Commit 350b2adacd

Tadeo Kondrak <me@tadeo.ca>
2020-04-29 03:10:09
std.meta.IntType -> std.meta.Int
1 parent eb183ad
lib/std/debug/leb128.zig
@@ -2,7 +2,7 @@ const std = @import("std");
 const testing = std.testing;
 
 pub fn readULEB128(comptime T: type, in_stream: var) !T {
-    const ShiftT = std.meta.IntType(false, std.math.log2(T.bit_count));
+    const ShiftT = std.meta.Int(false, std.math.log2(T.bit_count));
 
     var result: T = 0;
     var shift: usize = 0;
@@ -27,7 +27,7 @@ pub fn readULEB128(comptime T: type, in_stream: var) !T {
 }
 
 pub fn readULEB128Mem(comptime T: type, ptr: *[*]const u8) !T {
-    const ShiftT = std.meta.IntType(false, std.math.log2(T.bit_count));
+    const ShiftT = std.meta.Int(false, std.math.log2(T.bit_count));
 
     var result: T = 0;
     var shift: usize = 0;
@@ -55,8 +55,8 @@ pub fn readULEB128Mem(comptime T: type, ptr: *[*]const u8) !T {
 }
 
 pub fn readILEB128(comptime T: type, in_stream: var) !T {
-    const UT = std.meta.IntType(false, T.bit_count);
-    const ShiftT = std.meta.IntType(false, std.math.log2(T.bit_count));
+    const UT = std.meta.Int(false, T.bit_count);
+    const ShiftT = std.meta.Int(false, std.math.log2(T.bit_count));
 
     var result: UT = 0;
     var shift: usize = 0;
@@ -87,8 +87,8 @@ pub fn readILEB128(comptime T: type, in_stream: var) !T {
 }
 
 pub fn readILEB128Mem(comptime T: type, ptr: *[*]const u8) !T {
-    const UT = std.meta.IntType(false, T.bit_count);
-    const ShiftT = std.meta.IntType(false, std.math.log2(T.bit_count));
+    const UT = std.meta.Int(false, T.bit_count);
+    const ShiftT = std.meta.Int(false, std.math.log2(T.bit_count));
 
     var result: UT = 0;
     var shift: usize = 0;
lib/std/fmt/parse_float.zig
@@ -367,7 +367,7 @@ test "fmt.parseFloat" {
     const epsilon = 1e-7;
 
     inline for ([_]type{ f16, f32, f64, f128 }) |T| {
-        const Z = std.meta.IntType(false, T.bit_count);
+        const Z = std.meta.Int(false, T.bit_count);
 
         testing.expectError(error.InvalidCharacter, parseFloat(T, ""));
         testing.expectError(error.InvalidCharacter, parseFloat(T, "   1"));
lib/std/hash/auto_hash.zig
@@ -93,7 +93,7 @@ pub fn hash(hasher: var, key: var, comptime strat: HashStrategy) void {
         // TODO Check if the situation is better after #561 is resolved.
         .Int => @call(.{ .modifier = .always_inline }, hasher.update, .{std.mem.asBytes(&key)}),
 
-        .Float => |info| hash(hasher, @bitCast(std.meta.IntType(false, info.bits), key), strat),
+        .Float => |info| hash(hasher, @bitCast(std.meta.Int(false, info.bits), key), strat),
 
         .Bool => hash(hasher, @boolToInt(key), strat),
         .Enum => hash(hasher, @enumToInt(key), strat),
lib/std/hash/wyhash.zig
@@ -10,7 +10,7 @@ const primes = [_]u64{
 };
 
 fn read_bytes(comptime bytes: u8, data: []const u8) u64 {
-    const T = std.meta.IntType(false, 8 * bytes);
+    const T = std.meta.Int(false, 8 * bytes);
     return mem.readIntLittle(T, data[0..bytes]);
 }
 
lib/std/io/bit_in_stream.zig
@@ -53,7 +53,7 @@ pub fn BitInStream(endian: builtin.Endian, comptime InStreamType: type) type {
                 assert(u_bit_count >= bits);
                 break :bc if (u_bit_count <= u8_bit_count) u8_bit_count else u_bit_count;
             };
-            const Buf = std.meta.IntType(false, buf_bit_count);
+            const Buf = std.meta.Int(false, buf_bit_count);
             const BufShift = math.Log2Int(Buf);
 
