Commit 3db3cf7790
Changed files (37)
lib
std
compress
deflate
zstandard
decode
http
src
arch
x86_64
codegen
link
test
src
lib/std/compress/deflate/huffman_code.zig
@@ -93,7 +93,7 @@ pub const HuffmanEncoder = struct {
return;
}
self.lfs = list;
- sort.sort(LiteralNode, self.lfs, {}, byFreq);
+ mem.sort(LiteralNode, self.lfs, {}, byFreq);
// Get the number of literals for each bit count
var bit_count = self.bitCounts(list, max_bits);
@@ -270,7 +270,7 @@ pub const HuffmanEncoder = struct {
var chunk = list[list.len - @intCast(u32, bits) ..];
self.lns = chunk;
- sort.sort(LiteralNode, self.lns, {}, byLiteral);
+ mem.sort(LiteralNode, self.lns, {}, byLiteral);
for (chunk) |node| {
self.codes[node.literal] = HuffCode{
lib/std/compress/zstandard/decode/fse.zig
@@ -107,7 +107,7 @@ fn buildFseTable(values: []const u16, entries: []Table.Fse) !void {
position &= entries.len - 1;
}
}
- std.sort.sort(u16, temp_states[0..probability], {}, std.sort.asc(u16));
+ std.mem.sort(u16, temp_states[0..probability], {}, std.sort.asc(u16));
for (0..probability) |i| {
entries[temp_states[i]] = if (i < double_state_count) Table.Fse{
.symbol = @intCast(u8, symbol),
lib/std/compress/zstandard/decode/huffman.zig
@@ -124,7 +124,7 @@ fn assignSymbols(weight_sorted_prefixed_symbols: []LiteralsSection.HuffmanTree.P
};
}
- std.sort.sort(
+ std.mem.sort(
LiteralsSection.HuffmanTree.PrefixedSymbol,
weight_sorted_prefixed_symbols,
weights,
lib/std/http/Headers.zig
@@ -191,7 +191,7 @@ pub const Headers = struct {
/// Sorts the headers in lexicographical order.
pub fn sort(headers: *Headers) void {
- std.sort.sort(Field, headers.list.items, {}, Field.lessThan);
+ std.mem.sort(Field, headers.list.items, {}, Field.lessThan);
headers.rebuildIndex();
}
lib/std/sort/block.zig
@@ -0,0 +1,1066 @@
+const std = @import("../std.zig");
+const sort = std.sort;
+const math = std.math;
+const mem = std.mem;
+
+const Range = struct {
+ start: usize,
+ end: usize,
+
+ fn init(start: usize, end: usize) Range {
+ return Range{
+ .start = start,
+ .end = end,
+ };
+ }
+
+ fn length(self: Range) usize {
+ return self.end - self.start;
+ }
+};
+
+const Iterator = struct {
+ size: usize,
+ power_of_two: usize,
+ numerator: usize,
+ decimal: usize,
+ denominator: usize,
+ decimal_step: usize,
+ numerator_step: usize,
+
+ fn init(size2: usize, min_level: usize) Iterator {
+ const power_of_two = math.floorPowerOfTwo(usize, size2);
+ const denominator = power_of_two / min_level;
+ return Iterator{
+ .numerator = 0,
+ .decimal = 0,
+ .size = size2,
+ .power_of_two = power_of_two,
+ .denominator = denominator,
+ .decimal_step = size2 / denominator,
+ .numerator_step = size2 % denominator,
+ };
+ }
+
+ fn begin(self: *Iterator) void {
+ self.numerator = 0;
+ self.decimal = 0;
+ }
+
+ fn nextRange(self: *Iterator) Range {
+ const start = self.decimal;
+
+ self.decimal += self.decimal_step;
+ self.numerator += self.numerator_step;
+ if (self.numerator >= self.denominator) {
+ self.numerator -= self.denominator;
+ self.decimal += 1;
+ }
+
+ return Range{
+ .start = start,
+ .end = self.decimal,
+ };
+ }
+
+ fn finished(self: *Iterator) bool {
+ return self.decimal >= self.size;
+ }
+
+ fn nextLevel(self: *Iterator) bool {
+ self.decimal_step += self.decimal_step;
+ self.numerator_step += self.numerator_step;
+ if (self.numerator_step >= self.denominator) {
+ self.numerator_step -= self.denominator;
+ self.decimal_step += 1;
+ }
+
+ return (self.decimal_step < self.size);
+ }
+
+ fn length(self: *Iterator) usize {
+ return self.decimal_step;
+ }
+};
+
+const Pull = struct {
+ from: usize,
+ to: usize,
+ count: usize,
+ range: Range,
+};
+
+/// Stable in-place sort. O(n) best case, O(n*log(n)) worst case and average case.
+/// O(1) memory (no allocator required).
+/// Sorts in ascending order with respect to the given `lessThan` function.
+///
+/// NOTE: the algorithm only work when the comparison is less-than or greater-than
+/// (See https://github.com/ziglang/zig/issues/8289)
+pub fn block(
+ comptime T: type,
+ items: []T,
+ context: anytype,
+ comptime lessThan: fn (@TypeOf(context), lhs: T, rhs: T) bool,
+) void {
+
+ // Implementation ported from https://github.com/BonzaiThePenguin/WikiSort/blob/master/WikiSort.c
+ var cache: [512]T = undefined;
+
+ if (items.len < 4) {
+ if (items.len == 3) {
+ // hard coded insertion sort
+ if (lessThan(context, items[1], items[0])) mem.swap(T, &items[0], &items[1]);
+ if (lessThan(context, items[2], items[1])) {
+ mem.swap(T, &items[1], &items[2]);
+ if (lessThan(context, items[1], items[0])) mem.swap(T, &items[0], &items[1]);
+ }
+ } else if (items.len == 2) {
+ if (lessThan(context, items[1], items[0])) mem.swap(T, &items[0], &items[1]);
+ }
+ return;
+ }
+
+ // sort groups of 4-8 items at a time using an unstable sorting network,
+ // but keep track of the original item orders to force it to be stable
+ // http://pages.ripco.net/~jgamble/nw.html
+ var iterator = Iterator.init(items.len, 4);
+ while (!iterator.finished()) {
+ var order = [_]u8{ 0, 1, 2, 3, 4, 5, 6, 7 };
+ const range = iterator.nextRange();
+
+ const sliced_items = items[range.start..];
+ switch (range.length()) {
+ 8 => {
+ swap(T, sliced_items, &order, 0, 1, context, lessThan);
+ swap(T, sliced_items, &order, 2, 3, context, lessThan);
+ swap(T, sliced_items, &order, 4, 5, context, lessThan);
+ swap(T, sliced_items, &order, 6, 7, context, lessThan);
+ swap(T, sliced_items, &order, 0, 2, context, lessThan);
+ swap(T, sliced_items, &order, 1, 3, context, lessThan);
+ swap(T, sliced_items, &order, 4, 6, context, lessThan);
+ swap(T, sliced_items, &order, 5, 7, context, lessThan);
+ swap(T, sliced_items, &order, 1, 2, context, lessThan);
+ swap(T, sliced_items, &order, 5, 6, context, lessThan);
+ swap(T, sliced_items, &order, 0, 4, context, lessThan);
+ swap(T, sliced_items, &order, 3, 7, context, lessThan);
+ swap(T, sliced_items, &order, 1, 5, context, lessThan);
+ swap(T, sliced_items, &order, 2, 6, context, lessThan);
+ swap(T, sliced_items, &order, 1, 4, context, lessThan);
+ swap(T, sliced_items, &order, 3, 6, context, lessThan);
+ swap(T, sliced_items, &order, 2, 4, context, lessThan);
+ swap(T, sliced_items, &order, 3, 5, context, lessThan);
+ swap(T, sliced_items, &order, 3, 4, context, lessThan);
+ },
+ 7 => {
+ swap(T, sliced_items, &order, 1, 2, context, lessThan);
+ swap(T, sliced_items, &order, 3, 4, context, lessThan);
+ swap(T, sliced_items, &order, 5, 6, context, lessThan);
+ swap(T, sliced_items, &order, 0, 2, context, lessThan);
+ swap(T, sliced_items, &order, 3, 5, context, lessThan);
+ swap(T, sliced_items, &order, 4, 6, context, lessThan);
+ swap(T, sliced_items, &order, 0, 1, context, lessThan);
+ swap(T, sliced_items, &order, 4, 5, context, lessThan);
+ swap(T, sliced_items, &order, 2, 6, context, lessThan);
+ swap(T, sliced_items, &order, 0, 4, context, lessThan);
+ swap(T, sliced_items, &order, 1, 5, context, lessThan);
+ swap(T, sliced_items, &order, 0, 3, context, lessThan);
+ swap(T, sliced_items, &order, 2, 5, context, lessThan);
+ swap(T, sliced_items, &order, 1, 3, context, lessThan);
+ swap(T, sliced_items, &order, 2, 4, context, lessThan);
+ swap(T, sliced_items, &order, 2, 3, context, lessThan);
+ },
+ 6 => {
+ swap(T, sliced_items, &order, 1, 2, context, lessThan);
+ swap(T, sliced_items, &order, 4, 5, context, lessThan);
+ swap(T, sliced_items, &order, 0, 2, context, lessThan);
+ swap(T, sliced_items, &order, 3, 5, context, lessThan);
+ swap(T, sliced_items, &order, 0, 1, context, lessThan);
+ swap(T, sliced_items, &order, 3, 4, context, lessThan);
+ swap(T, sliced_items, &order, 2, 5, context, lessThan);
+ swap(T, sliced_items, &order, 0, 3, context, lessThan);
+ swap(T, sliced_items, &order, 1, 4, context, lessThan);
+ swap(T, sliced_items, &order, 2, 4, context, lessThan);
+ swap(T, sliced_items, &order, 1, 3, context, lessThan);
+ swap(T, sliced_items, &order, 2, 3, context, lessThan);
+ },
+ 5 => {
+ swap(T, sliced_items, &order, 0, 1, context, lessThan);
+ swap(T, sliced_items, &order, 3, 4, context, lessThan);
+ swap(T, sliced_items, &order, 2, 4, context, lessThan);
+ swap(T, sliced_items, &order, 2, 3, context, lessThan);
+ swap(T, sliced_items, &order, 1, 4, context, lessThan);
+ swap(T, sliced_items, &order, 0, 3, context, lessThan);
+ swap(T, sliced_items, &order, 0, 2, context, lessThan);
+ swap(T, sliced_items, &order, 1, 3, context, lessThan);
+ swap(T, sliced_items, &order, 1, 2, context, lessThan);
+ },
+ 4 => {
+ swap(T, sliced_items, &order, 0, 1, context, lessThan);
+ swap(T, sliced_items, &order, 2, 3, context, lessThan);
+ swap(T, sliced_items, &order, 0, 2, context, lessThan);
+ swap(T, sliced_items, &order, 1, 3, context, lessThan);
+ swap(T, sliced_items, &order, 1, 2, context, lessThan);
+ },
+ else => {},
+ }
+ }
+ if (items.len < 8) return;
+
+ // then merge sort the higher levels, which can be 8-15, 16-31, 32-63, 64-127, etc.
+ while (true) {
+ // if every A and B block will fit into the cache, use a special branch
+ // specifically for merging with the cache
+ // (we use < rather than <= since the block size might be one more than
+ // iterator.length())
+ if (iterator.length() < cache.len) {
+ // if four subarrays fit into the cache, it's faster to merge both
+ // pairs of subarrays into the cache,
+ // then merge the two merged subarrays from the cache back into the original array
+ if ((iterator.length() + 1) * 4 <= cache.len and iterator.length() * 4 <= items.len) {
+ iterator.begin();
+ while (!iterator.finished()) {
+ // merge A1 and B1 into the cache
+ var A1 = iterator.nextRange();
+ var B1 = iterator.nextRange();
+ var A2 = iterator.nextRange();
+ var B2 = iterator.nextRange();
+
+ if (lessThan(context, items[B1.end - 1], items[A1.start])) {
+ // the two ranges are in reverse order, so copy them in reverse order into the cache
+ const a1_items = items[A1.start..A1.end];
+ @memcpy(cache[B1.length()..][0..a1_items.len], a1_items);
+ const b1_items = items[B1.start..B1.end];
+ @memcpy(cache[0..b1_items.len], b1_items);
+ } else if (lessThan(context, items[B1.start], items[A1.end - 1])) {
+ // these two ranges weren't already in order, so merge them into the cache
+ mergeInto(T, items, A1, B1, cache[0..], context, lessThan);
+ } else {
+ // if A1, B1, A2, and B2 are all in order, skip doing anything else
+ if (!lessThan(context, items[B2.start], items[A2.end - 1]) and !lessThan(context, items[A2.start], items[B1.end - 1])) continue;
+
+ // copy A1 and B1 into the cache in the same order
+ const a1_items = items[A1.start..A1.end];
+ @memcpy(cache[0..a1_items.len], a1_items);
+ const b1_items = items[B1.start..B1.end];
+ @memcpy(cache[A1.length()..][0..b1_items.len], b1_items);
+ }
+ A1 = Range.init(A1.start, B1.end);
+
+ // merge A2 and B2 into the cache
+ if (lessThan(context, items[B2.end - 1], items[A2.start])) {
+ // the two ranges are in reverse order, so copy them in reverse order into the cache
+ const a2_items = items[A2.start..A2.end];
+ @memcpy(cache[A1.length() + B2.length() ..][0..a2_items.len], a2_items);
+ const b2_items = items[B2.start..B2.end];
+ @memcpy(cache[A1.length()..][0..b2_items.len], b2_items);
+ } else if (lessThan(context, items[B2.start], items[A2.end - 1])) {
+ // these two ranges weren't already in order, so merge them into the cache
+ mergeInto(T, items, A2, B2, cache[A1.length()..], context, lessThan);
+ } else {
+ // copy A2 and B2 into the cache in the same order
+ const a2_items = items[A2.start..A2.end];
+ @memcpy(cache[A1.length()..][0..a2_items.len], a2_items);
+ const b2_items = items[B2.start..B2.end];
+ @memcpy(cache[A1.length() + A2.length() ..][0..b2_items.len], b2_items);
+ }
+ A2 = Range.init(A2.start, B2.end);
+
+ // merge A1 and A2 from the cache into the items
+ const A3 = Range.init(0, A1.length());
+ const B3 = Range.init(A1.length(), A1.length() + A2.length());
+
+ if (lessThan(context, cache[B3.end - 1], cache[A3.start])) {
+ // the two ranges are in reverse order, so copy them in reverse order into the items
+ const a3_items = cache[A3.start..A3.end];
+ @memcpy(items[A1.start + A2.length() ..][0..a3_items.len], a3_items);
+ const b3_items = cache[B3.start..B3.end];
+ @memcpy(items[A1.start..][0..b3_items.len], b3_items);
+ } else if (lessThan(context, cache[B3.start], cache[A3.end - 1])) {
+ // these two ranges weren't already in order, so merge them back into the items
+ mergeInto(T, cache[0..], A3, B3, items[A1.start..], context, lessThan);
+ } else {
+ // copy A3 and B3 into the items in the same order
+ const a3_items = cache[A3.start..A3.end];
+ @memcpy(items[A1.start..][0..a3_items.len], a3_items);
+ const b3_items = cache[B3.start..B3.end];
+ @memcpy(items[A1.start + A1.length() ..][0..b3_items.len], b3_items);
+ }
+ }
+
+ // we merged two levels at the same time, so we're done with this level already
+ // (iterator.nextLevel() is called again at the bottom of this outer merge loop)
+ _ = iterator.nextLevel();
+ } else {
+ iterator.begin();
+ while (!iterator.finished()) {
+ var A = iterator.nextRange();
+ var B = iterator.nextRange();
+
+ if (lessThan(context, items[B.end - 1], items[A.start])) {
+ // the two ranges are in reverse order, so a simple rotation should fix it
+ mem.rotate(T, items[A.start..B.end], A.length());
+ } else if (lessThan(context, items[B.start], items[A.end - 1])) {
+ // these two ranges weren't already in order, so we'll need to merge them!
+ const a_items = items[A.start..A.end];
+ @memcpy(cache[0..a_items.len], a_items);
+ mergeExternal(T, items, A, B, cache[0..], context, lessThan);
+ }
+ }
+ }
+ } else {
+ // this is where the in-place merge logic starts!
