf: [32]u8 = undefined;
+
+ const invalid_utf8 = "\xff";
+ try testing.expectError(error.InvalidWtf8, wtf8ToUtf8Lossy(&buf, invalid_utf8));
+
+ const ascii = "abcd";
+ try wtf8ToUtf8Lossy(&buf, ascii);
+ try testing.expectEqualStrings("abcd", buf[0..ascii.len]);
+
+ const high_surrogate_half = "ab\xed\xa0\xbdcd";
+ try wtf8ToUtf8Lossy(&buf, high_surrogate_half);
+ try testing.expectEqualStrings("ab\u{FFFD}cd", buf[0..high_surrogate_half.len]);
+
+ const low_surrogate_half = "ab\xed\xb2\xa9cd";
+ try wtf8ToUtf8Lossy(&buf, low_surrogate_half);
+ try testing.expectEqualStrings("ab\u{FFFD}cd", buf[0..low_surrogate_half.len]);
+
+ // If the WTF-8 is not well-formed, each surrogate half is converted into a separate
+ // replacement character instead of being interpreted as a surrogate pair.
+ const encoded_surrogate_pair = "ab\xed\xa0\xbd\xed\xb2\xa9cd";
+ try wtf8ToUtf8Lossy(&buf, encoded_surrogate_pair);
+ try testing.expectEqualStrings("ab\u{FFFD}\u{FFFD}cd", buf[0..encoded_surrogate_pair.len]);
+
+ // in place
+ @memcpy(buf[0..low_surrogate_half.len], low_surrogate_half);
+ const slice = buf[0..low_surrogate_half.len];
+ try wtf8ToUtf8Lossy(slice, slice);
+ try testing.expectEqualStrings("ab\u{FFFD}cd", slice);
+}
+
+test wtf8ToUtf8LossyAlloc {
+ const invalid_utf8 = "\xff";
+ try testing.expectError(error.InvalidWtf8, wtf8ToUtf8LossyAlloc(testing.allocator, invalid_utf8));
+
+ {
+ const ascii = "abcd";
+ const utf8 = try wtf8ToUtf8LossyAlloc(testing.allocator, ascii);
+ defer testing.allocator.free(utf8);
+ try testing.expectEqualStrings("abcd", utf8);
+ }
+
+ {
+ const surrogate_half = "ab\xed\xa0\xbdcd";
+ const utf8 = try wtf8ToUtf8LossyAlloc(testing.allocator, surrogate_half);
+ defer testing.allocator.free(utf8);
+ try testing.expectEqualStrings("ab\u{FFFD}cd", utf8);
+ }
+
+ {
+ // If the WTF-8 is not well-formed, each surrogate half is converted into a separate
+ // replacement character instead of being interpreted as a surrogate pair.
+ const encoded_surrogate_pair = "ab\xed\xa0\xbd\xed\xb2\xa9cd";
+ const utf8 = try wtf8ToUtf8LossyAlloc(testing.allocator, encoded_surrogate_pair);
+ defer testing.allocator.free(utf8);
+ try testing.expectEqualStrings("ab\u{FFFD}\u{FFFD}cd", utf8);
+ }
+}
+
+test wtf8ToUtf8LossyAllocZ {
+ const invalid_utf8 = "\xff";
+ try testing.expectError(error.InvalidWtf8, wtf8ToUtf8LossyAllocZ(testing.allocator, invalid_utf8));
+
+ {
+ const ascii = "abcd";
+ const utf8 = try wtf8ToUtf8LossyAllocZ(testing.allocator, ascii);
+ defer testing.allocator.free(utf8);
+ try testing.expectEqualStrings("abcd", utf8);
+ }
+
+ {
+ const surrogate_half = "ab\xed\xa0\xbdcd";
+ const utf8 = try wtf8ToUtf8LossyAllocZ(testing.allocator, surrogate_half);
+ defer testing.allocator.free(utf8);
+ try testing.expectEqualStrings("ab\u{FFFD}cd", utf8);
+ }
+
+ {
+ // If the WTF-8 is not well-formed, each surrogate half is converted into a separate
+ // replacement character instead of being interpreted as a surrogate pair.