             out_bits.* = @as(usize, 0);
lib/std/io/bit_out_stream.zig
@@ -45,7 +45,7 @@ pub fn BitOutStream(endian: builtin.Endian, comptime OutStreamType: type) type {
                 assert(u_bit_count >= bits);
                 break :bc if (u_bit_count <= u8_bit_count) u8_bit_count else u_bit_count;
             };
-            const Buf = std.meta.IntType(false, buf_bit_count);
+            const Buf = std.meta.Int(false, buf_bit_count);
             const BufShift = math.Log2Int(Buf);
 
             const buf_value = @intCast(Buf, value);
lib/std/io/serialization.zig
@@ -51,7 +51,7 @@ pub fn Deserializer(comptime endian: builtin.Endian, comptime packing: Packing,
             const u8_bit_count = 8;
             const t_bit_count = comptime meta.bitCount(T);
 
-            const U = std.meta.IntType(false, t_bit_count);
+            const U = std.meta.Int(false, t_bit_count);
             const Log2U = math.Log2Int(U);
             const int_size = (U.bit_count + 7) / 8;
 
@@ -66,7 +66,7 @@ pub fn Deserializer(comptime endian: builtin.Endian, comptime packing: Packing,
 
             if (int_size == 1) {
                 if (t_bit_count == 8) return @bitCast(T, buffer[0]);
-                const PossiblySignedByte = std.meta.IntType(T.is_signed, 8);
+                const PossiblySignedByte = std.meta.Int(T.is_signed, 8);
                 return @truncate(T, @bitCast(PossiblySignedByte, buffer[0]));
             }
 
@@ -236,7 +236,7 @@ pub fn Serializer(comptime endian: builtin.Endian, comptime packing: Packing, co
             const t_bit_count = comptime meta.bitCount(T);
             const u8_bit_count = comptime meta.bitCount(u8);
 
-            const U = std.meta.IntType(false, t_bit_count);
+            const U = std.meta.Int(false, t_bit_count);
             const Log2U = math.Log2Int(U);
             const int_size = (U.bit_count + 7) / 8;
 
@@ -372,8 +372,8 @@ fn testIntSerializerDeserializer(comptime endian: builtin.Endian, comptime packi
 
     comptime var i = 0;
     inline while (i <= max_test_bitsize) : (i += 1) {
-        const U = std.meta.IntType(false, i);
-        const S = std.meta.IntType(true, i);
+        const U = std.meta.Int(false, i);
+        const S = std.meta.Int(true, i);
         try _serializer.serializeInt(@as(U, i));
         if (i != 0) try _serializer.serializeInt(@as(S, -1)) else try _serializer.serialize(@as(S, 0));
     }
@@ -381,8 +381,8 @@ fn testIntSerializerDeserializer(comptime endian: builtin.Endian, comptime packi
 
     i = 0;
     inline while (i <= max_test_bitsize) : (i += 1) {
-        const U = std.meta.IntType(false, i);
-        const S = std.meta.IntType(true, i);
+        const U = std.meta.Int(false, i);
+        const S = std.meta.Int(true, i);
         const x = try _deserializer.deserializeInt(U);
         const y = try _deserializer.deserializeInt(S);
         testing.expect(x == @as(U, i));
lib/std/math/big/int.zig
@@ -9,8 +9,8 @@ const maxInt = std.math.maxInt;
 const minInt = std.math.minInt;
 
 pub const Limb = usize;
-pub const DoubleLimb = std.meta.IntType(false, 2 * Limb.bit_count);
-pub const SignedDoubleLimb = std.meta.IntType(true, DoubleLimb.bit_count);
+pub const DoubleLimb = std.meta.Int(false, 2 * Limb.bit_count);
+pub const SignedDoubleLimb = std.meta.Int(true, DoubleLimb.bit_count);
 pub const Log2Limb = math.Log2Int(Limb);
 
 comptime {
@@ -272,7 +272,7 @@ pub const Int = struct {
 
         switch (@typeInfo(T)) {
             .Int => |info| {
-                const UT = if (T.is_signed) std.meta.IntType(false, T.bit_count - 1) else T;
+                const UT = if (T.is_signed) std.meta.Int(false, T.bit_count - 1) else T;
 
                 try self.ensureCapacity(@sizeOf(UT) / @sizeOf(Limb));
                 self.metadata = 0;
@@ -335,7 +335,7 @@ pub const Int = struct {
     pub fn to(self: Int, comptime T: type) ConvertError!T {
         switch (@typeInfo(T)) {
             .Int => {
-                const UT = std.meta.IntType(false, T.bit_count);
+                const UT = std.meta.Int(false, T.bit_count);
 
                 if (self.bitCountTwosComp() > T.bit_count) {
                     return error.TargetTooSmall;
lib/std/math/big/rational.zig
@@ -127,8 +127,8 @@ pub const Rational = struct {
         // Translated from golang.go/src/math/big/rat.go.
         debug.assert(@typeInfo(T) == .Float);
 