+ // 1. pull out two internal buffers each containing โA unique values
+ // 1a. adjust block_size and buffer_size if we couldn't find enough unique values
+ // 2. loop over the A and B subarrays within this level of the merge sort
+ // 3. break A and B into blocks of size 'block_size'
+ // 4. "tag" each of the A blocks with values from the first internal buffer
+ // 5. roll the A blocks through the B blocks and drop/rotate them where they belong
+ // 6. merge each A block with any B values that follow, using the cache or the second internal buffer
+ // 7. sort the second internal buffer if it exists
+ // 8. redistribute the two internal buffers back into the items
+ var block_size: usize = math.sqrt(iterator.length());
+ var buffer_size = iterator.length() / block_size + 1;
+
+ // as an optimization, we really only need to pull out the internal buffers once for each level of merges
+ // after that we can reuse the same buffers over and over, then redistribute it when we're finished with this level
+ var A: Range = undefined;
+ var B: Range = undefined;
+ var index: usize = 0;
+ var last: usize = 0;
+ var count: usize = 0;
+ var find: usize = 0;
+ var start: usize = 0;
+ var pull_index: usize = 0;
+ var pull = [_]Pull{
+ Pull{
+ .from = 0,
+ .to = 0,
+ .count = 0,
+ .range = Range.init(0, 0),
+ },
+ Pull{
+ .from = 0,
+ .to = 0,
+ .count = 0,
+ .range = Range.init(0, 0),
+ },
+ };
+
+ var buffer1 = Range.init(0, 0);
+ var buffer2 = Range.init(0, 0);
+
+ // find two internal buffers of size 'buffer_size' each
+ find = buffer_size + buffer_size;
+ var find_separately = false;
+
+ if (block_size <= cache.len) {
+ // if every A block fits into the cache then we won't need the second internal buffer,
+ // so we really only need to find 'buffer_size' unique values
+ find = buffer_size;
+ } else if (find > iterator.length()) {
+ // we can't fit both buffers into the same A or B subarray, so find two buffers separately
+ find = buffer_size;
+ find_separately = true;
+ }
+
+ // we need to find either a single contiguous space containing 2โA unique values (which will be split up into two buffers of size โA each),
+ // or we need to find one buffer of < 2โA unique values, and a second buffer of โA unique values,
+ // OR if we couldn't find that many unique values, we need the largest possible buffer we can get
+
+ // in the case where it couldn't find a single buffer of at least โA unique values,
+ // all of the Merge steps must be replaced by a different merge algorithm (MergeInPlace)
+ iterator.begin();
+ while (!iterator.finished()) {
+ A = iterator.nextRange();
+ B = iterator.nextRange();
+
+ // just store information about where the values will be pulled from and to,
+ // as well as how many values there are, to create the two internal buffers
+
+ // check A for the number of unique values we need to fill an internal buffer
+ // these values will be pulled out to the start of A
+ last = A.start;
+ count = 1;
+ while (count < find) : ({
+ last = index;
+ count += 1;
+ }) {
+ index = findLastForward(T, items, items[last], Range.init(last + 1, A.end), find - count, context, lessThan);
+ if (index == A.end) break;
+ }
+ index = last;
+
+ if (count >= buffer_size) {
+ // keep track of the range within the items where we'll need to "pull out" these values to create the internal buffer
+ pull[pull_index] = Pull{
+ .range = Range.init(A.start, B.end),
+ .count = count,
+ .from = index,
+ .to = A.start,
+ };
+ pull_index = 1;
+
+ if (count == buffer_size + buffer_size) {
+ // we were able to find a single contiguous section containing 2โA unique values,
+ // so this section can be used to contain both of the internal buffers we'll need
+ buffer1 = Range.init(A.start, A.start + buffer_size);
+ buffer2 = Range.init(A.start + buffer_size, A.start + count);
+ break;
+ } else if (find == buffer_size + buffer_size) {
+ // we found a buffer that contains at least โA unique values, but did not contain the full 2โA unique values,
+ // so we still need to find a second separate buffer of at least โA unique values
+ buffer1 = Range.init(A.start, A.start + count);
+ find = buffer_size;
+ } else if (block_size <= cache.len) {
+ // we found the first and only internal buffer that we need, so we're done!
+ buffer1 = Range.init(A.start, A.start + count);
+ break;
+ } else if (find_separately) {
+ // found one buffer, but now find the other one
+ buffer1 = Range.init(A.start, A.start + count);
+ find_separately = false;
+ } else {
+ // we found a second buffer in an 'A' subarray containing โA unique values, so we're done!
+ buffer2 = Range.init(A.start, A.start + count);
+ break;
+ }
+ } else if (pull_index == 0 and count > buffer1.length()) {
+ // keep track of the largest buffer we were able to find
+ buffer1 = Range.init(A.start, A.start + count);
+ pull[pull_index] = Pull{
+ .range = Range.init(A.start, B.end),
+ .count = count,
+ .from = index,
+ .to = A.start,
+ };
+ }
+
+ // check B for the number of unique values we need to fill an internal buffer
+ // these values will be pulled out to the end of B
+ last = B.end - 1;
+ count = 1;
+ while (count < find) : ({
+ last = index - 1;
+ count += 1;
+ }) {
+ index = findFirstBackward(T, items, items[last], Range.init(B.start, last), find - count, context, lessThan);
+ if (index == B.start) break;
+ }
+ index = last;
+
+ if (count >= buffer_size) {
+ // keep track of the range within the items where we'll need to "pull out" these values to create the internal buffe
+ pull[pull_index] = Pull{
+ .range = Range.init(A.start, B.end),
+ .count = count,
+ .from = index,
+ .to = B.end,
+ };
+ pull_index = 1;
+
+ if (count == buffer_size + buffer_size) {
+ // we were able to find a single contiguous section containing 2โA unique values,
+ // so this section can be used to contain both of the internal buffers we'll need
+ buffer1 = Range.init(B.end - count, B.end - buffer_size);
+ buffer2 = Range.init(B.end - buffer_size, B.end);
+ break;
+ } else if (find == buffer_size + buffer_size) {
+ // we found a buffer that contains at least โA unique values, but did not contain the full 2โA unique values,
+ // so we still need to find a second separate buffer of at least โA unique values
+ buffer1 = Range.init(B.end - count, B.end);
+ find = buffer_size;
+ } else if (block_size <= cache.len) {
+ // we found the first and only internal buffer that we need, so we're done!
+ buffer1 = Range.init(B.end - count, B.end);
+ break;
+ } else if (find_separately) {
+ // found one buffer, but now find the other one
+ buffer1 = Range.init(B.end - count, B.end);
+ find_separately = false;
+ } else {
+ // buffer2 will be pulled out from a 'B' subarray, so if the first buffer was pulled out from the corresponding 'A' subarray,
+ // we need to adjust the end point for that A subarray so it knows to stop redistributing its values before reaching buffer2
+ if (pull[0].range.start == A.start) pull[0].range.end -= pull[1].count;
+
+ // we found a second buffer in an 'B' subarray containing โA unique values, so we're done!
+ buffer2 = Range.init(B.end - count, B.end);
+ break;
+ }
+ } else if (pull_index == 0 and count > buffer1.length()) {
+ // keep track of the largest buffer we were able to find
+ buffer1 = Range.init(B.end - count, B.end);
+ pull[pull_index] = Pull{
+ .range = Range.init(A.start, B.end),
+ .count = count,
+ .from = index,
+ .to = B.end,
+ };
+ }
+ }
+
+ // pull out the two ranges so we can use them as internal buffers
+ pull_index = 0;
+ while (pull_index < 2) : (pull_index += 1) {
+ const length = pull[pull_index].count;
+
+ if (pull[pull_index].to < pull[pull_index].from) {
+ // we're pulling the values out to the left, which means the start of an A subarray
+ index = pull[pull_index].from;
+ count = 1;
+ while (count < length) : (count += 1) {
+ index = findFirstBackward(T, items, items[index - 1], Range.init(pull[pull_index].to, pull[pull_index].from - (count - 1)), length - count, context, lessThan);
+ const range = Range.init(index + 1, pull[pull_index].from + 1);
+ mem.rotate(T, items[range.start..range.end], range.length() - count);
+ pull[pull_index].from = index + count;
+ }
+ } else if (pull[pull_index].to > pull[pull_index].from) {
+ // we're pulling values out to the right, which means the end of a B subarray
+ index = pull[pull_index].from + 1;
+ count = 1;
+ while (count < length) : (count += 1) {
+ index = findLastForward(T, items, items[index], Range.init(index, pull[pull_index].to), length - count, context, lessThan);
+ const range = Range.init(pull[pull_index].from, index - 1);
+ mem.rotate(T, items[range.start..range.end], count);
+ pull[pull_index].from = index - 1 - count;
+ }
+ }
+ }
+
+ // adjust block_size and buffer_size based on the values we were able to pull out
+ buffer_size = buffer1.length();
+ block_size = iterator.length() / buffer_size + 1;
+
+ // the first buffer NEEDS to be large enough to tag each of the evenly sized A blocks,
+ // so this was originally here to test the math for adjusting block_size above
+ // assert((iterator.length() + 1)/block_size <= buffer_size);
+
+ // now that the two internal buffers have been created, it's time to merge each A+B combination at this level of the merge sort!
+ iterator.begin();
+ while (!iterator.finished()) {
+ A = iterator.nextRange();
+ B = iterator.nextRange();
+
+ // remove any parts of A or B that are being used by the internal buffers
+ start = A.start;
+ if (start == pull[0].range.start) {
+ if (pull[0].from > pull[0].to) {
+ A.start += pull[0].count;
+
+ // if the internal buffer takes up the entire A or B subarray, then there's nothing to merge
+ // this only happens for very small subarrays, like โ4 = 2, 2 * (2 internal buffers) = 4,
+ // which also only happens when cache.len is small or 0 since it'd otherwise use MergeExternal
+ if (A.length() == 0) continue;
+ } else if (pull[0].from < pull[0].to) {
+ B.end -= pull[0].count;
+ if (B.length() == 0) continue;
+ }
+ }
+ if (start == pull[1].range.start) {
+ if (pull[1].from > pull[1].to) {
+ A.start += pull[1].count;
+ if (A.length() == 0) continue;
+ } else if (pull[1].from < pull[1].to) {
+ B.end -= pull[1].count;
+ if (B.length() == 0) continue;
+ }
+ }
+
+ if (lessThan(context, items[B.end - 1], items[A.start])) {
+ // the two ranges are in reverse order, so a simple rotation should fix it
+ mem.rotate(T, items[A.start..B.end], A.length());
+ } else if (lessThan(context, items[A.end], items[A.end - 1])) {
+ // these two ranges weren't already in order, so we'll need to merge them!
+ var findA: usize = undefined;
+
+ // break the remainder of A into blocks. firstA is the uneven-sized first A block
+ var blockA = Range.init(A.start, A.end);
+ var firstA = Range.init(A.start, A.start + blockA.length() % block_size);
+
+ // swap the first value of each A block with the value in buffer1
+ var indexA = buffer1.start;
+ index = firstA.end;
+ while (index < blockA.end) : ({
+ indexA += 1;
+ index += block_size;
+ }) {
+ mem.swap(T, &items[indexA], &items[index]);
+ }
+
+ // start rolling the A blocks through the B blocks!
+ // whenever we leave an A block behind, we'll need to merge the previous A block with any B blocks that follow it, so track that information as well
+ var lastA = firstA;
+ var lastB = Range.init(0, 0);
+ var blockB = Range.init(B.start, B.start + math.min(block_size, B.length()));
+ blockA.start += firstA.length();
+ indexA = buffer1.start;
+
+ // if the first unevenly sized A block fits into the cache, copy it there for when we go to Merge it
+ // otherwise, if the second buffer is available, block swap the contents into that
+ if (lastA.length() <= cache.len) {
+ const last_a_items = items[lastA.start..lastA.end];
+ @memcpy(cache[0..last_a_items.len], last_a_items);
+ } else if (buffer2.length() > 0) {
+ blockSwap(T, items, lastA.start, buffer2.start, lastA.length());
+ }
+
+ if (blockA.length() > 0) {
+ while (true) {
+ // if there's a previous B block and the first value of the minimum A block is <= the last value of the previous B block,
+ // then drop that minimum A block behind. or if there are no B blocks left then keep dropping the remaining A blocks.
+ if ((lastB.length() > 0 and !lessThan(context, items[lastB.end - 1], items[indexA])) or blockB.length() == 0) {
+ // figure out where to split the previous B block, and rotate it at the split
+ const B_split = binaryFirst(T, items, items[indexA], lastB, context, lessThan);
+ const B_remaining = lastB.end - B_split;
+
+ // swap the minimum A block to the beginning of the rolling A blocks
+ var minA = blockA.start;
+ findA = minA + block_size;
+ while (findA < blockA.end) : (findA += block_size) {
+ if (lessThan(context, items[findA], items[minA])) {
+ minA = findA;
+ }
+ }
+ blockSwap(T, items, blockA.start, minA, block_size);
+
+ // swap the first item of the previous A block back with its original value, which is stored in buffer1
+ mem.swap(T, &items[blockA.start], &items[indexA]);
+ indexA += 1;
+
+ // locally merge the previous A block with the B values that follow it
+ // if lastA fits into the external cache we'll use that (with MergeExternal),
+ // or if the second internal buffer exists we'll use that (with MergeInternal),
+ // or failing that we'll use a strictly in-place merge algorithm (MergeInPlace)
+
+ if (lastA.length() <= cache.len) {
+ mergeExternal(T, items, lastA, Range.init(lastA.end, B_split), cache[0..], context, lessThan);
+ } else if (buffer2.length() > 0) {
+ mergeInternal(T, items, lastA, Range.init(lastA.end, B_split), buffer2, context, lessThan);
+ } else {
+ mergeInPlace(T, items, lastA, Range.init(lastA.end, B_split), context, lessThan);
+ }
+
+ if (buffer2.length() > 0 or block_size <= cache.len) {
+ // copy the previous A block into the cache or buffer2, since that's where we need it to be when we go to merge it anyway
+ if (block_size <= cache.len) {
+ @memcpy(cache[0..block_size], items[blockA.start..][0..block_size]);
+ } else {
+ blockSwap(T, items, blockA.start, buffer2.start, block_size);
+ }
+
+ // this is equivalent to rotating, but faster
+ // the area normally taken up by the A block is either the contents of buffer2, or data we don't need anymore since we memcopied it
+ // either way, we don't need to retain the order of those items, so instead of rotating we can just block swap B to where it belongs
+ blockSwap(T, items, B_split, blockA.start + block_size - B_remaining, B_remaining);
+ } else {
+ // we are unable to use the 'buffer2' trick to speed up the rotation operation since buffer2 doesn't exist, so perform a normal rotation
+ mem.rotate(T, items[B_split .. blockA.start + block_size], blockA.start - B_split);
+ }
+
+ // update the range for the remaining A blocks, and the range remaining from the B block after it was split
+ lastA = Range.init(blockA.start - B_remaining, blockA.start - B_remaining + block_size);
+ lastB = Range.init(lastA.end, lastA.end + B_remaining);
+
+ // if there are no more A blocks remaining, this step is finished!
+ blockA.start += block_size;
+ if (blockA.length() == 0) break;
+ } else if (blockB.length() < block_size) {
+ // move the last B block, which is unevenly sized, to before the remaining A blocks, by using a rotation
+ // the cache is disabled here since it might contain the contents of the previous A block
+ mem.rotate(T, items[blockA.start..blockB.end], blockB.start - blockA.start);
+
+ lastB = Range.init(blockA.start, blockA.start + blockB.length());
+ blockA.start += blockB.length();
+ blockA.end += blockB.length();
+ blockB.end = blockB.start;
+ } else {
+ // roll the leftmost A block to the end by swapping it with the next B block
+ blockSwap(T, items, blockA.start, blockB.start, block_size);
+ lastB = Range.init(blockA.start, blockA.start + block_size);
+
+ blockA.start += block_size;
+ blockA.end += block_size;
+ blockB.start += block_size;
+
+ if (blockB.end > B.end - block_size) {
+ blockB.end = B.end;
+ } else {
+ blockB.end += block_size;
+ }
+ }
+ }
+ }
+
+ // merge the last A block with the remaining B values
+ if (lastA.length() <= cache.len) {
+ mergeExternal(T, items, lastA, Range.init(lastA.end, B.end), cache[0..], context, lessThan);
+ } else if (buffer2.length() > 0) {
+ mergeInternal(T, items, lastA, Range.init(lastA.end, B.end), buffer2, context, lessThan);
+ } else {
+ mergeInPlace(T, items, lastA, Range.init(lastA.end, B.end), context, lessThan);
+ }
+ }
+ }
+
+ // when we're finished with this merge step we should have the one
+ // or two internal buffers left over, where the second buffer is all jumbled up
+ // insertion sort the second buffer, then redistribute the buffers
+ // back into the items using the opposite process used for creating the buffer
+
+ // while an unstable sort like quicksort could be applied here, in benchmarks
+ // it was consistently slightly slower than a simple insertion sort,
+ // even for tens of millions of items. this may be because insertion
+ // sort is quite fast when the data is already somewhat sorted, like it is here
+ sort.insertion(T, items[buffer2.start..buffer2.end], context, lessThan);
+
+ pull_index = 0;
+ while (pull_index < 2) : (pull_index += 1) {
+ var unique = pull[pull_index].count * 2;
+ if (pull[pull_index].from > pull[pull_index].to) {
+ // the values were pulled out to the left, so redistribute them back to the right
+ var buffer = Range.init(pull[pull_index].range.start, pull[pull_index].range.start + pull[pull_index].count);
+ while (buffer.length() > 0) {
+ index = findFirstForward(T, items, items[buffer.start], Range.init(buffer.end, pull[pull_index].range.end), unique, context, lessThan);
+ const amount = index - buffer.end;
+ mem.rotate(T, items[buffer.start..index], buffer.length());
+ buffer.start += (amount + 1);
+ buffer.end += amount;
+ unique -= 2;
+ }
+ } else if (pull[pull_index].from < pull[pull_index].to) {
+ // the values were pulled out to the right, so redistribute them back to the left
+ var buffer = Range.init(pull[pull_index].range.end - pull[pull_index].count, pull[pull_index].range.end);
+ while (buffer.length() > 0) {
+ index = findLastBackward(T, items, items[buffer.end - 1], Range.init(pull[pull_index].range.start, buffer.start), unique, context, lessThan);
+ const amount = buffer.start - index;
+ mem.rotate(T, items[index..buffer.end], amount);
+ buffer.start -= amount;
+ buffer.end -= (amount + 1);
+ unique -= 2;
+ }
+ }
+ }
+ }
+
+ // double the size of each A and B subarray that will be merged in the next level
+ if (!iterator.nextLevel()) break;
+ }
+}
+// merge operation without a buffer
+fn mergeInPlace(
+ comptime T: type,
+ items: []T,
+ A_arg: Range,
+ B_arg: Range,
+ context: anytype,
+ comptime lessThan: fn (@TypeOf(context), lhs: T, rhs: T) bool,
+) void {
+ if (A_arg.length() == 0 or B_arg.length() == 0) return;
+
+ // this just repeatedly binary searches into B and rotates A into position.