+ const encoded_surrogate_pair = "ab\xed\xa0\xbd\xed\xb2\xa9cd";
+ const utf8 = try wtf8ToUtf8LossyAllocZ(testing.allocator, encoded_surrogate_pair);
+ defer testing.allocator.free(utf8);
+ try testing.expectEqualStrings("ab\u{FFFD}\u{FFFD}cd", utf8);
+ }
+}
+
+pub const Wtf16LeIterator = struct {
+ bytes: []const u8,
+ i: usize,
+
+ pub fn init(s: []const u16) Wtf16LeIterator {
+ return Wtf16LeIterator{
+ .bytes = std.mem.sliceAsBytes(s),
+ .i = 0,
+ };
+ }
+
+ /// If the next codepoint is encoded by a surrogate pair, returns the
+ /// codepoint that the surrogate pair represents.
+ /// If the next codepoint is an unpaired surrogate, returns the codepoint
+ /// of the unpaired surrogate.
+ pub fn nextCodepoint(it: *Wtf16LeIterator) ?u21 {
+ assert(it.i <= it.bytes.len);
+ if (it.i == it.bytes.len) return null;
+ var code_units: [2]u16 = undefined;
+ code_units[0] = std.mem.readInt(u16, it.bytes[it.i..][0..2], .little);
+ it.i += 2;
+ surrogate_pair: {
+ if (utf16IsHighSurrogate(code_units[0])) {
+ if (it.i >= it.bytes.len) break :surrogate_pair;
+ code_units[1] = std.mem.readInt(u16, it.bytes[it.i..][0..2], .little);
+ const codepoint = utf16DecodeSurrogatePair(&code_units) catch break :surrogate_pair;
+ it.i += 2;
+ return codepoint;
+ }
+ }
+ return code_units[0];
+ }
+};
+
+test "non-well-formed WTF-8 does not roundtrip" {
+ // This encodes the surrogate pair U+D83D U+DCA9.
+ // The well-formed version of this would be U+1F4A9 which is \xF0\x9F\x92\xA9.
+ const non_well_formed_wtf8 = "\xed\xa0\xbd\xed\xb2\xa9";
+
+ var wtf16_buf: [2]u16 = undefined;
+ const wtf16_len = try wtf8ToWtf16Le(&wtf16_buf, non_well_formed_wtf8);
+ const wtf16 = wtf16_buf[0..wtf16_len];
+
+ try testing.expectEqualSlices(u16, &[_]u16{
+ mem.nativeToLittle(u16, 0xD83D), // high surrogate
+ mem.nativeToLittle(u16, 0xDCA9), // low surrogate
+ }, wtf16);
+
+ var wtf8_buf: [4]u8 = undefined;
+ const wtf8_len = wtf16LeToWtf8(&wtf8_buf, wtf16);
+ const wtf8 = wtf8_buf[0..wtf8_len];
+
+ // Converting to WTF-16 and back results in well-formed WTF-8,
+ // but it does not match the input WTF-8
+ try testing.expectEqualSlices(u8, "\xf0\x9f\x92\xa9", wtf8);
+}
+
+fn testRoundtripWtf8(wtf8: []const u8) !void {
+ // Buffer
+ {
+ var wtf16_buf: [32]u16 = undefined;
+ const wtf16_len = try wtf8ToWtf16Le(&wtf16_buf, wtf8);
+ const wtf16 = wtf16_buf[0..wtf16_len];
+
+ var roundtripped_buf: [32]u8 = undefined;
+ const roundtripped_len = wtf16LeToWtf8(&roundtripped_buf, wtf16);
+ const roundtripped = roundtripped_buf[0..roundtripped_len];
+
+ try testing.expectEqualSlices(u8, wtf8, roundtripped);
+ }
+ // Alloc
+ {
+ const wtf16 = try wtf8ToWtf16LeAlloc(testing.allocator, wtf8);
+ defer testing.allocator.free(wtf16);
+
+ const roundtripped = try wtf16LeToWtf8Alloc(testing.allocator, wtf16);
+ defer testing.allocator.free(roundtripped);
+
+ try testing.expectEqualSlices(u8, wtf8, roundtripped);
+ }
+ // AllocZ
+ {
+ const wtf16 = try wtf8ToWtf16LeAllocZ(testing.allocator, wtf8);
+ defer testing.allocator.free(wtf16);
+
+ const roundtripped = try wtf16LeToWtf8AllocZ(testing.allocator, wtf16);
