Commit 4422af8be9
Changed files (2)
lib
std
math
lib/std/math/big/int.zig
@@ -66,6 +66,13 @@ pub fn calcPowLimbsBufferLen(a_bit_count: usize, y: usize) usize {
return 2 + (a_bit_count * y + (limb_bits - 1)) / limb_bits;
}
+pub fn calcSqrtLimbsBufferLen(a_bit_count: usize) usize {
+ const a_limb_count = (a_bit_count - 1) / limb_bits + 1;
+ const shift = (a_bit_count + 1) / 2;
+ const u_s_rem_limb_count = 1 + ((shift - 1) / limb_bits + 1);
+ return a_limb_count + 3 * u_s_rem_limb_count + calcDivLimbsBufferLen(a_limb_count, u_s_rem_limb_count);
+}
+
// Compute the number of limbs required to store a 2s-complement number of `bit_count` bits.
pub fn calcTwosCompLimbCount(bit_count: usize) usize {
return std.math.divCeil(usize, bit_count, @bitSizeOf(Limb)) catch unreachable;
@@ -1344,6 +1351,64 @@ pub const Mutable = struct {
r.positive = a.positive or (b & 1) == 0;
}
+ /// r = ⌊√a⌋
+ ///
+ /// r may alias a.
+ ///
+ /// Asserts that `r` has enough limbs to store the result. Upper bound is
+ /// `(a.limbs.len - 1) / 2 + 1`.
+ ///
+ /// `limbs_buffer` is used for temporary storage.
+ /// The amount required is given by `calcSqrtLimbsBufferLen`.
+ pub fn sqrt(
+ r: *Mutable,
+ a: Const,
+ limbs_buffer: []Limb,
+ ) void {
+ // Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 SqrtInt
+ // https://members.loria.fr/PZimmermann/mca/pub226.html
+ var buf_index: usize = 0;
+ var t = b: {
+ const start = buf_index;
+ buf_index += a.limbs.len;
+ break :b Mutable.init(limbs_buffer[start..buf_index], 0);
+ };
+ var u = b: {
+ const start = buf_index;
+ const shift = (a.bitCountAbs() + 1) / 2;
+ buf_index += 1 + ((shift - 1) / limb_bits + 1);
+ var m = Mutable.init(limbs_buffer[start..buf_index], 1);
+ m.shiftLeft(m.toConst(), shift); // u must be >= ⌊√a⌋, and should be as small as possible for efficiency
+ break :b m;
+ };
+ var s = b: {
+ const start = buf_index;
+ buf_index += u.limbs.len;
+ break :b u.toConst().toMutable(limbs_buffer[start..buf_index]);
+ };
+ var rem = b: {
+ const start = buf_index;
+ buf_index += s.limbs.len;
+ break :b Mutable.init(limbs_buffer[start..buf_index], 0);
+ };
+
+ while (true) {
+ t.divFloor(&rem, a, s.toConst(), limbs_buffer[buf_index..]);
+ t.add(t.toConst(), s.toConst());
+ u.shiftRight(t.toConst(), 1);
+
+ if (u.toConst().order(s.toConst()).compare(.gte)) {
+ r.copy(s.toConst());
+ return;
+ }
+
+ // Avoid copying u to s by swapping u and s
+ var tmp_s = s;
+ s = u;
+ u = tmp_s;
+ }
+ }
+
/// rma may not alias x or y.
/// x and y may alias each other.
/// Asserts that `rma` has enough limbs to store the result. Upper bound is given by `calcGcdNoAliasLimbLen`.
@@ -3140,6 +3205,19 @@ pub const Managed = struct {
}
}
+ /// r = ⌊√a⌋
+ pub fn sqrt(rma: *Managed, a: *const Managed) !void {
+ const needed_limbs = calcSqrtLimbsBufferLen(a.bitCountAbs());
+
+ const limbs_buffer = try rma.allocator.alloc(Limb, needed_limbs);
+ defer rma.allocator.free(limbs_buffer);
+
+ try rma.ensureCapacity((a.len() - 1) / 2 + 1);
+ var m = rma.toMutable();
+ m.sqrt(a.toConst(), limbs_buffer);
+ rma.setMetadata(m.positive, m.len);
+ }
+
/// r = truncate(Int(signedness, bit_count), a)
pub fn truncate(r: *Managed, a: *const Managed, signedness: Signedness, bit_count: usize) !void {
try r.ensureCapacity(calcTwosCompLimbCount(bit_count));
lib/std/math/big/int_test.zig
@@ -2622,6 +2622,36 @@ test "big.int pow" {
}
}
+test "big.int sqrt" {
+ var r = try Managed.init(testing.allocator);
+ defer r.deinit();
+ var a = try Managed.init(testing.allocator);
+ defer a.deinit();
+
+ // not aliased
+ try r.set(0);
+ try a.set(25);
+ try r.sqrt(&a);
+ try testing.expectEqual(@as(i32, 5), try r.to(i32));
+
+ // aliased
+ try a.set(25);
+ try a.sqrt(&a);
+ try testing.expectEqual(@as(i32, 5), try a.to(i32));
+
+ // bottom
+ try r.set(0);
+ try a.set(24);
+ try r.sqrt(&a);
+ try testing.expectEqual(@as(i32, 4), try r.to(i32));
+
+ // large number
+ try r.set(0);
+ try a.set(0x1_0000_0000_0000);
+ try r.sqrt(&a);
+ try testing.expectEqual(@as(i32, 0x100_0000), try r.to(i32));
+}
+
test "big.int regression test for 1 limb overflow with alias" {
// Note these happen to be two consecutive Fibonacci sequence numbers, the
// first two whose sum exceeds 2**64.