+ // the paper suggests using the 'rotation-based Hwang and Lin algorithm' here,
+ // but I decided to stick with this because it had better situational performance
+ //
+ // (Hwang and Lin is designed for merging subarrays of very different sizes,
+ // but WikiSort almost always uses subarrays that are roughly the same size)
+ //
+ // normally this is incredibly suboptimal, but this function is only called
+ // when none of the A or B blocks in any subarray contained 2โA unique values,
+ // which places a hard limit on the number of times this will ACTUALLY need
+ // to binary search and rotate.
+ //
+ // according to my analysis the worst case is โA rotations performed on โA items
+ // once the constant factors are removed, which ends up being O(n)
+ //
+ // again, this is NOT a general-purpose solution โ it only works well in this case!
+ // kind of like how the O(n^2) insertion sort is used in some places
+
+ var A = A_arg;
+ var B = B_arg;
+
+ while (true) {
+ // find the first place in B where the first item in A needs to be inserted
+ const mid = binaryFirst(T, items, items[A.start], B, context, lessThan);
+
+ // rotate A into place
+ const amount = mid - A.end;
+ mem.rotate(T, items[A.start..mid], A.length());
+ if (B.end == mid) break;
+
+ // calculate the new A and B ranges
+ B.start = mid;
+ A = Range.init(A.start + amount, B.start);
+ A.start = binaryLast(T, items, items[A.start], A, context, lessThan);
+ if (A.length() == 0) break;
+ }
+}
+
+// merge operation using an internal buffer
+fn mergeInternal(
+ comptime T: type,
+ items: []T,
+ A: Range,
+ B: Range,
+ buffer: Range,
+ context: anytype,
+ comptime lessThan: fn (@TypeOf(context), lhs: T, rhs: T) bool,
+) void {
+ // whenever we find a value to add to the final array, swap it with the value that's already in that spot
+ // when this algorithm is finished, 'buffer' will contain its original contents, but in a different order
+ var A_count: usize = 0;
+ var B_count: usize = 0;
+ var insert: usize = 0;
+
+ if (B.length() > 0 and A.length() > 0) {
+ while (true) {
+ if (!lessThan(context, items[B.start + B_count], items[buffer.start + A_count])) {
+ mem.swap(T, &items[A.start + insert], &items[buffer.start + A_count]);
+ A_count += 1;
+ insert += 1;
+ if (A_count >= A.length()) break;
+ } else {
+ mem.swap(T, &items[A.start + insert], &items[B.start + B_count]);
+ B_count += 1;
+ insert += 1;
+ if (B_count >= B.length()) break;
+ }
+ }
+ }
+
+ // swap the remainder of A into the final array
+ blockSwap(T, items, buffer.start + A_count, A.start + insert, A.length() - A_count);
+}
+
+fn blockSwap(comptime T: type, items: []T, start1: usize, start2: usize, block_size: usize) void {
+ var index: usize = 0;
+ while (index < block_size) : (index += 1) {
+ mem.swap(T, &items[start1 + index], &items[start2 + index]);
+ }
+}
+
+// combine a linear search with a binary search to reduce the number of comparisons in situations
+// where have some idea as to how many unique values there are and where the next value might be
+fn findFirstForward(
+ comptime T: type,
+ items: []T,
+ value: T,
+ range: Range,
+ unique: usize,
+ context: anytype,
+ comptime lessThan: fn (@TypeOf(context), lhs: T, rhs: T) bool,
+) usize {
+ if (range.length() == 0) return range.start;
+ const skip = math.max(range.length() / unique, @as(usize, 1));
+
+ var index = range.start + skip;
+ while (lessThan(context, items[index - 1], value)) : (index += skip) {
+ if (index >= range.end - skip) {
+ return binaryFirst(T, items, value, Range.init(index, range.end), context, lessThan);
+ }
+ }
+
+ return binaryFirst(T, items, value, Range.init(index - skip, index), context, lessThan);
+}
+
+fn findFirstBackward(
+ comptime T: type,
+ items: []T,
+ value: T,
+ range: Range,
+ unique: usize,
+ context: anytype,
+ comptime lessThan: fn (@TypeOf(context), lhs: T, rhs: T) bool,
+) usize {
+ if (range.length() == 0) return range.start;
+ const skip = math.max(range.length() / unique, @as(usize, 1));
+
+ var index = range.end - skip;
+ while (index > range.start and !lessThan(context, items[index - 1], value)) : (index -= skip) {
+ if (index < range.start + skip) {
+ return binaryFirst(T, items, value, Range.init(range.start, index), context, lessThan);
+ }
+ }
+
+ return binaryFirst(T, items, value, Range.init(index, index + skip), context, lessThan);
+}
+
+fn findLastForward(
+ comptime T: type,
+ items: []T,
+ value: T,
+ range: Range,
+ unique: usize,
+ context: anytype,
+ comptime lessThan: fn (@TypeOf(context), lhs: T, rhs: T) bool,
+) usize {
+ if (range.length() == 0) return range.start;
+ const skip = math.max(range.length() / unique, @as(usize, 1));
+
+ var index = range.start + skip;
+ while (!lessThan(context, value, items[index - 1])) : (index += skip) {
+ if (index >= range.end - skip) {
+ return binaryLast(T, items, value, Range.init(index, range.end), context, lessThan);
+ }
+ }
+
+ return binaryLast(T, items, value, Range.init(index - skip, index), context, lessThan);
+}
+
+fn findLastBackward(
+ comptime T: type,
+ items: []T,
+ value: T,
+ range: Range,
+ unique: usize,
+ context: anytype,
+ comptime lessThan: fn (@TypeOf(context), lhs: T, rhs: T) bool,
+) usize {
+ if (range.length() == 0) return range.start;
+ const skip = math.max(range.length() / unique, @as(usize, 1));
+
+ var index = range.end - skip;
+ while (index > range.start and lessThan(context, value, items[index - 1])) : (index -= skip) {
+ if (index < range.start + skip) {
+ return binaryLast(T, items, value, Range.init(range.start, index), context, lessThan);
+ }
+ }
+
+ return binaryLast(T, items, value, Range.init(index, index + skip), context, lessThan);
+}
+
+fn binaryFirst(
+ comptime T: type,
+ items: []T,
+ value: T,
+ range: Range,
+ context: anytype,
+ comptime lessThan: fn (@TypeOf(context), lhs: T, rhs: T) bool,
+) usize {
+ var curr = range.start;
+ var size = range.length();
+ if (range.start >= range.end) return range.end;
+ while (size > 0) {
+ const offset = size % 2;
+
+ size /= 2;
+ const mid_item = items[curr + size];
+ if (lessThan(context, mid_item, value)) {
+ curr += size + offset;
+ }
+ }
+ return curr;
+}
+
+fn binaryLast(
+ comptime T: type,
+ items: []T,
+ value: T,
+ range: Range,
+ context: anytype,
+ comptime lessThan: fn (@TypeOf(context), lhs: T, rhs: T) bool,
+) usize {
+ var curr = range.start;
+ var size = range.length();
+ if (range.start >= range.end) return range.end;
+ while (size > 0) {
+ const offset = size % 2;
+
+ size /= 2;
+ const mid_item = items[curr + size];
+ if (!lessThan(context, value, mid_item)) {
+ curr += size + offset;
+ }
+ }
+ return curr;
+}
+
+fn mergeInto(
+ comptime T: type,
+ from: []T,
+ A: Range,
+ B: Range,
+ into: []T,
+ context: anytype,
+ comptime lessThan: fn (@TypeOf(context), lhs: T, rhs: T) bool,
+) void {
+ var A_index: usize = A.start;
+ var B_index: usize = B.start;
+ const A_last = A.end;
+ const B_last = B.end;
+ var insert_index: usize = 0;
+
+ while (true) {
+ if (!lessThan(context, from[B_index], from[A_index])) {
+ into[insert_index] = from[A_index];
+ A_index += 1;
+ insert_index += 1;
+ if (A_index == A_last) {
+ // copy the remainder of B into the final array
+ const from_b = from[B_index..B_last];
+ @memcpy(into[insert_index..][0..from_b.len], from_b);
+ break;
+ }
+ } else {
+ into[insert_index] = from[B_index];
+ B_index += 1;
+ insert_index += 1;
+ if (B_index == B_last) {
+ // copy the remainder of A into the final array
+ const from_a = from[A_index..A_last];
+ @memcpy(into[insert_index..][0..from_a.len], from_a);
+ break;
+ }
+ }
+ }
+}
+
+fn mergeExternal(
+ comptime T: type,
+ items: []T,
+ A: Range,
+ B: Range,
+ cache: []T,
+ context: anytype,
+ comptime lessThan: fn (@TypeOf(context), lhs: T, rhs: T) bool,
+) void {
+ // A fits into the cache, so use that instead of the internal buffer
+ var A_index: usize = 0;
+ var B_index: usize = B.start;
+ var insert_index: usize = A.start;
+ const A_last = A.length();
+ const B_last = B.end;
+
+ if (B.length() > 0 and A.length() > 0) {
+ while (true) {
+ if (!lessThan(context, items[B_index], cache[A_index])) {
+ items[insert_index] = cache[A_index];
+ A_index += 1;
+ insert_index += 1;
+ if (A_index == A_last) break;
+ } else {
+ items[insert_index] = items[B_index];
+ B_index += 1;
+ insert_index += 1;
+ if (B_index == B_last) break;
+ }
+ }
+ }
+
+ // copy the remainder of A into the final array
+ const cache_a = cache[A_index..A_last];
+ @memcpy(items[insert_index..][0..cache_a.len], cache_a);
+}
+
+fn swap(
+ comptime T: type,
+ items: []T,
+ order: *[8]u8,
+ x: usize,
+ y: usize,
+ context: anytype,
+ comptime lessThan: fn (@TypeOf(context), lhs: T, rhs: T) bool,
+) void {
+ if (lessThan(context, items[y], items[x]) or ((order.*)[x] > (order.*)[y] and !lessThan(context, items[x], items[y]))) {
+ mem.swap(T, &items[x], &items[y]);
+ mem.swap(u8, &(order.*)[x], &(order.*)[y]);
+ }
+}
lib/std/sort/pdq.zig
@@ -0,0 +1,331 @@
+const std = @import("../std.zig");
+const sort = std.sort;
+const mem = std.mem;
+const math = std.math;
+const testing = std.testing;
+
+/// Unstable in-place sort. n best case, n*log(n) worst case and average case.
+/// log(n) memory (no allocator required).
+///
+/// Sorts in ascending order with respect to the given `lessThan` function.
+pub fn pdq(
+ comptime T: type,
+ items: []T,
+ context: anytype,
+ comptime lessThanFn: fn (context: @TypeOf(context), lhs: T, rhs: T) bool,
+) void {
+ const Context = struct {
+ items: []T,
+ sub_ctx: @TypeOf(context),
+
+ pub fn lessThan(ctx: @This(), a: usize, b: usize) bool {
+ return lessThanFn(ctx.sub_ctx, ctx.items[a], ctx.items[b]);
+ }
+
+ pub fn swap(ctx: @This(), a: usize, b: usize) void {
+ return mem.swap(T, &ctx.items[a], &ctx.items[b]);
+ }
+ };
+ pdqContext(0, items.len, Context{ .items = items, .sub_ctx = context });
+}
+
+const Hint = enum {
+ increasing,
+ decreasing,
+ unknown,
+};
+
+/// Unstable in-place sort. O(n) best case, O(n*log(n)) worst case and average case.
+/// O(log(n)) memory (no allocator required).
+///
+/// Sorts in ascending order with respect to the given `lessThan` function.
+pub fn pdqContext(a: usize, b: usize, context: anytype) void {
+ // slices of up to this length get sorted using insertion sort.
+ const max_insertion = 24;
+ // number of allowed imbalanced partitions before switching to heap sort.
+ const max_limit = std.math.floorPowerOfTwo(usize, b) + 1;
+
+ // set upper bound on stack memory usage.
+ const Range = struct { a: usize, b: usize, limit: usize };
+ const stack_size = math.log2(math.maxInt(usize) + 1);
+ var stack: [stack_size]Range = undefined;
+ var range = Range{ .a = a, .b = b, .limit = max_limit };
+ var top: usize = 0;
+
+ while (true) {
+ var was_balanced = true;
+ var was_partitioned = true;
+
+ while (true) {
+ const len = range.b - range.a;
+
+ // very short slices get sorted using insertion sort.
+ if (len <= max_insertion) {
+ break sort.insertionContext(range.a, range.b, context);
+ }
+
+ // if too many bad pivot choices were made, simply fall back to heapsort in order to
+ // guarantee O(n*log(n)) worst-case.
+ if (range.limit == 0) {
+ break sort.heapContext(range.a, range.b, context);
+ }
+
+ // if the last partitioning was imbalanced, try breaking patterns in the slice by shuffling
+ // some elements around. Hopefully we'll choose a better pivot this time.
+ if (!was_balanced) {
+ breakPatterns(range.a, range.b, context);
+ range.limit -= 1;
+ }
+
+ // choose a pivot and try guessing whether the slice is already sorted.
+ var pivot: usize = 0;
+ var hint = chosePivot(range.a, range.b, &pivot, context);
+
+ if (hint == .decreasing) {
+ // The maximum number of swaps was performed, so items are likely
+ // in reverse order. Reverse it to make sorting faster.
+ reverseRange(range.a, range.b, context);
+ pivot = (range.b - 1) - (pivot - range.a);
+ hint = .increasing;
+ }
+
+ // if the last partitioning was decently balanced and didn't shuffle elements, and if pivot
+ // selection predicts the slice is likely already sorted...
+ if (was_balanced and was_partitioned and hint == .increasing) {
+ // try identifying several out-of-order elements and shifting them to correct
+ // positions. If the slice ends up being completely sorted, we're done.
+ if (partialInsertionSort(range.a, range.b, context)) break;
+ }
+
+ // if the chosen pivot is equal to the predecessor, then it's the smallest element in the
+ // slice. Partition the slice into elements equal to and elements greater than the pivot.
+ // This case is usually hit when the slice contains many duplicate elements.
+ if (range.a > 0 and !context.lessThan(range.a - 1, pivot)) {
+ range.a = partitionEqual(range.a, range.b, pivot, context);
+ continue;
+ }
+
+ // partition the slice.
+ var mid = pivot;
+ was_partitioned = partition(range.a, range.b, &mid, context);
+
+ const left_len = mid - range.a;
+ const right_len = range.b - mid;
+ const balanced_threshold = len / 8;
+ if (left_len < right_len) {
+ was_balanced = left_len >= balanced_threshold;
+ stack[top] = .{ .a = range.a, .b = mid, .limit = range.limit };
+ top += 1;
+ range.a = mid + 1;
+ } else {
+ was_balanced = right_len >= balanced_threshold;
+ stack[top] = .{ .a = mid + 1, .b = range.b, .limit = range.limit };
+ top += 1;
+ range.b = mid;
+ }
+ }
+
+ top = math.sub(usize, top, 1) catch break;
+ range = stack[top];
+ }
+}
+
+/// partitions `items[a..b]` into elements smaller than `items[pivot]`,
+/// followed by elements greater than or equal to `items[pivot]`.
+///
+/// sets the new pivot.
+/// returns `true` if already partitioned.