-        const UnsignedIntType = std.meta.IntType(false, T.bit_count);
-        const f_bits = @bitCast(UnsignedIntType, f);
+        const UnsignedInt = std.meta.Int(false, T.bit_count);
+        const f_bits = @bitCast(UnsignedInt, f);
 
         const exponent_bits = math.floatExponentBits(T);
         const exponent_bias = (1 << (exponent_bits - 1)) - 1;
@@ -186,7 +186,7 @@ pub const Rational = struct {
         debug.assert(@typeInfo(T) == .Float);
 
         const fsize = T.bit_count;
-        const BitReprType = std.meta.IntType(false, T.bit_count);
+        const BitReprType = std.meta.Int(false, T.bit_count);
 
         const msize = math.floatMantissaBits(T);
         const msize1 = msize + 1;
lib/std/math/cos.zig
@@ -44,7 +44,7 @@ const pi4c = 2.69515142907905952645E-15;
 const m4pi = 1.273239544735162542821171882678754627704620361328125;
 
 fn cos_(comptime T: type, x_: T) T {
-    const I = std.meta.IntType(true, T.bit_count);
+    const I = std.meta.Int(true, T.bit_count);
 
     var x = x_;
     if (math.isNan(x) or math.isInf(x)) {
lib/std/math/pow.zig
@@ -145,7 +145,7 @@ pub fn pow(comptime T: type, x: T, y: T) T {
     var xe = r2.exponent;
     var x1 = r2.significand;
 
-    var i = @floatToInt(std.meta.IntType(true, T.bit_count), yi);
+    var i = @floatToInt(std.meta.Int(true, T.bit_count), yi);
     while (i != 0) : (i >>= 1) {
         const overflow_shift = math.floatExponentBits(T) + 1;
         if (xe < -(1 << overflow_shift) or (1 << overflow_shift) < xe) {
lib/std/math/sin.zig
@@ -45,7 +45,7 @@ const pi4c = 2.69515142907905952645E-15;
 const m4pi = 1.273239544735162542821171882678754627704620361328125;
 
 fn sin_(comptime T: type, x_: T) T {
-    const I = std.meta.IntType(true, T.bit_count);
+    const I = std.meta.Int(true, T.bit_count);
 
     var x = x_;
     if (x == 0 or math.isNan(x)) {
lib/std/math/sqrt.zig
@@ -31,7 +31,7 @@ pub fn sqrt(x: var) Sqrt(@TypeOf(x)) {
     }
 }
 
-fn sqrt_int(comptime T: type, value: T) std.meta.IntType(false, T.bit_count / 2) {
+fn sqrt_int(comptime T: type, value: T) std.meta.Int(false, T.bit_count / 2) {
     var op = value;
     var res: T = 0;
     var one: T = 1 << (T.bit_count - 2);
@@ -50,7 +50,7 @@ fn sqrt_int(comptime T: type, value: T) std.meta.IntType(false, T.bit_count / 2)
         one >>= 2;
     }
 
-    const ResultType = std.meta.IntType(false, T.bit_count / 2);
+    const ResultType = std.meta.Int(false, T.bit_count / 2);
     return @intCast(ResultType, res);
 }
 