+ defer testing.allocator.free(roundtripped);
+
+ try testing.expectEqualSlices(u8, wtf8, roundtripped);
+ }
+}
+
+test "well-formed WTF-8 roundtrips" {
+ try testRoundtripWtf8("\xed\x9f\xbf"); // not a surrogate half
+ try testRoundtripWtf8("\xed\xa0\xbd"); // high surrogate
+ try testRoundtripWtf8("\xed\xb2\xa9"); // low surrogate
+ try testRoundtripWtf8("\xed\xa0\xbd \xed\xb2\xa9"); // <high surrogate><space><low surrogate>
+ try testRoundtripWtf8("\xed\xa0\x80\xed\xaf\xbf"); // <high surrogate><high surrogate>
+ try testRoundtripWtf8("\xed\xa0\x80\xee\x80\x80"); // <high surrogate><not surrogate>
+ try testRoundtripWtf8("\xed\x9f\xbf\xed\xb0\x80"); // <not surrogate><low surrogate>
+ try testRoundtripWtf8("a\xed\xb0\x80"); // <not surrogate><low surrogate>
+ try testRoundtripWtf8("\xf0\x9f\x92\xa9"); // U+1F4A9, encoded as a surrogate pair in WTF-16
+}
+
+fn testRoundtripWtf16(wtf16le: []const u16) !void {
+ // Buffer
+ {
+ var wtf8_buf: [32]u8 = undefined;
+ const wtf8_len = wtf16LeToWtf8(&wtf8_buf, wtf16le);
+ const wtf8 = wtf8_buf[0..wtf8_len];
+
+ var roundtripped_buf: [32]u16 = undefined;
+ const roundtripped_len = try wtf8ToWtf16Le(&roundtripped_buf, wtf8);
+ const roundtripped = roundtripped_buf[0..roundtripped_len];
+
+ try testing.expectEqualSlices(u16, wtf16le, roundtripped);
+ }
+ // Alloc
+ {
+ const wtf8 = try wtf16LeToWtf8Alloc(testing.allocator, wtf16le);
+ defer testing.allocator.free(wtf8);
+
+ const roundtripped = try wtf8ToWtf16LeAlloc(testing.allocator, wtf8);
+ defer testing.allocator.free(roundtripped);
+
+ try testing.expectEqualSlices(u16, wtf16le, roundtripped);
+ }
+ // AllocZ
+ {
+ const wtf8 = try wtf16LeToWtf8AllocZ(testing.allocator, wtf16le);
+ defer testing.allocator.free(wtf8);
+
+ const roundtripped = try wtf8ToWtf16LeAllocZ(testing.allocator, wtf8);
+ defer testing.allocator.free(roundtripped);
+
+ try testing.expectEqualSlices(u16, wtf16le, roundtripped);
+ }
+}
+
+test "well-formed WTF-16 roundtrips" {
+ try testRoundtripWtf16(&[_]u16{
+ std.mem.nativeToLittle(u16, 0xD83D), // high surrogate
+ std.mem.nativeToLittle(u16, 0xDCA9), // low surrogate
+ });
+ try testRoundtripWtf16(&[_]u16{
+ std.mem.nativeToLittle(u16, 0xD83D), // high surrogate
+ std.mem.nativeToLittle(u16, ' '), // not surrogate
+ std.mem.nativeToLittle(u16, 0xDCA9), // low surrogate
+ });
+ try testRoundtripWtf16(&[_]u16{
+ std.mem.nativeToLittle(u16, 0xD800), // high surrogate
+ std.mem.nativeToLittle(u16, 0xDBFF), // high surrogate
+ });
+ try testRoundtripWtf16(&[_]u16{
+ std.mem.nativeToLittle(u16, 0xD800), // high surrogate
+ std.mem.nativeToLittle(u16, 0xE000), // not surrogate
+ });
+ try testRoundtripWtf16(&[_]u16{
+ std.mem.nativeToLittle(u16, 0xD7FF), // not surrogate
+ std.mem.nativeToLittle(u16, 0xDC00), // low surrogate
+ });
+ try testRoundtripWtf16(&[_]u16{
+ std.mem.nativeToLittle(u16, 0x61), // not surrogate
+ std.mem.nativeToLittle(u16, 0xDC00), // low surrogate
+ });
+ try testRoundtripWtf16(&[_]u16{
+ std.mem.nativeToLittle(u16, 0xDC00), // low surrogate
+ });
+}