+fn partition(a: usize, b: usize, pivot: *usize, context: anytype) bool {
+ // move pivot to the first place
+ context.swap(a, pivot.*);
+
+ var i = a + 1;
+ var j = b - 1;
+
+ while (i <= j and context.lessThan(i, a)) i += 1;
+ while (i <= j and !context.lessThan(j, a)) j -= 1;
+
+ // check if items are already partitioned (no item to swap)
+ if (i > j) {
+ // put pivot back to the middle
+ context.swap(j, a);
+ pivot.* = j;
+ return true;
+ }
+
+ context.swap(i, j);
+ i += 1;
+ j -= 1;
+
+ while (true) {
+ while (i <= j and context.lessThan(i, a)) i += 1;
+ while (i <= j and !context.lessThan(j, a)) j -= 1;
+ if (i > j) break;
+
+ context.swap(i, j);
+ i += 1;
+ j -= 1;
+ }
+
+ // TODO: Enable the BlockQuicksort optimization
+
+ context.swap(j, a);
+ pivot.* = j;
+ return false;
+}
+
+/// partitions items into elements equal to `items[pivot]`
+/// followed by elements greater than `items[pivot]`.
+///
+/// it assumed that `items[a..b]` does not contain elements smaller than the `items[pivot]`.
+fn partitionEqual(a: usize, b: usize, pivot: usize, context: anytype) usize {
+ // move pivot to the first place
+ context.swap(a, pivot);
+
+ var i = a + 1;
+ var j = b - 1;
+
+ while (true) {
+ while (i <= j and !context.lessThan(a, i)) i += 1;
+ while (i <= j and context.lessThan(a, j)) j -= 1;
+ if (i > j) break;
+
+ context.swap(i, j);
+ i += 1;
+ j -= 1;
+ }
+
+ return i;
+}
+
+/// partially sorts a slice by shifting several out-of-order elements around.
+///
+/// returns `true` if the slice is sorted at the end. This function is `O(n)` worst-case.
+fn partialInsertionSort(a: usize, b: usize, context: anytype) bool {
+ @setCold(true);
+
+ // maximum number of adjacent out-of-order pairs that will get shifted
+ const max_steps = 5;
+ // if the slice is shorter than this, don't shift any elements
+ const shortest_shifting = 50;
+
+ var i = a + 1;
+ for (0..max_steps) |_| {
+ // find the next pair of adjacent out-of-order elements.
+ while (i < b and !context.lessThan(i, i - 1)) i += 1;
+
+ // are we done?
+ if (i == b) return true;
+
+ // don't shift elements on short arrays, that has a performance cost.
+ if (b - a < shortest_shifting) return false;
+
+ // swap the found pair of elements. This puts them in correct order.
+ context.swap(i, i - 1);
+
+ // shift the smaller element to the left.
+ if (i - a >= 2) {
+ var j = i - 1;
+ while (j >= 1) : (j -= 1) {
+ if (!context.lessThan(j, j - 1)) break;
+ context.swap(j, j - 1);
+ }
+ }
+
+ // shift the greater element to the right.
+ if (b - i >= 2) {
+ var j = i + 1;
+ while (j < b) : (j += 1) {
+ if (!context.lessThan(j, j - 1)) break;
+ context.swap(j, j - 1);
+ }
+ }
+ }
+
+ return false;
+}
+
+fn breakPatterns(a: usize, b: usize, context: anytype) void {
+ @setCold(true);
+
+ const len = b - a;
+ if (len < 8) return;
+
+ var rand = @intCast(u64, len);
+ const modulus = math.ceilPowerOfTwoAssert(u64, len);
+
+ var i = a + (len / 4) * 2 - 1;
+ while (i <= a + (len / 4) * 2 + 1) : (i += 1) {
+ // xorshift64
+ rand ^= rand << 13;
+ rand ^= rand >> 7;
+ rand ^= rand << 17;
+
+ var other = @intCast(usize, rand & (modulus - 1));
+ if (other >= len) other -= len;
+ context.swap(i, a + other);
+ }
+}
+
+/// choses a pivot in `items[a..b]`.
+/// swaps likely_sorted when `items[a..b]` seems to be already sorted.
+fn chosePivot(a: usize, b: usize, pivot: *usize, context: anytype) Hint {
+ // minimum length for using the Tukey's ninther method
+ const shortest_ninther = 50;
+ // max_swaps is the maximum number of swaps allowed in this function
+ const max_swaps = 4 * 3;
+
+ var len = b - a;
+ var i = a + len / 4 * 1;
+ var j = a + len / 4 * 2;
+ var k = a + len / 4 * 3;
+ var swaps: usize = 0;
+
+ if (len >= 8) {
+ if (len >= shortest_ninther) {
+ // find medians in the neighborhoods of `i`, `j` and `k`
+ i = sort3(i - 1, i, i + 1, &swaps, context);
+ j = sort3(j - 1, j, j + 1, &swaps, context);
+ k = sort3(k - 1, k, k + 1, &swaps, context);
+ }
+
+ // find the median among `i`, `j` and `k`
+ j = sort3(i, j, k, &swaps, context);
+ }
+
+ pivot.* = j;
+ return switch (swaps) {
+ 0 => .increasing,
+ max_swaps => .decreasing,
+ else => .unknown,
+ };
+}
+
+fn sort3(a: usize, b: usize, c: usize, swaps: *usize, context: anytype) usize {
+ if (context.lessThan(b, a)) {
+ swaps.* += 1;
+ context.swap(b, a);
+ }
+
+ if (context.lessThan(c, b)) {
+ swaps.* += 1;
+ context.swap(c, b);
+ }
+
+ if (context.lessThan(b, a)) {
+ swaps.* += 1;
+ context.swap(b, a);
+ }
+
+ return b;
+}
+
+fn reverseRange(a: usize, b: usize, context: anytype) void {
+ var i = a;
+ var j = b - 1;
+ while (i < j) {
+ context.swap(i, j);
+ i += 1;
+ j -= 1;
+ }
+}
lib/std/comptime_string_map.zig
@@ -28,7 +28,7 @@ pub fn ComptimeStringMap(comptime V: type, comptime kvs_list: anytype) type {
sorted_kvs[i] = .{ .key = kv.@"0", .value = {} };
}
}
- std.sort.sort(KV, &sorted_kvs, {}, lenAsc);
+ mem.sort(KV, &sorted_kvs, {}, lenAsc);
const min_len = sorted_kvs[0].key.len;
const max_len = sorted_kvs[sorted_kvs.len - 1].key.len;
var len_indexes: [max_len + 1]usize = undefined;
lib/std/debug.zig
@@ -1211,7 +1211,7 @@ fn readMachODebugInfo(allocator: mem.Allocator, macho_file: File) !ModuleDebugIn
// Even though lld emits symbols in ascending order, this debug code
// should work for programs linked in any valid way.
// This sort is so that we can binary search later.
- std.sort.sort(MachoSymbol, symbols, {}, MachoSymbol.addressLessThan);
+ mem.sort(MachoSymbol, symbols, {}, MachoSymbol.addressLessThan);
return ModuleDebugInfo{
.base_address = undefined,
lib/std/enums.zig
@@ -1314,7 +1314,7 @@ pub fn EnumIndexer(comptime E: type) type {
}
};
}
- std.sort.sort(EnumField, &fields, {}, ascByValue);
+ std.mem.sort(EnumField, &fields, {}, ascByValue);
const min = fields[0].value;
const max = fields[fields.len - 1].value;
const fields_len = fields.len;
lib/std/mem.zig
@@ -566,6 +566,34 @@ test "zeroInit" {
}, nested_baz);
}
+pub fn sort(
+ comptime T: type,
+ items: []T,
+ context: anytype,
+ comptime lessThanFn: fn (@TypeOf(context), lhs: T, rhs: T) bool,
+) void {
+ std.sort.block(T, items, context, lessThanFn);
+}
+
+pub fn sortUnstable(
+ comptime T: type,
+ items: []T,
+ context: anytype,
+ comptime lessThanFn: fn (@TypeOf(context), lhs: T, rhs: T) bool,
+) void {
+ std.sort.pdq(T, items, context, lessThanFn);
+}
+
+/// TODO: currently this just calls `insertionSortContext`. The block sort implementation
+/// in this file needs to be adapted to use the sort context.
+pub fn sortContext(a: usize, b: usize, context: anytype) void {
+ std.sort.insertionContext(a, b, context);
+}
+
+pub fn sortUnstableContext(a: usize, b: usize, context: anytype) void {
+ std.sort.pdqContext(a, b, context);
+}
+
/// Compares two slices of numbers lexicographically. O(n).
pub fn order(comptime T: type, lhs: []const T, rhs: []const T) math.Order {
const n = math.min(lhs.len, rhs.len);
lib/std/meta.zig
@@ -985,7 +985,7 @@ pub fn declList(comptime Namespace: type, comptime Decl: type) []const *const De
for (decls, 0..) |decl, i| {
array[i] = &@field(Namespace, decl.name);
}
- std.sort.sort(*const Decl, &array, {}, S.declNameLessThan);
+ mem.sort(*const Decl, &array, {}, S.declNameLessThan);
return &array;
}
}
lib/std/multi_array_list.zig
@@ -160,7 +160,7 @@ pub fn MultiArrayList(comptime T: type) type {
return lhs.alignment > rhs.alignment;
}
};
- std.sort.sort(Data, &data, {}, Sort.lessThan);
+ mem.sort(Data, &data, {}, Sort.lessThan);
var sizes_bytes: [fields.len]usize = undefined;
var field_indexes: [fields.len]usize = undefined;
for (data, 0..) |elem, i| {
@@ -488,10 +488,7 @@ pub fn MultiArrayList(comptime T: type) type {
}
};
- std.sort.sortContext(self.len, SortContext{
- .sub_ctx = ctx,
- .slice = self.slice(),
- });
+ mem.sortContext(0, self.len, SortContext{ .sub_ctx = ctx, .slice = self.slice() });
}
fn capacityInBytes(capacity: usize) usize {
lib/std/net.zig
@@ -1082,7 +1082,7 @@ fn linuxLookupName(
key |= (MAXADDRS - @intCast(i32, i)) << DAS_ORDER_SHIFT;
addr.sortkey = key;
}
- std.sort.sort(LookupAddr, addrs.items, {}, addrCmpLessThan);
+ mem.sort(LookupAddr, addrs.items, {}, addrCmpLessThan);
}
const Policy = struct {
lib/std/sort.zig
@@ -4,1241 +4,152 @@ const testing = std.testing;
const mem = std.mem;
const math = std.math;
-pub fn binarySearch(
- comptime T: type,
- key: anytype,
- items: []const T,
- context: anytype,
- comptime compareFn: fn (context: @TypeOf(context), key: @TypeOf(key), mid_item: T) math.Order,
-) ?usize {
- var left: usize = 0;
- var right: usize = items.len;
-
- while (left < right) {
- // Avoid overflowing in the midpoint calculation
- const mid = left + (right - left) / 2;
- // Compare the key with the midpoint element
- switch (compareFn(context, key, items[mid])) {
- .eq => return mid,
- .gt => left = mid + 1,
- .lt => right = mid,
- }
- }
-
- return null;
-}
-
-test "binarySearch" {
- const S = struct {
- fn order_u32(context: void, lhs: u32, rhs: u32) math.Order {
- _ = context;
- return math.order(lhs, rhs);
- }
- fn order_i32(context: void, lhs: i32, rhs: i32) math.Order {
- _ = context;
- return math.order(lhs, rhs);
- }
- };
- try testing.expectEqual(
- @as(?usize, null),
- binarySearch(u32, @as(u32, 1), &[_]u32{}, {}, S.order_u32),
- );
- try testing.expectEqual(
- @as(?usize, 0),
- binarySearch(u32, @as(u32, 1), &[_]u32{1}, {}, S.order_u32),
- );
- try testing.expectEqual(
- @as(?usize, null),
- binarySearch(u32, @as(u32, 1), &[_]u32{0}, {}, S.order_u32),
- );
- try testing.expectEqual(
- @as(?usize, null),
- binarySearch(u32, @as(u32, 0), &[_]u32{1}, {}, S.order_u32),
- );
- try testing.expectEqual(
- @as(?usize, 4),
- binarySearch(u32, @as(u32, 5), &[_]u32{ 1, 2, 3, 4, 5 }, {}, S.order_u32),
- );
- try testing.expectEqual(
- @as(?usize, 0),
- binarySearch(u32, @as(u32, 2), &[_]u32{ 2, 4, 8, 16, 32, 64 }, {}, S.order_u32),
- );
- try testing.expectEqual(
- @as(?usize, 1),
- binarySearch(i32, @as(i32, -4), &[_]i32{ -7, -4, 0, 9, 10 }, {}, S.order_i32),
- );
- try testing.expectEqual(
- @as(?usize, 3),
- binarySearch(i32, @as(i32, 98), &[_]i32{ -100, -25, 2, 98, 99, 100 }, {}, S.order_i32),
- );
- const R = struct {
- b: i32,
- e: i32,
-
- fn r(b: i32, e: i32) @This() {
- return @This(){ .b = b, .e = e };
- }
-
- fn order(context: void, key: i32, mid_item: @This()) math.Order {
- _ = context;
-
- if (key < mid_item.b) {
- return .lt;
- }
-
- if (key > mid_item.e) {
- return .gt;
- }
-
- return .eq;
- }
- };
- try testing.expectEqual(
- @as(?usize, null),
- binarySearch(R, @as(i32, -45), &[_]R{ R.r(-100, -50), R.r(-40, -20), R.r(-10, 20), R.r(30, 40) }, {}, R.order),
- );
- try testing.expectEqual(
- @as(?usize, 2),
- binarySearch(R, @as(i32, 10), &[_]R{ R.r(-100, -50), R.r(-40, -20), R.r(-10, 20), R.r(30, 40) }, {}, R.order),
- );
- try testing.expectEqual(
- @as(?usize, 1),
- binarySearch(R, @as(i32, -20), &[_]R{ R.r(-100, -50), R.r(-40, -20), R.r(-10, 20), R.r(30, 40) }, {}, R.order),
- );
-}
+pub const block = @import("sort/block.zig").block;
+pub const pdq = @import("sort/pdq.zig").pdq;
+pub const pdqContext = @import("sort/pdq.zig").pdqContext;
/// Stable in-place sort. O(n) best case, O(pow(n, 2)) worst case.
/// O(1) memory (no allocator required).
/// Sorts in ascending order with respect to the given `lessThan` function.
-/// This can be expressed in terms of `insertionSortContext` but the glue
-/// code is slightly longer than the direct implementation.
-pub fn insertionSort(
+pub fn insertion(
comptime T: type,
items: []T,
context: anytype,
- comptime lessThan: fn (context: @TypeOf(context), lhs: T, rhs: T) bool,
+ comptime lessThanFn: fn (@TypeOf(context), lhs: T, rhs: T) bool,
) void {
- var i: usize = 1;
- while (i < items.len) : (i += 1) {
- const x = items[i];
- var j: usize = i;
- while (j > 0 and lessThan(context, x, items[j - 1])) : (j -= 1) {
- items[j] = items[j - 1];
+ const Context = struct {
+ items: []T,
+ sub_ctx: @TypeOf(context),
+
+ pub fn lessThan(ctx: @This(), a: usize, b: usize) bool {
+ return lessThanFn(ctx.sub_ctx, ctx.items[a], ctx.items[b]);
}
- items[j] = x;
- }
+
+ pub fn swap(ctx: @This(), a: usize, b: usize) void {
+ return mem.swap(T, &ctx.items[a], &ctx.items[b]);
+ }
+ };
+ insertionContext(0, items.len, Context{ .items = items, .sub_ctx = context });
}
/// Stable in-place sort. O(n) best case, O(pow(n, 2)) worst case.
/// O(1) memory (no allocator required).
-/// Sorts in ascending order with respect to the given `context.lessThan` function.
-pub fn insertionSortContext(len: usize, context: anytype) void {
- var i: usize = 1;
- while (i < len) : (i += 1) {
- var j: usize = i;
- while (j > 0 and context.lessThan(j, j - 1)) : (j -= 1) {
+/// Sorts in ascending order with respect to the given `lessThan` function.