@@ -66,7 +66,7 @@ test "math.sqrt_int" {
 /// Returns the return type `sqrt` will return given an operand of type `T`.
 pub fn Sqrt(comptime T: type) type {
     return switch (@typeInfo(T)) {
-        .Int => |int| std.meta.IntType(false, int.bits / 2),
+        .Int => |int| std.meta.Int(false, int.bits / 2),
         else => T,
     };
 }
lib/std/math/tan.zig
@@ -38,7 +38,7 @@ const pi4c = 2.69515142907905952645E-15;
 const m4pi = 1.273239544735162542821171882678754627704620361328125;
 
 fn tan_(comptime T: type, x_: T) T {
-    const I = std.meta.IntType(true, T.bit_count);
+    const I = std.meta.Int(true, T.bit_count);
 
     var x = x_;
     if (x == 0 or math.isNan(x)) {
lib/std/os/bits/linux.zig
@@ -1037,7 +1037,7 @@ pub const dl_phdr_info = extern struct {
 
 pub const CPU_SETSIZE = 128;
 pub const cpu_set_t = [CPU_SETSIZE / @sizeOf(usize)]usize;
-pub const cpu_count_t = std.meta.IntType(false, std.math.log2(CPU_SETSIZE * 8));
+pub const cpu_count_t = std.meta.Int(false, std.math.log2(CPU_SETSIZE * 8));
 
 pub fn CPU_COUNT(set: cpu_set_t) cpu_count_t {
     var sum: cpu_count_t = 0;
lib/std/special/compiler_rt/addXf3.zig
@@ -54,21 +54,21 @@ pub fn __aeabi_dsub(a: f64, b: f64) callconv(.AAPCS) f64 {
 }
 
 // TODO: restore inline keyword, see: https://github.com/ziglang/zig/issues/2154
-fn normalize(comptime T: type, significand: *std.meta.IntType(false, T.bit_count)) i32 {
-    const Z = std.meta.IntType(false, T.bit_count);
-    const S = std.meta.IntType(false, T.bit_count - @clz(Z, @as(Z, T.bit_count) - 1));
+fn normalize(comptime T: type, significand: *std.meta.Int(false, T.bit_count)) i32 {
+    const Z = std.meta.Int(false, T.bit_count);
+    const S = std.meta.Int(false, T.bit_count - @clz(Z, @as(Z, T.bit_count) - 1));
     const significandBits = std.math.floatMantissaBits(T);
     const implicitBit = @as(Z, 1) << significandBits;
 
-    const shift = @clz(std.meta.IntType(false, T.bit_count), significand.*) - @clz(Z, implicitBit);
+    const shift = @clz(std.meta.Int(false, T.bit_count), significand.*) - @clz(Z, implicitBit);
     significand.* <<= @intCast(S, shift);
     return 1 - shift;
 }
 
 // TODO: restore inline keyword, see: https://github.com/ziglang/zig/issues/2154
 fn addXf3(comptime T: type, a: T, b: T) T {
-    const Z = std.meta.IntType(false, T.bit_count);
-    const S = std.meta.IntType(false, T.bit_count - @clz(Z, @as(Z, T.bit_count) - 1));
+    const Z = std.meta.Int(false, T.bit_count);
+    const S = std.meta.Int(false, T.bit_count - @clz(Z, @as(Z, T.bit_count) - 1));
 
     const typeWidth = T.bit_count;
     const significandBits = std.math.floatMantissaBits(T);
@@ -182,7 +182,7 @@ fn addXf3(comptime T: type, a: T, b: T) T {
         // If partial cancellation occured, we need to left-shift the result
         // and adjust the exponent:
         if (aSignificand < implicitBit << 3) {
-            const shift = @intCast(i32, @clz(Z, aSignificand)) - @intCast(i32, @clz(std.meta.IntType(false, T.bit_count), implicitBit << 3));
+            const shift = @intCast(i32, @clz(Z, aSignificand)) - @intCast(i32, @clz(std.meta.Int(false, T.bit_count), implicitBit << 3));
             aSignificand <<= @intCast(S, shift);
             aExponent -= shift;
         }
lib/std/special/compiler_rt/compareXf2.zig
@@ -22,8 +22,8 @@ const GE = extern enum(i32) {
 pub fn cmp(comptime T: type, comptime RT: type, a: T, b: T) RT {
     @setRuntimeSafety(builtin.is_test);
 
-    const srep_t = std.meta.IntType(true, T.bit_count);
-    const rep_t = std.meta.IntType(false, T.bit_count);
+    const srep_t = std.meta.Int(true, T.bit_count);
+    const rep_t = std.meta.Int(false, T.bit_count);
 
     const significandBits = std.math.floatMantissaBits(T);
     const exponentBits = std.math.floatExponentBits(T);
@@ -68,7 +68,7 @@ pub fn cmp(comptime T: type, comptime RT: type, a: T, b: T) RT {
 pub fn unordcmp(comptime T: type, a: T, b: T) i32 {
     @setRuntimeSafety(builtin.is_test);
 
