Commit 48fd92365a
Changed files (3)
lib
std
lib/std/crypto/ecdsa.zig
@@ -18,6 +18,10 @@ pub const EcdsaP256Sha3_256 = Ecdsa(crypto.ecc.P256, crypto.hash.sha3.Sha3_256);
pub const EcdsaP384Sha384 = Ecdsa(crypto.ecc.P384, crypto.hash.sha2.Sha384);
/// ECDSA over P-384 with SHA3-384.
pub const EcdsaP256Sha3_384 = Ecdsa(crypto.ecc.P384, crypto.hash.sha3.Sha3_384);
+/// ECDSA over Secp256k1 with SHA-256.
+pub const EcdsaSecp256k1Sha256 = Ecdsa(crypto.ecc.Secp256k1, crypto.hash.sha2.Sha256);
+/// ECDSA over Secp256k1 with SHA-256(SHA-256()) -- The Bitcoin signature system.
+pub const EcdsaSecp256k1Sha256oSha256 = Ecdsa(crypto.ecc.Secp256k1, crypto.hash.composition.Sha256oSha256);
/// Elliptic Curve Digital Signature Algorithm (ECDSA).
pub fn Ecdsa(comptime Curve: type, comptime Hash: type) type {
@@ -293,7 +297,7 @@ pub fn Ecdsa(comptime Curve: type, comptime Hash: type) type {
};
}
-test "ECDSA - Basic operations" {
+test "ECDSA - Basic operations over EcdsaP384Sha384" {
const Scheme = EcdsaP384Sha384;
const kp = try Scheme.KeyPair.create(null);
const msg = "test";
@@ -307,6 +311,20 @@ test "ECDSA - Basic operations" {
try sig2.verify(msg, kp.public_key);
}
+test "ECDSA - Basic operations over Secp256k1" {
+ const Scheme = EcdsaSecp256k1Sha256oSha256;
+ const kp = try Scheme.KeyPair.create(null);
+ const msg = "test";
+
+ var noise: [Scheme.noise_length]u8 = undefined;
+ crypto.random.bytes(&noise);
+ const sig = try kp.sign(msg, noise);
+ try sig.verify(msg, kp.public_key);
+
+ const sig2 = try kp.sign(msg, null);
+ try sig2.verify(msg, kp.public_key);
+}
+
const TestVector = struct {
key: []const u8,
msg: []const u8,
lib/std/crypto/hash_composition.zig
@@ -0,0 +1,80 @@
+const std = @import("../std.zig");
+const sha2 = std.crypto.hash.sha2;
+
+/// The composition of two hash functions: H1 o H2, with the same API as regular hash functions.
+///
+/// The security level of a hash cascade doesn't exceed the security level of the weakest function.
+///
+/// However, Merkle–Damgård constructions such as SHA-256 are vulnerable to length-extension attacks,
+/// where under some conditions, `H(x||e)` can be efficiently computed without knowing `x`.
+/// The composition of two hash functions is a common defense against such attacks.
+///
+/// This is not necessary with modern hash functions, such as SHA-3, BLAKE2 and BLAKE3.
+pub fn Composition(comptime H1: type, comptime H2: type) type {
+ return struct {
+ const Self = @This();
+
+ H1: H1,
+ H2: H2,
+
+ /// The length of the hash output, in bytes.
+ pub const digest_length = H1.digest_length;
+ /// The block length, in bytes.
+ pub const block_length = H1.block_length;
+
+ /// Options for both hashes.
+ pub const Options = struct {
+ /// Options for H1.
+ H1: H1.Options = .{},
+ /// Options for H2.
+ H2: H2.Options = .{},
+ };
+
+ /// Initialize the hash composition with the given options.
+ pub fn init(options: Options) Self {
+ return Self{ .H1 = H1.init(options.H1), .H2 = H2.init(options.H2) };
+ }
+
+ /// Compute H1(H2(b)).
+ pub fn hash(b: []const u8, out: *[digest_length]u8, options: Options) void {
+ var d = Self.init(options);
+ d.update(b);
+ d.final(out);
+ }
+
+ /// Add content to the hash.
+ pub fn update(d: *Self, b: []const u8) void {
+ d.H2.update(b);
+ }
+
+ /// Compute the final hash for the accumulated content: H1(H2(b)).
+ pub fn final(d: *Self, out: *[digest_length]u8) void {
+ var H2_digest: [H2.digest_length]u8 = undefined;
+ d.H2.final(&H2_digest);
+ d.H1.update(&H2_digest);
+ d.H1.final(out);
+ }
+ };
+}
+
+/// SHA-256(SHA-256())
+pub const Sha256oSha256 = Composition(sha2.Sha256, sha2.Sha256);
+/// SHA-384(SHA-384())
+pub const Sha384oSha384 = Composition(sha2.Sha384, sha2.Sha384);
+/// SHA-512(SHA-512())
+pub const Sha512oSha512 = Composition(sha2.Sha512, sha2.Sha512);
+
+test "Hash composition" {
+ const Sha256 = sha2.Sha256;
+ const msg = "test";
+
+ var out: [Sha256oSha256.digest_length]u8 = undefined;
+ Sha256oSha256.hash(msg, &out, .{});
+
+ var t: [Sha256.digest_length]u8 = undefined;
+ Sha256.hash(msg, &t, .{});
+ var out2: [Sha256.digest_length]u8 = undefined;
+ Sha256.hash(&t, &out2, .{});
+
+ try std.testing.expectEqualSlices(u8, &out, &out2);
+}
lib/std/crypto.zig
@@ -76,6 +76,7 @@ pub const hash = struct {
pub const Sha1 = @import("crypto/sha1.zig").Sha1;
pub const sha2 = @import("crypto/sha2.zig");
pub const sha3 = @import("crypto/sha3.zig");
+ pub const composition = @import("crypto/hash_composition.zig");
};
/// Key derivation functions.
@@ -215,6 +216,7 @@ test {
_ = hash.Sha1;
_ = hash.sha2;
_ = hash.sha3;
+ _ = hash.composition;
_ = kdf.hkdf;