+pub fn insertionContext(a: usize, b: usize, context: anytype) void {
+ var i = a + 1;
+ while (i < b) : (i += 1) {
+ var j = i;
+ while (j > a and context.lessThan(j, j - 1)) : (j -= 1) {
context.swap(j, j - 1);
}
}
}
-const Range = struct {
- start: usize,
- end: usize,
-
- fn init(start: usize, end: usize) Range {
- return Range{
- .start = start,
- .end = end,
- };
- }
-
- fn length(self: Range) usize {
- return self.end - self.start;
- }
-};
-
-const Iterator = struct {
- size: usize,
- power_of_two: usize,
- numerator: usize,
- decimal: usize,
- denominator: usize,
- decimal_step: usize,
- numerator_step: usize,
-
- fn init(size2: usize, min_level: usize) Iterator {
- const power_of_two = math.floorPowerOfTwo(usize, size2);
- const denominator = power_of_two / min_level;
- return Iterator{
- .numerator = 0,
- .decimal = 0,
- .size = size2,
- .power_of_two = power_of_two,
- .denominator = denominator,
- .decimal_step = size2 / denominator,
- .numerator_step = size2 % denominator,
- };
- }
-
- fn begin(self: *Iterator) void {
- self.numerator = 0;
- self.decimal = 0;
- }
-
- fn nextRange(self: *Iterator) Range {
- const start = self.decimal;
-
- self.decimal += self.decimal_step;
- self.numerator += self.numerator_step;
- if (self.numerator >= self.denominator) {
- self.numerator -= self.denominator;
- self.decimal += 1;
- }
-
- return Range{
- .start = start,
- .end = self.decimal,
- };
- }
-
- fn finished(self: *Iterator) bool {
- return self.decimal >= self.size;
- }
-
- fn nextLevel(self: *Iterator) bool {
- self.decimal_step += self.decimal_step;
- self.numerator_step += self.numerator_step;
- if (self.numerator_step >= self.denominator) {
- self.numerator_step -= self.denominator;
- self.decimal_step += 1;
- }
-
- return (self.decimal_step < self.size);
- }
-
- fn length(self: *Iterator) usize {
- return self.decimal_step;
- }
-};
-
-const Pull = struct {
- from: usize,
- to: usize,
- count: usize,
- range: Range,
-};
-
-/// Stable in-place sort. O(n) best case, O(n*log(n)) worst case and average case.
+/// Unstable in-place sort. O(n*log(n)) best case, worst case and average case.
/// O(1) memory (no allocator required).
/// Sorts in ascending order with respect to the given `lessThan` function.
-/// Currently implemented as block sort.
-pub fn sort(
+pub fn heap(
comptime T: type,
items: []T,
context: anytype,
- comptime lessThan: fn (context: @TypeOf(context), lhs: T, rhs: T) bool,
+ comptime lessThanFn: fn (@TypeOf(context), lhs: T, rhs: T) bool,
) void {
+ const Context = struct {
+ items: []T,
+ sub_ctx: @TypeOf(context),
- // Implementation ported from https://github.com/BonzaiThePenguin/WikiSort/blob/master/WikiSort.c
- var cache: [512]T = undefined;
-
- if (items.len < 4) {
- if (items.len == 3) {
- // hard coded insertion sort
- if (lessThan(context, items[1], items[0])) mem.swap(T, &items[0], &items[1]);
- if (lessThan(context, items[2], items[1])) {
- mem.swap(T, &items[1], &items[2]);
- if (lessThan(context, items[1], items[0])) mem.swap(T, &items[0], &items[1]);
- }
- } else if (items.len == 2) {
- if (lessThan(context, items[1], items[0])) mem.swap(T, &items[0], &items[1]);
+ pub fn lessThan(ctx: @This(), a: usize, b: usize) bool {
+ return lessThanFn(ctx.sub_ctx, ctx.items[a], ctx.items[b]);
}
- return;
- }
-
- // sort groups of 4-8 items at a time using an unstable sorting network,
- // but keep track of the original item orders to force it to be stable
- // http://pages.ripco.net/~jgamble/nw.html
- var iterator = Iterator.init(items.len, 4);
- while (!iterator.finished()) {
- var order = [_]u8{ 0, 1, 2, 3, 4, 5, 6, 7 };
- const range = iterator.nextRange();
-
- const sliced_items = items[range.start..];
- switch (range.length()) {
- 8 => {
- swap(T, sliced_items, context, lessThan, &order, 0, 1);
- swap(T, sliced_items, context, lessThan, &order, 2, 3);
- swap(T, sliced_items, context, lessThan, &order, 4, 5);
- swap(T, sliced_items, context, lessThan, &order, 6, 7);
- swap(T, sliced_items, context, lessThan, &order, 0, 2);
- swap(T, sliced_items, context, lessThan, &order, 1, 3);
- swap(T, sliced_items, context, lessThan, &order, 4, 6);
- swap(T, sliced_items, context, lessThan, &order, 5, 7);
- swap(T, sliced_items, context, lessThan, &order, 1, 2);
- swap(T, sliced_items, context, lessThan, &order, 5, 6);
- swap(T, sliced_items, context, lessThan, &order, 0, 4);
- swap(T, sliced_items, context, lessThan, &order, 3, 7);
- swap(T, sliced_items, context, lessThan, &order, 1, 5);
- swap(T, sliced_items, context, lessThan, &order, 2, 6);
- swap(T, sliced_items, context, lessThan, &order, 1, 4);
- swap(T, sliced_items, context, lessThan, &order, 3, 6);
- swap(T, sliced_items, context, lessThan, &order, 2, 4);
- swap(T, sliced_items, context, lessThan, &order, 3, 5);
- swap(T, sliced_items, context, lessThan, &order, 3, 4);
- },
- 7 => {
- swap(T, sliced_items, context, lessThan, &order, 1, 2);
- swap(T, sliced_items, context, lessThan, &order, 3, 4);
- swap(T, sliced_items, context, lessThan, &order, 5, 6);
- swap(T, sliced_items, context, lessThan, &order, 0, 2);
- swap(T, sliced_items, context, lessThan, &order, 3, 5);
- swap(T, sliced_items, context, lessThan, &order, 4, 6);
- swap(T, sliced_items, context, lessThan, &order, 0, 1);
- swap(T, sliced_items, context, lessThan, &order, 4, 5);
- swap(T, sliced_items, context, lessThan, &order, 2, 6);
- swap(T, sliced_items, context, lessThan, &order, 0, 4);
- swap(T, sliced_items, context, lessThan, &order, 1, 5);
- swap(T, sliced_items, context, lessThan, &order, 0, 3);
- swap(T, sliced_items, context, lessThan, &order, 2, 5);
- swap(T, sliced_items, context, lessThan, &order, 1, 3);
- swap(T, sliced_items, context, lessThan, &order, 2, 4);
- swap(T, sliced_items, context, lessThan, &order, 2, 3);
- },
- 6 => {
- swap(T, sliced_items, context, lessThan, &order, 1, 2);
- swap(T, sliced_items, context, lessThan, &order, 4, 5);
- swap(T, sliced_items, context, lessThan, &order, 0, 2);
- swap(T, sliced_items, context, lessThan, &order, 3, 5);
- swap(T, sliced_items, context, lessThan, &order, 0, 1);
- swap(T, sliced_items, context, lessThan, &order, 3, 4);
- swap(T, sliced_items, context, lessThan, &order, 2, 5);
- swap(T, sliced_items, context, lessThan, &order, 0, 3);
- swap(T, sliced_items, context, lessThan, &order, 1, 4);
- swap(T, sliced_items, context, lessThan, &order, 2, 4);
- swap(T, sliced_items, context, lessThan, &order, 1, 3);
- swap(T, sliced_items, context, lessThan, &order, 2, 3);
- },
- 5 => {
- swap(T, sliced_items, context, lessThan, &order, 0, 1);
- swap(T, sliced_items, context, lessThan, &order, 3, 4);
- swap(T, sliced_items, context, lessThan, &order, 2, 4);
- swap(T, sliced_items, context, lessThan, &order, 2, 3);
- swap(T, sliced_items, context, lessThan, &order, 1, 4);
- swap(T, sliced_items, context, lessThan, &order, 0, 3);
- swap(T, sliced_items, context, lessThan, &order, 0, 2);
- swap(T, sliced_items, context, lessThan, &order, 1, 3);
- swap(T, sliced_items, context, lessThan, &order, 1, 2);
- },
- 4 => {
- swap(T, sliced_items, context, lessThan, &order, 0, 1);
- swap(T, sliced_items, context, lessThan, &order, 2, 3);
- swap(T, sliced_items, context, lessThan, &order, 0, 2);
- swap(T, sliced_items, context, lessThan, &order, 1, 3);
- swap(T, sliced_items, context, lessThan, &order, 1, 2);
- },
- else => {},
- }
- }
- if (items.len < 8) return;
-
- // then merge sort the higher levels, which can be 8-15, 16-31, 32-63, 64-127, etc.
- while (true) {
- // if every A and B block will fit into the cache, use a special branch
- // specifically for merging with the cache
- // (we use < rather than <= since the block size might be one more than
- // iterator.length())
- if (iterator.length() < cache.len) {
- // if four subarrays fit into the cache, it's faster to merge both
- // pairs of subarrays into the cache,
- // then merge the two merged subarrays from the cache back into the original array
- if ((iterator.length() + 1) * 4 <= cache.len and iterator.length() * 4 <= items.len) {
- iterator.begin();
- while (!iterator.finished()) {
- // merge A1 and B1 into the cache
- var A1 = iterator.nextRange();
- var B1 = iterator.nextRange();
- var A2 = iterator.nextRange();
- var B2 = iterator.nextRange();
-
- if (lessThan(context, items[B1.end - 1], items[A1.start])) {
- // the two ranges are in reverse order, so copy them in reverse order into the cache
- const a1_items = items[A1.start..A1.end];
- @memcpy(cache[B1.length()..][0..a1_items.len], a1_items);
- const b1_items = items[B1.start..B1.end];
- @memcpy(cache[0..b1_items.len], b1_items);
- } else if (lessThan(context, items[B1.start], items[A1.end - 1])) {
- // these two ranges weren't already in order, so merge them into the cache
- mergeInto(T, items, A1, B1, context, lessThan, cache[0..]);
- } else {
- // if A1, B1, A2, and B2 are all in order, skip doing anything else
- if (!lessThan(context, items[B2.start], items[A2.end - 1]) and !lessThan(context, items[A2.start], items[B1.end - 1])) continue;
-
- // copy A1 and B1 into the cache in the same order
- const a1_items = items[A1.start..A1.end];
- @memcpy(cache[0..a1_items.len], a1_items);
- const b1_items = items[B1.start..B1.end];
- @memcpy(cache[A1.length()..][0..b1_items.len], b1_items);
- }
- A1 = Range.init(A1.start, B1.end);
-
- // merge A2 and B2 into the cache
- if (lessThan(context, items[B2.end - 1], items[A2.start])) {
- // the two ranges are in reverse order, so copy them in reverse order into the cache
- const a2_items = items[A2.start..A2.end];
- @memcpy(cache[A1.length() + B2.length() ..][0..a2_items.len], a2_items);
- const b2_items = items[B2.start..B2.end];
- @memcpy(cache[A1.length()..][0..b2_items.len], b2_items);
- } else if (lessThan(context, items[B2.start], items[A2.end - 1])) {
- // these two ranges weren't already in order, so merge them into the cache
- mergeInto(T, items, A2, B2, context, lessThan, cache[A1.length()..]);
- } else {
- // copy A2 and B2 into the cache in the same order
- const a2_items = items[A2.start..A2.end];
- @memcpy(cache[A1.length()..][0..a2_items.len], a2_items);
- const b2_items = items[B2.start..B2.end];
- @memcpy(cache[A1.length() + A2.length() ..][0..b2_items.len], b2_items);
- }
- A2 = Range.init(A2.start, B2.end);
-
- // merge A1 and A2 from the cache into the items
- const A3 = Range.init(0, A1.length());
- const B3 = Range.init(A1.length(), A1.length() + A2.length());
-
- if (lessThan(context, cache[B3.end - 1], cache[A3.start])) {
- // the two ranges are in reverse order, so copy them in reverse order into the items
- const a3_items = cache[A3.start..A3.end];
- @memcpy(items[A1.start + A2.length() ..][0..a3_items.len], a3_items);
- const b3_items = cache[B3.start..B3.end];
- @memcpy(items[A1.start..][0..b3_items.len], b3_items);
- } else if (lessThan(context, cache[B3.start], cache[A3.end - 1])) {
- // these two ranges weren't already in order, so merge them back into the items
- mergeInto(T, cache[0..], A3, B3, context, lessThan, items[A1.start..]);
- } else {
- // copy A3 and B3 into the items in the same order
- const a3_items = cache[A3.start..A3.end];
- @memcpy(items[A1.start..][0..a3_items.len], a3_items);
- const b3_items = cache[B3.start..B3.end];
- @memcpy(items[A1.start + A1.length() ..][0..b3_items.len], b3_items);
- }
- }
-
- // we merged two levels at the same time, so we're done with this level already
- // (iterator.nextLevel() is called again at the bottom of this outer merge loop)
- _ = iterator.nextLevel();
- } else {
- iterator.begin();
- while (!iterator.finished()) {
- var A = iterator.nextRange();
- var B = iterator.nextRange();
-
- if (lessThan(context, items[B.end - 1], items[A.start])) {
- // the two ranges are in reverse order, so a simple rotation should fix it
- mem.rotate(T, items[A.start..B.end], A.length());
- } else if (lessThan(context, items[B.start], items[A.end - 1])) {
- // these two ranges weren't already in order, so we'll need to merge them!
- const a_items = items[A.start..A.end];
- @memcpy(cache[0..a_items.len], a_items);
- mergeExternal(T, items, A, B, context, lessThan, cache[0..]);
- }
- }
- }
- } else {
- // this is where the in-place merge logic starts!
- // 1. pull out two internal buffers each containing โA unique values
- // 1a. adjust block_size and buffer_size if we couldn't find enough unique values
- // 2. loop over the A and B subarrays within this level of the merge sort
- // 3. break A and B into blocks of size 'block_size'
- // 4. "tag" each of the A blocks with values from the first internal buffer
- // 5. roll the A blocks through the B blocks and drop/rotate them where they belong
- // 6. merge each A block with any B values that follow, using the cache or the second internal buffer
- // 7. sort the second internal buffer if it exists
- // 8. redistribute the two internal buffers back into the items
- var block_size: usize = math.sqrt(iterator.length());
- var buffer_size = iterator.length() / block_size + 1;
-
- // as an optimization, we really only need to pull out the internal buffers once for each level of merges
- // after that we can reuse the same buffers over and over, then redistribute it when we're finished with this level
- var A: Range = undefined;
- var B: Range = undefined;
- var index: usize = 0;
- var last: usize = 0;
- var count: usize = 0;
- var find: usize = 0;
- var start: usize = 0;
- var pull_index: usize = 0;
- var pull = [_]Pull{
- Pull{
- .from = 0,
- .to = 0,
- .count = 0,
- .range = Range.init(0, 0),
- },
- Pull{
- .from = 0,
- .to = 0,
- .count = 0,
- .range = Range.init(0, 0),
- },
- };
-
- var buffer1 = Range.init(0, 0);
- var buffer2 = Range.init(0, 0);
-
- // find two internal buffers of size 'buffer_size' each
- find = buffer_size + buffer_size;
- var find_separately = false;
-
- if (block_size <= cache.len) {
- // if every A block fits into the cache then we won't need the second internal buffer,
- // so we really only need to find 'buffer_size' unique values
- find = buffer_size;
- } else if (find > iterator.length()) {
- // we can't fit both buffers into the same A or B subarray, so find two buffers separately
- find = buffer_size;
- find_separately = true;
- }
-
- // we need to find either a single contiguous space containing 2โA unique values (which will be split up into two buffers of size โA each),
- // or we need to find one buffer of < 2โA unique values, and a second buffer of โA unique values,
- // OR if we couldn't find that many unique values, we need the largest possible buffer we can get
-
- // in the case where it couldn't find a single buffer of at least โA unique values,
- // all of the Merge steps must be replaced by a different merge algorithm (MergeInPlace)
- iterator.begin();
- while (!iterator.finished()) {
- A = iterator.nextRange();
- B = iterator.nextRange();
-
- // just store information about where the values will be pulled from and to,
- // as well as how many values there are, to create the two internal buffers
-
- // check A for the number of unique values we need to fill an internal buffer
- // these values will be pulled out to the start of A
- last = A.start;
- count = 1;
- while (count < find) : ({
- last = index;
- count += 1;
- }) {
- index = findLastForward(T, items, items[last], Range.init(last + 1, A.end), context, lessThan, find - count);
- if (index == A.end) break;
- }
- index = last;
-
- if (count >= buffer_size) {
- // keep track of the range within the items where we'll need to "pull out" these values to create the internal buffer
- pull[pull_index] = Pull{
- .range = Range.init(A.start, B.end),
- .count = count,
- .from = index,
- .to = A.start,
- };
- pull_index = 1;
-
- if (count == buffer_size + buffer_size) {
- // we were able to find a single contiguous section containing 2โA unique values,
- // so this section can be used to contain both of the internal buffers we'll need
- buffer1 = Range.init(A.start, A.start + buffer_size);
- buffer2 = Range.init(A.start + buffer_size, A.start + count);
- break;
- } else if (find == buffer_size + buffer_size) {
- // we found a buffer that contains at least โA unique values, but did not contain the full 2โA unique values,
- // so we still need to find a second separate buffer of at least โA unique values
- buffer1 = Range.init(A.start, A.start + count);
- find = buffer_size;
- } else if (block_size <= cache.len) {
- // we found the first and only internal buffer that we need, so we're done!
- buffer1 = Range.init(A.start, A.start + count);
- break;
- } else if (find_separately) {
- // found one buffer, but now find the other one
- buffer1 = Range.init(A.start, A.start + count);
- find_separately = false;
- } else {
- // we found a second buffer in an 'A' subarray containing โA unique values, so we're done!