-    const rep_t = std.meta.IntType(false, T.bit_count);
+    const rep_t = std.meta.Int(false, T.bit_count);
 
     const significandBits = std.math.floatMantissaBits(T);
     const exponentBits = std.math.floatExponentBits(T);
lib/std/special/compiler_rt/divdf3.zig
@@ -7,8 +7,8 @@ const builtin = @import("builtin");
 
 pub fn __divdf3(a: f64, b: f64) callconv(.C) f64 {
     @setRuntimeSafety(builtin.is_test);
-    const Z = std.meta.IntType(false, f64.bit_count);
-    const SignedZ = std.meta.IntType(true, f64.bit_count);
+    const Z = std.meta.Int(false, f64.bit_count);
+    const SignedZ = std.meta.Int(true, f64.bit_count);
 
     const typeWidth = f64.bit_count;
     const significandBits = std.math.floatMantissaBits(f64);
@@ -312,9 +312,9 @@ pub fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void {
     }
 }
 
-pub fn normalize(comptime T: type, significand: *std.meta.IntType(false, T.bit_count)) i32 {
+pub fn normalize(comptime T: type, significand: *std.meta.Int(false, T.bit_count)) i32 {
     @setRuntimeSafety(builtin.is_test);
-    const Z = std.meta.IntType(false, T.bit_count);
+    const Z = std.meta.Int(false, T.bit_count);
     const significandBits = std.math.floatMantissaBits(T);
     const implicitBit = @as(Z, 1) << significandBits;
 
lib/std/special/compiler_rt/divsf3.zig
@@ -7,7 +7,7 @@ const builtin = @import("builtin");
 
 pub fn __divsf3(a: f32, b: f32) callconv(.C) f32 {
     @setRuntimeSafety(builtin.is_test);
-    const Z = std.meta.IntType(false, f32.bit_count);
+    const Z = std.meta.Int(false, f32.bit_count);
 
     const typeWidth = f32.bit_count;
     const significandBits = std.math.floatMantissaBits(f32);
@@ -185,9 +185,9 @@ pub fn __divsf3(a: f32, b: f32) callconv(.C) f32 {
     }
 }
 
-fn normalize(comptime T: type, significand: *std.meta.IntType(false, T.bit_count)) i32 {
+fn normalize(comptime T: type, significand: *std.meta.Int(false, T.bit_count)) i32 {
     @setRuntimeSafety(builtin.is_test);
-    const Z = std.meta.IntType(false, T.bit_count);
+    const Z = std.meta.Int(false, T.bit_count);
     const significandBits = std.math.floatMantissaBits(T);
     const implicitBit = @as(Z, 1) << significandBits;
 
lib/std/special/compiler_rt/divtf3.zig
@@ -6,8 +6,8 @@ const wideMultiply = @import("divdf3.zig").wideMultiply;
 
 pub fn __divtf3(a: f128, b: f128) callconv(.C) f128 {
     @setRuntimeSafety(builtin.is_test);
-    const Z = std.meta.IntType(false, f128.bit_count);
-    const SignedZ = std.meta.IntType(true, f128.bit_count);
+    const Z = std.meta.Int(false, f128.bit_count);
+    const SignedZ = std.meta.Int(true, f128.bit_count);
 
     const typeWidth = f128.bit_count;
     const significandBits = std.math.floatMantissaBits(f128);
lib/std/special/compiler_rt/extendXfYf2.zig
@@ -30,11 +30,11 @@ pub fn __aeabi_f2d(arg: f32) callconv(.AAPCS) f64 {
 
 const CHAR_BIT = 8;
 
-fn extendXfYf2(comptime dst_t: type, comptime src_t: type, a: std.meta.IntType(false, @typeInfo(src_t).Float.bits)) dst_t {
+fn extendXfYf2(comptime dst_t: type, comptime src_t: type, a: std.meta.Int(false, @typeInfo(src_t).Float.bits)) dst_t {
     @setRuntimeSafety(builtin.is_test);
 