- buffer2 = Range.init(A.start, A.start + count);
- break;
- }
- } else if (pull_index == 0 and count > buffer1.length()) {
- // keep track of the largest buffer we were able to find
- buffer1 = Range.init(A.start, A.start + count);
- pull[pull_index] = Pull{
- .range = Range.init(A.start, B.end),
- .count = count,
- .from = index,
- .to = A.start,
- };
- }
-
- // check B for the number of unique values we need to fill an internal buffer
- // these values will be pulled out to the end of B
- last = B.end - 1;
- count = 1;
- while (count < find) : ({
- last = index - 1;
- count += 1;
- }) {
- index = findFirstBackward(T, items, items[last], Range.init(B.start, last), context, lessThan, find - count);
- if (index == B.start) break;
- }
- index = last;
- if (count >= buffer_size) {
- // keep track of the range within the items where we'll need to "pull out" these values to create the internal buffe
- pull[pull_index] = Pull{
- .range = Range.init(A.start, B.end),
- .count = count,
- .from = index,
- .to = B.end,
- };
- pull_index = 1;
-
- if (count == buffer_size + buffer_size) {
- // we were able to find a single contiguous section containing 2โA unique values,
- // so this section can be used to contain both of the internal buffers we'll need
- buffer1 = Range.init(B.end - count, B.end - buffer_size);
- buffer2 = Range.init(B.end - buffer_size, B.end);
- break;
- } else if (find == buffer_size + buffer_size) {
- // we found a buffer that contains at least โA unique values, but did not contain the full 2โA unique values,
- // so we still need to find a second separate buffer of at least โA unique values
- buffer1 = Range.init(B.end - count, B.end);
- find = buffer_size;
- } else if (block_size <= cache.len) {
- // we found the first and only internal buffer that we need, so we're done!
- buffer1 = Range.init(B.end - count, B.end);
- break;
- } else if (find_separately) {
- // found one buffer, but now find the other one
- buffer1 = Range.init(B.end - count, B.end);
- find_separately = false;
- } else {
- // buffer2 will be pulled out from a 'B' subarray, so if the first buffer was pulled out from the corresponding 'A' subarray,
- // we need to adjust the end point for that A subarray so it knows to stop redistributing its values before reaching buffer2
- if (pull[0].range.start == A.start) pull[0].range.end -= pull[1].count;
-
- // we found a second buffer in an 'B' subarray containing โA unique values, so we're done!
- buffer2 = Range.init(B.end - count, B.end);
- break;
- }
- } else if (pull_index == 0 and count > buffer1.length()) {
- // keep track of the largest buffer we were able to find
- buffer1 = Range.init(B.end - count, B.end);
- pull[pull_index] = Pull{
- .range = Range.init(A.start, B.end),
- .count = count,
- .from = index,
- .to = B.end,
- };
- }
- }
-
- // pull out the two ranges so we can use them as internal buffers
- pull_index = 0;
- while (pull_index < 2) : (pull_index += 1) {
- const length = pull[pull_index].count;
-
- if (pull[pull_index].to < pull[pull_index].from) {
- // we're pulling the values out to the left, which means the start of an A subarray
- index = pull[pull_index].from;
- count = 1;
- while (count < length) : (count += 1) {
- index = findFirstBackward(T, items, items[index - 1], Range.init(pull[pull_index].to, pull[pull_index].from - (count - 1)), context, lessThan, length - count);
- const range = Range.init(index + 1, pull[pull_index].from + 1);
- mem.rotate(T, items[range.start..range.end], range.length() - count);
- pull[pull_index].from = index + count;
- }
- } else if (pull[pull_index].to > pull[pull_index].from) {
- // we're pulling values out to the right, which means the end of a B subarray
- index = pull[pull_index].from + 1;
- count = 1;
- while (count < length) : (count += 1) {
- index = findLastForward(T, items, items[index], Range.init(index, pull[pull_index].to), context, lessThan, length - count);
- const range = Range.init(pull[pull_index].from, index - 1);
- mem.rotate(T, items[range.start..range.end], count);
- pull[pull_index].from = index - 1 - count;
- }
- }
- }
-
- // adjust block_size and buffer_size based on the values we were able to pull out
- buffer_size = buffer1.length();
- block_size = iterator.length() / buffer_size + 1;
-
- // the first buffer NEEDS to be large enough to tag each of the evenly sized A blocks,
- // so this was originally here to test the math for adjusting block_size above
- // assert((iterator.length() + 1)/block_size <= buffer_size);
-
- // now that the two internal buffers have been created, it's time to merge each A+B combination at this level of the merge sort!
- iterator.begin();
- while (!iterator.finished()) {
- A = iterator.nextRange();
- B = iterator.nextRange();
-
- // remove any parts of A or B that are being used by the internal buffers
- start = A.start;
- if (start == pull[0].range.start) {
- if (pull[0].from > pull[0].to) {
- A.start += pull[0].count;
-
- // if the internal buffer takes up the entire A or B subarray, then there's nothing to merge
- // this only happens for very small subarrays, like โ4 = 2, 2 * (2 internal buffers) = 4,
- // which also only happens when cache.len is small or 0 since it'd otherwise use MergeExternal
- if (A.length() == 0) continue;
- } else if (pull[0].from < pull[0].to) {
- B.end -= pull[0].count;
- if (B.length() == 0) continue;
- }
- }
- if (start == pull[1].range.start) {
- if (pull[1].from > pull[1].to) {
- A.start += pull[1].count;
- if (A.length() == 0) continue;
- } else if (pull[1].from < pull[1].to) {
- B.end -= pull[1].count;
- if (B.length() == 0) continue;
- }
- }
-
- if (lessThan(context, items[B.end - 1], items[A.start])) {
- // the two ranges are in reverse order, so a simple rotation should fix it
- mem.rotate(T, items[A.start..B.end], A.length());
- } else if (lessThan(context, items[A.end], items[A.end - 1])) {
- // these two ranges weren't already in order, so we'll need to merge them!
- var findA: usize = undefined;
-
- // break the remainder of A into blocks. firstA is the uneven-sized first A block
- var blockA = Range.init(A.start, A.end);
- var firstA = Range.init(A.start, A.start + blockA.length() % block_size);
-
- // swap the first value of each A block with the value in buffer1
- var indexA = buffer1.start;
- index = firstA.end;
- while (index < blockA.end) : ({
- indexA += 1;
- index += block_size;
- }) {
- mem.swap(T, &items[indexA], &items[index]);
- }
-
- // start rolling the A blocks through the B blocks!
- // whenever we leave an A block behind, we'll need to merge the previous A block with any B blocks that follow it, so track that information as well
- var lastA = firstA;
- var lastB = Range.init(0, 0);
- var blockB = Range.init(B.start, B.start + math.min(block_size, B.length()));
- blockA.start += firstA.length();
- indexA = buffer1.start;
-
- // if the first unevenly sized A block fits into the cache, copy it there for when we go to Merge it
- // otherwise, if the second buffer is available, block swap the contents into that
- if (lastA.length() <= cache.len) {
- const last_a_items = items[lastA.start..lastA.end];
- @memcpy(cache[0..last_a_items.len], last_a_items);
- } else if (buffer2.length() > 0) {
- blockSwap(T, items, lastA.start, buffer2.start, lastA.length());
- }
-
- if (blockA.length() > 0) {
- while (true) {
- // if there's a previous B block and the first value of the minimum A block is <= the last value of the previous B block,
- // then drop that minimum A block behind. or if there are no B blocks left then keep dropping the remaining A blocks.
- if ((lastB.length() > 0 and !lessThan(context, items[lastB.end - 1], items[indexA])) or blockB.length() == 0) {
- // figure out where to split the previous B block, and rotate it at the split
- const B_split = binaryFirst(T, items, items[indexA], lastB, context, lessThan);
- const B_remaining = lastB.end - B_split;
-
- // swap the minimum A block to the beginning of the rolling A blocks
- var minA = blockA.start;
- findA = minA + block_size;
- while (findA < blockA.end) : (findA += block_size) {
- if (lessThan(context, items[findA], items[minA])) {
- minA = findA;
- }
- }
- blockSwap(T, items, blockA.start, minA, block_size);
-
- // swap the first item of the previous A block back with its original value, which is stored in buffer1
- mem.swap(T, &items[blockA.start], &items[indexA]);
- indexA += 1;
-
- // locally merge the previous A block with the B values that follow it
- // if lastA fits into the external cache we'll use that (with MergeExternal),
- // or if the second internal buffer exists we'll use that (with MergeInternal),
- // or failing that we'll use a strictly in-place merge algorithm (MergeInPlace)
-
- if (lastA.length() <= cache.len) {
- mergeExternal(T, items, lastA, Range.init(lastA.end, B_split), context, lessThan, cache[0..]);
- } else if (buffer2.length() > 0) {
- mergeInternal(T, items, lastA, Range.init(lastA.end, B_split), context, lessThan, buffer2);
- } else {
- mergeInPlace(T, items, lastA, Range.init(lastA.end, B_split), context, lessThan);
- }
-
- if (buffer2.length() > 0 or block_size <= cache.len) {
- // copy the previous A block into the cache or buffer2, since that's where we need it to be when we go to merge it anyway
- if (block_size <= cache.len) {
- @memcpy(cache[0..block_size], items[blockA.start..][0..block_size]);
- } else {
- blockSwap(T, items, blockA.start, buffer2.start, block_size);
- }
-
- // this is equivalent to rotating, but faster
- // the area normally taken up by the A block is either the contents of buffer2, or data we don't need anymore since we memcopied it
- // either way, we don't need to retain the order of those items, so instead of rotating we can just block swap B to where it belongs
- blockSwap(T, items, B_split, blockA.start + block_size - B_remaining, B_remaining);
- } else {
- // we are unable to use the 'buffer2' trick to speed up the rotation operation since buffer2 doesn't exist, so perform a normal rotation
- mem.rotate(T, items[B_split .. blockA.start + block_size], blockA.start - B_split);
- }
-
- // update the range for the remaining A blocks, and the range remaining from the B block after it was split
- lastA = Range.init(blockA.start - B_remaining, blockA.start - B_remaining + block_size);
- lastB = Range.init(lastA.end, lastA.end + B_remaining);
-
- // if there are no more A blocks remaining, this step is finished!
- blockA.start += block_size;
- if (blockA.length() == 0) break;
- } else if (blockB.length() < block_size) {
- // move the last B block, which is unevenly sized, to before the remaining A blocks, by using a rotation
- // the cache is disabled here since it might contain the contents of the previous A block
- mem.rotate(T, items[blockA.start..blockB.end], blockB.start - blockA.start);
-
- lastB = Range.init(blockA.start, blockA.start + blockB.length());
- blockA.start += blockB.length();
- blockA.end += blockB.length();
- blockB.end = blockB.start;
- } else {
- // roll the leftmost A block to the end by swapping it with the next B block
- blockSwap(T, items, blockA.start, blockB.start, block_size);
- lastB = Range.init(blockA.start, blockA.start + block_size);
-
- blockA.start += block_size;
- blockA.end += block_size;
- blockB.start += block_size;
-
- if (blockB.end > B.end - block_size) {
- blockB.end = B.end;
- } else {
- blockB.end += block_size;
- }
- }
- }
- }
-
- // merge the last A block with the remaining B values
- if (lastA.length() <= cache.len) {
- mergeExternal(T, items, lastA, Range.init(lastA.end, B.end), context, lessThan, cache[0..]);
- } else if (buffer2.length() > 0) {
- mergeInternal(T, items, lastA, Range.init(lastA.end, B.end), context, lessThan, buffer2);
- } else {
- mergeInPlace(T, items, lastA, Range.init(lastA.end, B.end), context, lessThan);
- }
- }
- }
-
- // when we're finished with this merge step we should have the one
- // or two internal buffers left over, where the second buffer is all jumbled up
- // insertion sort the second buffer, then redistribute the buffers
- // back into the items using the opposite process used for creating the buffer
-
- // while an unstable sort like quicksort could be applied here, in benchmarks
- // it was consistently slightly slower than a simple insertion sort,
- // even for tens of millions of items. this may be because insertion
- // sort is quite fast when the data is already somewhat sorted, like it is here
- insertionSort(T, items[buffer2.start..buffer2.end], context, lessThan);
-
- pull_index = 0;
- while (pull_index < 2) : (pull_index += 1) {
- var unique = pull[pull_index].count * 2;
- if (pull[pull_index].from > pull[pull_index].to) {
- // the values were pulled out to the left, so redistribute them back to the right
- var buffer = Range.init(pull[pull_index].range.start, pull[pull_index].range.start + pull[pull_index].count);
- while (buffer.length() > 0) {
- index = findFirstForward(T, items, items[buffer.start], Range.init(buffer.end, pull[pull_index].range.end), context, lessThan, unique);
- const amount = index - buffer.end;
- mem.rotate(T, items[buffer.start..index], buffer.length());
- buffer.start += (amount + 1);
- buffer.end += amount;
- unique -= 2;
- }
- } else if (pull[pull_index].from < pull[pull_index].to) {
- // the values were pulled out to the right, so redistribute them back to the left
- var buffer = Range.init(pull[pull_index].range.end - pull[pull_index].count, pull[pull_index].range.end);
- while (buffer.length() > 0) {
- index = findLastBackward(T, items, items[buffer.end - 1], Range.init(pull[pull_index].range.start, buffer.start), context, lessThan, unique);
- const amount = buffer.start - index;
- mem.rotate(T, items[index..buffer.end], amount);
- buffer.start -= amount;
- buffer.end -= (amount + 1);
- unique -= 2;
- }
- }
- }
+ pub fn swap(ctx: @This(), a: usize, b: usize) void {
+ return mem.swap(T, &ctx.items[a], &ctx.items[b]);
}
-
- // double the size of each A and B subarray that will be merged in the next level
- if (!iterator.nextLevel()) break;
- }
-}
-
-/// TODO currently this just calls `insertionSortContext`. The block sort implementation
-/// in this file needs to be adapted to use the sort context.
-pub fn sortContext(len: usize, context: anytype) void {
- return insertionSortContext(len, context);
-}
-
-// merge operation without a buffer
-fn mergeInPlace(
- comptime T: type,
- items: []T,
- A_arg: Range,
- B_arg: Range,
- context: anytype,
- comptime lessThan: fn (@TypeOf(context), T, T) bool,
-) void {
- if (A_arg.length() == 0 or B_arg.length() == 0) return;
-
- // this just repeatedly binary searches into B and rotates A into position.
- // the paper suggests using the 'rotation-based Hwang and Lin algorithm' here,
- // but I decided to stick with this because it had better situational performance
- //
- // (Hwang and Lin is designed for merging subarrays of very different sizes,
- // but WikiSort almost always uses subarrays that are roughly the same size)
- //
- // normally this is incredibly suboptimal, but this function is only called
- // when none of the A or B blocks in any subarray contained 2โA unique values,
- // which places a hard limit on the number of times this will ACTUALLY need
- // to binary search and rotate.
- //
- // according to my analysis the worst case is โA rotations performed on โA items
- // once the constant factors are removed, which ends up being O(n)
- //
- // again, this is NOT a general-purpose solution โ it only works well in this case!
- // kind of like how the O(n^2) insertion sort is used in some places
-
- var A = A_arg;
- var B = B_arg;
-
- while (true) {
- // find the first place in B where the first item in A needs to be inserted
- const mid = binaryFirst(T, items, items[A.start], B, context, lessThan);
-
- // rotate A into place
- const amount = mid - A.end;
- mem.rotate(T, items[A.start..mid], A.length());
- if (B.end == mid) break;
-
- // calculate the new A and B ranges
- B.start = mid;
- A = Range.init(A.start + amount, B.start);
- A.start = binaryLast(T, items, items[A.start], A, context, lessThan);
- if (A.length() == 0) break;
- }
-}
-
-// merge operation using an internal buffer
-fn mergeInternal(
- comptime T: type,
- items: []T,
- A: Range,
- B: Range,
- context: anytype,
- comptime lessThan: fn (@TypeOf(context), T, T) bool,
- buffer: Range,
-) void {
- // whenever we find a value to add to the final array, swap it with the value that's already in that spot
- // when this algorithm is finished, 'buffer' will contain its original contents, but in a different order
- var A_count: usize = 0;
- var B_count: usize = 0;
- var insert: usize = 0;
-
- if (B.length() > 0 and A.length() > 0) {
- while (true) {
- if (!lessThan(context, items[B.start + B_count], items[buffer.start + A_count])) {
- mem.swap(T, &items[A.start + insert], &items[buffer.start + A_count]);
- A_count += 1;
- insert += 1;
- if (A_count >= A.length()) break;
- } else {
- mem.swap(T, &items[A.start + insert], &items[B.start + B_count]);
- B_count += 1;
- insert += 1;
- if (B_count >= B.length()) break;
- }
- }
- }
-
- // swap the remainder of A into the final array
- blockSwap(T, items, buffer.start + A_count, A.start + insert, A.length() - A_count);
-}
-
-fn blockSwap(comptime T: type, items: []T, start1: usize, start2: usize, block_size: usize) void {
- var index: usize = 0;
- while (index < block_size) : (index += 1) {
- mem.swap(T, &items[start1 + index], &items[start2 + index]);
- }
-}
-
-// combine a linear search with a binary search to reduce the number of comparisons in situations
-// where have some idea as to how many unique values there are and where the next value might be
-fn findFirstForward(
- comptime T: type,
- items: []T,
- value: T,
- range: Range,
- context: anytype,
- comptime lessThan: fn (@TypeOf(context), T, T) bool,
- unique: usize,
-) usize {
- if (range.length() == 0) return range.start;
- const skip = math.max(range.length() / unique, @as(usize, 1));
-
- var index = range.start + skip;
- while (lessThan(context, items[index - 1], value)) : (index += skip) {
- if (index >= range.end - skip) {
- return binaryFirst(T, items, value, Range.init(index, range.end), context, lessThan);
- }
- }
-
- return binaryFirst(T, items, value, Range.init(index - skip, index), context, lessThan);
-}
-
-fn findFirstBackward(
- comptime T: type,
- items: []T,
- value: T,
- range: Range,
- context: anytype,
- comptime lessThan: fn (@TypeOf(context), T, T) bool,
- unique: usize,
-) usize {
- if (range.length() == 0) return range.start;
- const skip = math.max(range.length() / unique, @as(usize, 1));
-
- var index = range.end - skip;
- while (index > range.start and !lessThan(context, items[index - 1], value)) : (index -= skip) {
- if (index < range.start + skip) {
- return binaryFirst(T, items, value, Range.init(range.start, index), context, lessThan);
- }
- }
-
- return binaryFirst(T, items, value, Range.init(index, index + skip), context, lessThan);
-}
-
-fn findLastForward(
- comptime T: type,
- items: []T,
- value: T,
- range: Range,
- context: anytype,
- comptime lessThan: fn (@TypeOf(context), T, T) bool,
- unique: usize,
-) usize {
- if (range.length() == 0) return range.start;
- const skip = math.max(range.length() / unique, @as(usize, 1));
-
- var index = range.start + skip;
- while (!lessThan(context, value, items[index - 1])) : (index += skip) {
- if (index >= range.end - skip) {
- return binaryLast(T, items, value, Range.init(index, range.end), context, lessThan);
- }
- }
-
- return binaryLast(T, items, value, Range.init(index - skip, index), context, lessThan);
-}
-
-fn findLastBackward(
- comptime T: type,
- items: []T,
- value: T,
- range: Range,
- context: anytype,
- comptime lessThan: fn (@TypeOf(context), T, T) bool,
- unique: usize,
-) usize {
- if (range.length() == 0) return range.start;
- const skip = math.max(range.length() / unique, @as(usize, 1));
-
- var index = range.end - skip;
- while (index > range.start and lessThan(context, value, items[index - 1])) : (index -= skip) {
- if (index < range.start + skip) {
- return binaryLast(T, items, value, Range.init(range.start, index), context, lessThan);
- }
- }
-
- return binaryLast(T, items, value, Range.init(index, index + skip), context, lessThan);
+ };
+ heapContext(0, items.len, Context{ .items = items, .sub_ctx = context });
}
-fn binaryFirst(
- comptime T: type,
- items: []T,
- value: T,
- range: Range,
- context: anytype,
- comptime lessThan: fn (@TypeOf(context), T, T) bool,
-) usize {
- var curr = range.start;
- var size = range.length();
- if (range.start >= range.end) return range.end;
- while (size > 0) {
- const offset = size % 2;
-
- size /= 2;
- const mid_item = items[curr + size];
- if (lessThan(context, mid_item, value)) {
- curr += size + offset;
- }
+/// Unstable in-place sort. O(n*log(n)) best case, worst case and average case.
+/// O(1) memory (no allocator required).
+/// Sorts in ascending order with respect to the given `lessThan` function.
+pub fn heapContext(a: usize, b: usize, context: anytype) void {
+ // build the heap in linear time.
+ var i = b / 2;
+ while (i > a) : (i -= 1) {
+ siftDown(i - 1, b, context);
}
- return curr;
-}
-
-fn binaryLast(
- comptime T: type,
- items: []T,
- value: T,
- range: Range,
- context: anytype,
- comptime lessThan: fn (@TypeOf(context), T, T) bool,
-) usize {
- var curr = range.start;
- var size = range.length();
- if (range.start >= range.end) return range.end;
- while (size > 0) {
- const offset = size % 2;
- size /= 2;
- const mid_item = items[curr + size];
- if (!lessThan(context, value, mid_item)) {
- curr += size + offset;
- }
+ // pop maximal elements from the heap.
+ i = b;
+ while (i > a) : (i -= 1) {
+ context.swap(a, i - 1);
+ siftDown(a, i - 1, context);
}
- return curr;
}
-fn mergeInto(
- comptime T: type,
- from: []T,
- A: Range,
- B: Range,
- context: anytype,
- comptime lessThan: fn (@TypeOf(context), T, T) bool,
- into: []T,
-) void {
- var A_index: usize = A.start;
- var B_index: usize = B.start;
- const A_last = A.end;
- const B_last = B.end;
- var insert_index: usize = 0;
-
+fn siftDown(root: usize, n: usize, context: anytype) void {
+ var node = root;
while (true) {
- if (!lessThan(context, from[B_index], from[A_index])) {
- into[insert_index] = from[A_index];
- A_index += 1;
- insert_index += 1;
- if (A_index == A_last) {
- // copy the remainder of B into the final array
- const from_b = from[B_index..B_last];
- @memcpy(into[insert_index..][0..from_b.len], from_b);
- break;
- }
- } else {
- into[insert_index] = from[B_index];
- B_index += 1;
- insert_index += 1;
- if (B_index == B_last) {
- // copy the remainder of A into the final array
- const from_a = from[A_index..A_last];
- @memcpy(into[insert_index..][0..from_a.len], from_a);
- break;
- }
- }
- }
-}
-
-fn mergeExternal(
- comptime T: type,
- items: []T,
- A: Range,
- B: Range,
- context: anytype,
- comptime lessThan: fn (@TypeOf(context), T, T) bool,
- cache: []T,
-) void {
- // A fits into the cache, so use that instead of the internal buffer
- var A_index: usize = 0;
- var B_index: usize = B.start;
- var insert_index: usize = A.start;
- const A_last = A.length();
- const B_last = B.end;
+ var child = 2 * node + 1;
+ if (child >= n) break;
- if (B.length() > 0 and A.length() > 0) {
- while (true) {
- if (!lessThan(context, items[B_index], cache[A_index])) {
- items[insert_index] = cache[A_index];
- A_index += 1;
- insert_index += 1;
- if (A_index == A_last) break;
- } else {
- items[insert_index] = items[B_index];
- B_index += 1;
- insert_index += 1;
- if (B_index == B_last) break;
- }
+ // choose the greater child.
+ if (child + 1 < n and context.lessThan(child, child + 1)) {
+ child += 1;
}
- }
- // copy the remainder of A into the final array
- const cache_a = cache[A_index..A_last];
- @memcpy(items[insert_index..][0..cache_a.len], cache_a);
-}
+ // stop if the invariant holds at `node`.
+ if (!context.lessThan(node, child)) break;
-fn swap(
- comptime T: type,
- items: []T,
- context: anytype,
- comptime lessThan: fn (@TypeOf(context), lhs: T, rhs: T) bool,
- order: *[8]u8,
- x: usize,
- y: usize,
-) void {
- if (lessThan(context, items[y], items[x]) or ((order.*)[x] > (order.*)[y] and !lessThan(context, items[x], items[y]))) {
- mem.swap(T, &items[x], &items[y]);
- mem.swap(u8, &(order.*)[x], &(order.*)[y]);
+ // swap `node` with the greater child,
+ // move one step down, and continue sifting.
+ context.swap(node, child);
+ node = child;
}
}
-/// Use to generate a comparator function for a given type. e.g. `sort(u8, slice, {}, comptime asc(u8))`.
+/// Use to generate a comparator function for a given type. e.g. `sort(u8, slice, {}, asc(u8))`.
pub fn asc(comptime T: type) fn (void, T, T) bool {
- const impl = struct {
- fn inner(context: void, a: T, b: T) bool {
- _ = context;
+ return struct {
+ pub fn inner(_: void, a: T, b: T) bool {
return a < b;
}
- };
-
- return impl.inner;
+ }.inner;
}
-/// Use to generate a comparator function for a given type. e.g. `sort(u8, slice, {}, comptime desc(u8))`.
+/// Use to generate a comparator function for a given type. e.g. `sort(u8, slice, {}, desc(u8))`.
pub fn desc(comptime T: type) fn (void, T, T) bool {
- const impl = struct {
- fn inner(context: void, a: T, b: T) bool {
- _ = context;
+ return struct {
+ pub fn inner(_: void, a: T, b: T) bool {
return a > b;
}
- };
-
- return impl.inner;
+ }.inner;
}
+const asc_u8 = asc(u8);
+const asc_i32 = asc(i32);
+const desc_u8 = desc(u8);
+const desc_i32 = desc(i32);
+
+const sort_funcs = &[_]fn (comptime type, anytype, anytype, comptime anytype) void{
+ block,
+ pdq,
+ insertion,
+ heap,
+};
+
+const IdAndValue = struct {
+ id: usize,
+ value: i32,
+
+ fn lessThan(context: void, a: IdAndValue, b: IdAndValue) bool {
+ _ = context;
+ return a.value < b.value;
+ }
+};
+
test "stable sort" {
- try testStableSort();
- comptime try testStableSort();
-}
-fn testStableSort() !void {
- var expected = [_]IdAndValue{
+ const expected = [_]IdAndValue{
IdAndValue{ .id = 0, .value = 0 },
IdAndValue{ .id = 1, .value = 0 },
IdAndValue{ .id = 2, .value = 0 },
@@ -1249,6 +160,7 @@ fn testStableSort() !void {
IdAndValue{ .id = 1, .value = 2 },
IdAndValue{ .id = 2, .value = 2 },
};
+
var cases = [_][9]IdAndValue{
[_]IdAndValue{
IdAndValue{ .id = 0, .value = 0 },
@@ -1273,26 +185,15 @@ fn testStableSort() !void {
IdAndValue{ .id = 2, .value = 0 },
},
};
+
for (&cases) |*case| {
- insertionSort(IdAndValue, (case.*)[0..], {}, cmpByValue);
+ block(IdAndValue, (case.*)[0..], {}, IdAndValue.lessThan);
for (case.*, 0..) |item, i| {
try testing.expect(item.id == expected[i].id);
try testing.expect(item.value == expected[i].value);
}
}
}
-const IdAndValue = struct {
- id: usize,
- value: i32,
-};
-fn cmpByValue(context: void, a: IdAndValue, b: IdAndValue) bool {
- return asc_i32(context, a.value, b.value);
-}
-
-const asc_u8 = asc(u8);
-const asc_i32 = asc(i32);
-const desc_u8 = desc(u8);
-const desc_i32 = desc(i32);
test "sort" {
const u8cases = [_][]const []const u8{
@@ -1322,14 +223,6 @@ test "sort" {
},
};
- for (u8cases) |case| {
- var buf: [8]u8 = undefined;
- const slice = buf[0..case[0].len];
- @memcpy(slice, case[0]);
- sort(u8, slice, {}, asc_u8);
- try testing.expect(mem.eql(u8, slice, case[1]));
- }
-
const i32cases = [_][]const []const i32{
&[_][]const i32{
&[_]i32{},
@@ -1357,12 +250,22 @@ test "sort" {
},
};
- for (i32cases) |case| {
- var buf: [8]i32 = undefined;
- const slice = buf[0..case[0].len];
- @memcpy(slice, case[0]);
- sort(i32, slice, {}, asc_i32);
- try testing.expect(mem.eql(i32, slice, case[1]));
+ inline for (sort_funcs) |sortFn| {
+ for (u8cases) |case| {
+ var buf: [8]u8 = undefined;
+ const slice = buf[0..case[0].len];
+ @memcpy(slice, case[0]);
+ sortFn(u8, slice, {}, asc_u8);
+ try testing.expect(mem.eql(u8, slice, case[1]));
+ }
+
+ for (i32cases) |case| {
+ var buf: [8]i32 = undefined;
+ const slice = buf[0..case[0].len];
+ @memcpy(slice, case[0]);
+ sortFn(i32, slice, {}, asc_i32);
+ try testing.expect(mem.eql(i32, slice, case[1]));
+ }
}
}
@@ -1394,53 +297,139 @@ test "sort descending" {
},
};
- for (rev_cases) |case| {
- var buf: [8]i32 = undefined;
- const slice = buf[0..case[0].len];
- @memcpy(slice, case[0]);
- sort(i32, slice, {}, desc_i32);
- try testing.expect(mem.eql(i32, slice, case[1]));
+ inline for (sort_funcs) |sortFn| {
+ for (rev_cases) |case| {
+ var buf: [8]i32 = undefined;
+ const slice = buf[0..case[0].len];
+ @memcpy(slice, case[0]);
+ sortFn(i32, slice, {}, desc_i32);
+ try testing.expect(mem.eql(i32, slice, case[1]));
+ }
}
}
-test "another sort case" {
- var arr = [_]i32{ 5, 3, 1, 2, 4 };
- sort(i32, arr[0..], {}, asc_i32);
-
- try testing.expect(mem.eql(i32, &arr, &[_]i32{ 1, 2, 3, 4, 5 }));
-}
-
test "sort fuzz testing" {
var prng = std.rand.DefaultPrng.init(0x12345678);
const random = prng.random();
const test_case_count = 10;
- var i: usize = 0;
- while (i < test_case_count) : (i += 1) {
- try fuzzTest(random);
+
+ inline for (sort_funcs) |sortFn| {
+ var i: usize = 0;
+ while (i < test_case_count) : (i += 1) {
+ const array_size = random.intRangeLessThan(usize, 0, 1000);
+ var array = try testing.allocator.alloc(i32, array_size);
+ defer testing.allocator.free(array);
+ // populate with random data
+ for (array) |*item| {
+ item.* = random.intRangeLessThan(i32, 0, 100);
+ }
+ sortFn(i32, array, {}, asc_i32);
+ try testing.expect(isSorted(i32, array, {}, asc_i32));
+ }
}
}
-var fixed_buffer_mem: [100 * 1024]u8 = undefined;
+pub fn binarySearch(
+ comptime T: type,
+ key: anytype,
+ items: []const T,
+ context: anytype,
+ comptime compareFn: fn (context: @TypeOf(context), key: @TypeOf(key), mid_item: T) math.Order,
+) ?usize {
+ var left: usize = 0;
+ var right: usize = items.len;
-fn fuzzTest(rng: std.rand.Random) !void {
- const array_size = rng.intRangeLessThan(usize, 0, 1000);
- var array = try testing.allocator.alloc(IdAndValue, array_size);
- defer testing.allocator.free(array);
- // populate with random data
- for (array, 0..) |*item, index| {
- item.id = index;
- item.value = rng.intRangeLessThan(i32, 0, 100);
+ while (left < right) {
+ // Avoid overflowing in the midpoint calculation
+ const mid = left + (right - left) / 2;
+ // Compare the key with the midpoint element
+ switch (compareFn(context, key, items[mid])) {
+ .eq => return mid,
+ .gt => left = mid + 1,
+ .lt => right = mid,
+ }
}
- sort(IdAndValue, array, {}, cmpByValue);
- var index: usize = 1;
- while (index < array.len) : (index += 1) {
- if (array[index].value == array[index - 1].value) {
- try testing.expect(array[index].id > array[index - 1].id);
- } else {
- try testing.expect(array[index].value > array[index - 1].value);
+ return null;
+}
+
+test "binarySearch" {
+ const S = struct {
+ fn order_u32(context: void, lhs: u32, rhs: u32) math.Order {
+ _ = context;
+ return math.order(lhs, rhs);
}
- }
+ fn order_i32(context: void, lhs: i32, rhs: i32) math.Order {
+ _ = context;
+ return math.order(lhs, rhs);
+ }
+ };
+ try testing.expectEqual(
+ @as(?usize, null),
+ binarySearch(u32, @as(u32, 1), &[_]u32{}, {}, S.order_u32),
+ );
+ try testing.expectEqual(
+ @as(?usize, 0),
+ binarySearch(u32, @as(u32, 1), &[_]u32{1}, {}, S.order_u32),
+ );
+ try testing.expectEqual(
+ @as(?usize, null),
+ binarySearch(u32, @as(u32, 1), &[_]u32{0}, {}, S.order_u32),
+ );
+ try testing.expectEqual(
+ @as(?usize, null),
+ binarySearch(u32, @as(u32, 0), &[_]u32{1}, {}, S.order_u32),
+ );
+ try testing.expectEqual(
+ @as(?usize, 4),
+ binarySearch(u32, @as(u32, 5), &[_]u32{ 1, 2, 3, 4, 5 }, {}, S.order_u32),
+ );
+ try testing.expectEqual(
+ @as(?usize, 0),
+ binarySearch(u32, @as(u32, 2), &[_]u32{ 2, 4, 8, 16, 32, 64 }, {}, S.order_u32),
+ );
+ try testing.expectEqual(
+ @as(?usize, 1),
+ binarySearch(i32, @as(i32, -4), &[_]i32{ -7, -4, 0, 9, 10 }, {}, S.order_i32),
+ );
+ try testing.expectEqual(
+ @as(?usize, 3),
+ binarySearch(i32, @as(i32, 98), &[_]i32{ -100, -25, 2, 98, 99, 100 }, {}, S.order_i32),
+ );
+ const R = struct {
+ b: i32,
+ e: i32,
+
+ fn r(b: i32, e: i32) @This() {
+ return @This(){ .b = b, .e = e };
+ }
+
+ fn order(context: void, key: i32, mid_item: @This()) math.Order {
+ _ = context;
+
+ if (key < mid_item.b) {
+ return .lt;
+ }
+
+ if (key > mid_item.e) {
+ return .gt;
+ }
+
+ return .eq;
+ }
+ };
+ try testing.expectEqual(
+ @as(?usize, null),
+ binarySearch(R, @as(i32, -45), &[_]R{ R.r(-100, -50), R.r(-40, -20), R.r(-10, 20), R.r(30, 40) }, {}, R.order),
+ );
+ try testing.expectEqual(
+ @as(?usize, 2),
+ binarySearch(R, @as(i32, 10), &[_]R{ R.r(-100, -50), R.r(-40, -20), R.r(-10, 20), R.r(30, 40) }, {}, R.order),
+ );
+ try testing.expectEqual(
+ @as(?usize, 1),
+ binarySearch(R, @as(i32, -20), &[_]R{ R.r(-100, -50), R.r(-40, -20), R.r(-10, 20), R.r(30, 40) }, {}, R.order),
+ );
}
pub fn argMin(
src/arch/x86_64/CodeGen.zig
@@ -2176,7 +2176,7 @@ fn computeFrameLayout(self: *Self) !FrameLayout {
}
};
const sort_context = SortContext{ .frame_align = frame_align };
- std.sort.sort(FrameIndex, stack_frame_order, sort_context, SortContext.lessThan);
+ mem.sort(FrameIndex, stack_frame_order, sort_context, SortContext.lessThan);
}
const call_frame_align = frame_align[@enumToInt(FrameIndex.call_frame)];
src/arch/x86_64/Encoding.zig
@@ -770,7 +770,7 @@ const mnemonic_to_encodings_map = init: {
@setEvalBranchQuota(30_000);
const encodings = @import("encodings.zig");
var entries = encodings.table;
- std.sort.sort(encodings.Entry, &entries, {}, struct {
+ std.mem.sort(encodings.Entry, &entries, {}, struct {
fn lessThan(_: void, lhs: encodings.Entry, rhs: encodings.Entry) bool {
return @enumToInt(lhs[0]) < @enumToInt(rhs[0]);
}
src/codegen/c/type.zig
@@ -1292,7 +1292,7 @@ pub const CType = extern union {
fn sortFields(self: *@This(), fields_len: usize) []Payload.Fields.Field {
const Field = Payload.Fields.Field;
const slice = self.storage.anon.fields[0..fields_len];
- std.sort.sort(Field, slice, {}, struct {
+ mem.sort(Field, slice, {}, struct {
fn before(_: void, lhs: Field, rhs: Field) bool {
return lhs.alignas.@"align" > rhs.alignas.@"align";
}
src/link/MachO/dyld_info/bind.zig
@@ -47,7 +47,7 @@ pub fn Bind(comptime Ctx: type, comptime Target: type) type {
const writer = self.buffer.writer(gpa);
- std.sort.sort(Entry, self.entries.items, ctx, Entry.lessThan);
+ std.mem.sort(Entry, self.entries.items, ctx, Entry.lessThan);
var start: usize = 0;
var seg_id: ?u8 = null;
src/link/MachO/dyld_info/Rebase.zig
@@ -39,7 +39,7 @@ pub fn finalize(rebase: *Rebase, gpa: Allocator) !void {
const writer = rebase.buffer.writer(gpa);
- std.sort.sort(Entry, rebase.entries.items, {}, Entry.lessThan);
+ std.mem.sort(Entry, rebase.entries.items, {}, Entry.lessThan);
try setTypePointer(writer);
src/link/MachO/Object.zig
@@ -209,7 +209,7 @@ pub fn parse(self: *Object, allocator: Allocator, cpu_arch: std.Target.Cpu.Arch)
// afterwards by address in each group. Normally, dysymtab should
// be enough to guarantee the sort, but turns out not every compiler
// is kind enough to specify the symbols in the correct order.
- sort.sort(SymbolAtIndex, sorted_all_syms.items, self, SymbolAtIndex.lessThan);
+ mem.sort(SymbolAtIndex, sorted_all_syms.items, self, SymbolAtIndex.lessThan);
var prev_sect_id: u8 = 0;
var section_index_lookup: ?Entry = null;
@@ -462,7 +462,7 @@ pub fn splitRegularSections(self: *Object, zld: *Zld, object_id: u32) !void {
sorted_sections[id] = .{ .header = sect, .id = @intCast(u8, id) };
}
- std.sort.sort(SortedSection, sorted_sections, {}, sectionLessThanByAddress);
+ mem.sort(SortedSection, sorted_sections, {}, sectionLessThanByAddress);
var sect_sym_index: u32 = 0;
for (sorted_sections) |section| {
@@ -663,7 +663,7 @@ fn parseRelocs(self: *Object, gpa: Allocator, sect_id: u8) !void {
if (self.getSourceRelocs(section)) |relocs| {
try self.relocations.ensureUnusedCapacity(gpa, relocs.len);
self.relocations.appendUnalignedSliceAssumeCapacity(relocs);
- std.sort.sort(macho.relocation_info, self.relocations.items[start..], {}, relocGreaterThan);
+ mem.sort(macho.relocation_info, self.relocations.items[start..], {}, relocGreaterThan);
}
self.section_relocs_lookup.items[sect_id] = start;
}
@@ -901,7 +901,7 @@ pub fn parseDataInCode(self: *Object, gpa: Allocator) !void {
const dice = @ptrCast([*]align(1) const macho.data_in_code_entry, self.contents.ptr + cmd.dataoff)[0..ndice];
try self.data_in_code.ensureTotalCapacityPrecise(gpa, dice.len);
self.data_in_code.appendUnalignedSliceAssumeCapacity(dice);
- std.sort.sort(macho.data_in_code_entry, self.data_in_code.items, {}, diceLessThan);
+ mem.sort(macho.data_in_code_entry, self.data_in_code.items, {}, diceLessThan);
}
fn diceLessThan(ctx: void, lhs: macho.data_in_code_entry, rhs: macho.data_in_code_entry) bool {
src/link/MachO/UnwindInfo.zig
@@ -411,7 +411,7 @@ pub fn collect(info: *UnwindInfo, zld: *Zld) !void {
}
var slice = common_encodings_counts.values();
- std.sort.sort(CommonEncWithCount, slice, {}, CommonEncWithCount.greaterThan);
+ mem.sort(CommonEncWithCount, slice, {}, CommonEncWithCount.greaterThan);
var i: u7 = 0;
while (i < slice.len) : (i += 1) {
src/link/MachO/zld.zig
@@ -1441,7 +1441,7 @@ pub const Zld = struct {
}
}
- std.sort.sort(Section, sections.items, {}, SortSection.lessThan);
+ mem.sort(Section, sections.items, {}, SortSection.lessThan);
self.sections.shrinkRetainingCapacity(0);
for (sections.items) |out| {
@@ -2237,7 +2237,7 @@ pub const Zld = struct {
}
}
- std.sort.sort(u64, addresses.items, {}, asc_u64);
+ mem.sort(u64, addresses.items, {}, asc_u64);
var offsets = std.ArrayList(u32).init(gpa);
defer offsets.deinit();
src/link/Coff.zig
@@ -1837,7 +1837,7 @@ fn writeBaseRelocations(self: *Coff) !void {
pages.appendAssumeCapacity(page.*);
}
}
- std.sort.sort(u32, pages.items, {}, std.sort.asc(u32));
+ mem.sort(u32, pages.items, {}, std.sort.asc(u32));
var buffer = std.ArrayList(u8).init(gpa);
defer buffer.deinit();
src/link/Wasm.zig
@@ -2143,7 +2143,7 @@ fn sortDataSegments(wasm: *Wasm) !void {
}
};
- std.sort.sort([]const u8, keys, {}, SortContext.sort);
+ mem.sort([]const u8, keys, {}, SortContext.sort);
for (keys) |key| {
const segment_index = wasm.data_segments.get(key).?;
new_mapping.putAssumeCapacity(key, segment_index);
@@ -2187,7 +2187,7 @@ fn setupInitFunctions(wasm: *Wasm) !void {
}
// sort the initfunctions based on their priority
- std.sort.sort(InitFuncLoc, wasm.init_funcs.items, {}, InitFuncLoc.lessThan);
+ mem.sort(InitFuncLoc, wasm.init_funcs.items, {}, InitFuncLoc.lessThan);
}
/// Generates an atom containing the global error set' size.
@@ -3687,7 +3687,7 @@ fn writeToFile(
}
}.sort;
- std.sort.sort(*Atom, sorted_atoms.items, wasm, atom_sort_fn);
+ mem.sort(*Atom, sorted_atoms.items, wasm, atom_sort_fn);
for (sorted_atoms.items) |sorted_atom| {
try leb.writeULEB128(binary_writer, sorted_atom.size);
@@ -4050,8 +4050,8 @@ fn emitNameSection(wasm: *Wasm, binary_bytes: *std.ArrayList(u8), arena: std.mem
data_segment_index += 1;
}
- std.sort.sort(Name, funcs.values(), {}, Name.lessThan);
- std.sort.sort(Name, globals.items, {}, Name.lessThan);
+ mem.sort(Name, funcs.values(), {}, Name.lessThan);
+ mem.sort(Name, globals.items, {}, Name.lessThan);
const header_offset = try reserveCustomSectionHeader(binary_bytes);
const writer = binary_bytes.writer();
src/Compilation.zig
@@ -672,7 +672,7 @@ fn addPackageTableToCacheHash(
}
}
// Sort the slice by package name
- std.sort.sort(Package.Table.KV, packages, {}, struct {
+ mem.sort(Package.Table.KV, packages, {}, struct {
fn lessThan(_: void, lhs: Package.Table.KV, rhs: Package.Table.KV) bool {
return std.mem.lessThan(u8, lhs.key, rhs.key);
}
src/objcopy.zig
@@ -402,7 +402,7 @@ const BinaryElfOutput = struct {
}
}
- std.sort.sort(*BinaryElfSegment, self.segments.items, {}, segmentSortCompare);
+ mem.sort(*BinaryElfSegment, self.segments.items, {}, segmentSortCompare);
for (self.segments.items, 0..) |firstSegment, i| {
if (firstSegment.firstSection) |firstSection| {
@@ -427,7 +427,7 @@ const BinaryElfOutput = struct {
}
}
- std.sort.sort(*BinaryElfSection, self.sections.items, {}, sectionSortCompare);
+ mem.sort(*BinaryElfSection, self.sections.items, {}, sectionSortCompare);
return self;
}
src/Package.zig
@@ -672,7 +672,7 @@ fn computePackageHash(
}
}
- std.sort.sort(*HashedFile, all_files.items, {}, HashedFile.lessThan);
+ mem.sort(*HashedFile, all_files.items, {}, HashedFile.lessThan);
var hasher = Manifest.Hash.init(.{});
var any_failures = false;
src/RangeSet.zig
@@ -60,7 +60,7 @@ pub fn spans(self: *RangeSet, first: Value, last: Value, ty: Type) !bool {
if (self.ranges.items.len == 0)
return false;
- std.sort.sort(Range, self.ranges.items, LessThanContext{
+ std.mem.sort(Range, self.ranges.items, LessThanContext{
.ty = ty,
.module = self.module,
}, lessThan);
src/Sema.zig
@@ -30979,7 +30979,7 @@ fn resolveStructLayout(sema: *Sema, ty: Type) CompileError!void {
ctx.struct_obj.fields.values()[b].ty.abiAlignment(target);
}
};
- std.sort.sort(u32, optimized_order, AlignSortContext{
+ mem.sort(u32, optimized_order, AlignSortContext{
.struct_obj = struct_obj,
.sema = sema,
}, AlignSortContext.lessThan);
test/src/Cases.zig
@@ -607,7 +607,7 @@ fn sortTestFilenames(filenames: [][]const u8) void {
};
}
};
- std.sort.sort([]const u8, filenames, Context{}, Context.lessThan);
+ std.mem.sort([]const u8, filenames, Context{}, Context.lessThan);
}
/// Iterates a set of filenames extracting batches that are either incremental
tools/gen_stubs.zig
@@ -437,7 +437,7 @@ fn parseElf(parse: Parse, comptime is_64: bool, comptime endian: builtin.Endian)
const dynstr = elf_bytes[dynstr_offset..];
// Sort the list by address, ascending.
- std.sort.sort(Sym, @alignCast(8, dyn_syms), {}, S.symbolAddrLessThan);
+ mem.sort(Sym, @alignCast(8, dyn_syms), {}, S.symbolAddrLessThan);
for (dyn_syms) |sym| {
const this_section = s(sym.st_shndx);
tools/generate_JSONTestSuite.zig
@@ -23,7 +23,7 @@ pub fn main() !void {
while (try it.next()) |entry| {
try names.append(try allocator.dupe(u8, entry.name));
}
- std.sort.sort([]const u8, names.items, {}, (struct {
+ std.mem.sort([]const u8, names.items, {}, (struct {
fn lessThan(_: void, a: []const u8, b: []const u8) bool {
return std.mem.lessThan(u8, a, b);
}
tools/process_headers.zig
@@ -460,7 +460,7 @@ pub fn main() !void {
try contents_list.append(contents);
}
}
- std.sort.sort(*Contents, contents_list.items, {}, Contents.hitCountLessThan);
+ std.mem.sort(*Contents, contents_list.items, {}, Contents.hitCountLessThan);
const best_contents = contents_list.popOrNull().?;
if (best_contents.hit_count > 1) {
// worth it to make it generic
tools/update-linux-headers.zig
@@ -260,7 +260,7 @@ pub fn main() !void {
try contents_list.append(contents);
}
}
- std.sort.sort(*Contents, contents_list.items, {}, Contents.hitCountLessThan);
+ std.mem.sort(*Contents, contents_list.items, {}, Contents.hitCountLessThan);
const best_contents = contents_list.popOrNull().?;
if (best_contents.hit_count > 1) {
// worth it to make it generic
tools/update_clang_options.zig
@@ -646,7 +646,7 @@ pub fn main() anyerror!void {
}
// Some options have multiple matches. As an example, "-Wl,foo" matches both
// "W" and "Wl,". So we sort this list in order of descending priority.
- std.sort.sort(*json.ObjectMap, all_objects.items, {}, objectLessThan);
+ std.mem.sort(*json.ObjectMap, all_objects.items, {}, objectLessThan);
var buffered_stdout = std.io.bufferedWriter(std.io.getStdOut().writer());
const stdout = buffered_stdout.writer();
tools/update_cpu_features.zig
@@ -1187,8 +1187,8 @@ fn processOneTarget(job: Job) anyerror!void {
for (llvm_target.extra_cpus) |extra_cpu| {
try all_cpus.append(extra_cpu);
}
- std.sort.sort(Feature, all_features.items, {}, featureLessThan);
- std.sort.sort(Cpu, all_cpus.items, {}, cpuLessThan);
+ mem.sort(Feature, all_features.items, {}, featureLessThan);
+ mem.sort(Cpu, all_cpus.items, {}, cpuLessThan);
const target_sub_path = try fs.path.join(arena, &.{ "lib", "std", "target" });
var target_dir = try job.zig_src_dir.makeOpenPath(target_sub_path, .{});
@@ -1283,7 +1283,7 @@ fn processOneTarget(job: Job) anyerror!void {
try dependencies.append(key.*);
}
}
- std.sort.sort([]const u8, dependencies.items, {}, asciiLessThan);
+ mem.sort([]const u8, dependencies.items, {}, asciiLessThan);
if (dependencies.items.len == 0) {
try w.writeAll(
@@ -1328,7 +1328,7 @@ fn processOneTarget(job: Job) anyerror!void {
try cpu_features.append(key.*);
}
}
- std.sort.sort([]const u8, cpu_features.items, {}, asciiLessThan);
+ mem.sort([]const u8, cpu_features.items, {}, asciiLessThan);
if (cpu.llvm_name) |llvm_name| {
try w.print(
\\ pub const {} = CpuModel{{
tools/update_spirv_features.zig
@@ -303,7 +303,7 @@ fn gatherVersions(allocator: Allocator, registry: g.CoreRegistry) ![]const Versi
}
}
- std.sort.sort(Version, versions.items, {}, Version.lessThan);
+ std.mem.sort(Version, versions.items, {}, Version.lessThan);
return versions.items;
}