-    const src_rep_t = std.meta.IntType(false, @typeInfo(src_t).Float.bits);
-    const dst_rep_t = std.meta.IntType(false, @typeInfo(dst_t).Float.bits);
+    const src_rep_t = std.meta.Int(false, @typeInfo(src_t).Float.bits);
+    const dst_rep_t = std.meta.Int(false, @typeInfo(dst_t).Float.bits);
     const srcSigBits = std.math.floatMantissaBits(src_t);
     const dstSigBits = std.math.floatMantissaBits(dst_t);
     const SrcShift = std.math.Log2Int(src_rep_t);
lib/std/special/compiler_rt/fixint.zig
@@ -45,7 +45,7 @@ pub fn fixint(comptime fp_t: type, comptime fixint_t: type, a: fp_t) fixint_t {
     if (exponent < 0) return 0;
 
     // The unsigned result needs to be large enough to handle an fixint_t or rep_t
-    const fixuint_t = std.meta.IntType(false, fixint_t.bit_count);
+    const fixuint_t = std.meta.Int(false, fixint_t.bit_count);
     const UintResultType = if (fixint_t.bit_count > rep_t.bit_count) fixuint_t else rep_t;
     var uint_result: UintResultType = undefined;
 
lib/std/special/compiler_rt/fixuint.zig
@@ -10,7 +10,7 @@ pub fn fixuint(comptime fp_t: type, comptime fixuint_t: type, a: fp_t) fixuint_t
         f128 => u128,
         else => unreachable,
     };
-    const srep_t = @import("std").meta.IntType(true, rep_t.bit_count);
+    const srep_t = @import("std").meta.Int(true, rep_t.bit_count);
     const significandBits = switch (fp_t) {
         f32 => 23,
         f64 => 52,
lib/std/special/compiler_rt/floatsiXf.zig
@@ -5,8 +5,8 @@ const maxInt = std.math.maxInt;
 fn floatsiXf(comptime T: type, a: i32) T {
     @setRuntimeSafety(builtin.is_test);
 
-    const Z = std.meta.IntType(false, T.bit_count);
-    const S = std.meta.IntType(false, T.bit_count - @clz(Z, @as(Z, T.bit_count) - 1));
+    const Z = std.meta.Int(false, T.bit_count);
+    const S = std.meta.Int(false, T.bit_count - @clz(Z, @as(Z, T.bit_count) - 1));
 
     if (a == 0) {
         return @as(T, 0.0);
lib/std/special/compiler_rt/mulXf3.zig
@@ -28,7 +28,7 @@ pub fn __aeabi_dmul(a: f64, b: f64) callconv(.C) f64 {
 
 fn mulXf3(comptime T: type, a: T, b: T) T {
     @setRuntimeSafety(builtin.is_test);
-    const Z = std.meta.IntType(false, T.bit_count);
+    const Z = std.meta.Int(false, T.bit_count);
 
     const typeWidth = T.bit_count;
     const significandBits = std.math.floatMantissaBits(T);
@@ -264,9 +264,9 @@ fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void {
     }
 }
 
-fn normalize(comptime T: type, significand: *std.meta.IntType(false, T.bit_count)) i32 {
+fn normalize(comptime T: type, significand: *std.meta.Int(false, T.bit_count)) i32 {
     @setRuntimeSafety(builtin.is_test);
-    const Z = std.meta.IntType(false, T.bit_count);
+    const Z = std.meta.Int(false, T.bit_count);
     const significandBits = std.math.floatMantissaBits(T);
     const implicitBit = @as(Z, 1) << significandBits;
 
lib/std/special/compiler_rt/negXf2.zig
@@ -19,7 +19,7 @@ pub fn __aeabi_dneg(arg: f64) callconv(.AAPCS) f64 {
 }
 
 fn negXf2(comptime T: type, a: T) T {
-    const Z = std.meta.IntType(false, T.bit_count);
+    const Z = std.meta.Int(false, T.bit_count);
 
     const typeWidth = T.bit_count;
     const significandBits = std.math.floatMantissaBits(T);
lib/std/special/compiler_rt/shift.zig
@@ -4,8 +4,8 @@ const Log2Int = std.math.Log2Int;
 
 fn Dwords(comptime T: type, comptime signed_half: bool) type {
     return extern union {
-        pub const HalfTU = std.meta.IntType(false, @divExact(T.bit_count, 2));
-        pub const HalfTS = std.meta.IntType(true, @divExact(T.bit_count, 2));
+        pub const HalfTU = std.meta.Int(false, @divExact(T.bit_count, 2));
+        pub const HalfTS = std.meta.Int(true, @divExact(T.bit_count, 2));
         pub const HalfT = if (signed_half) HalfTS else HalfTU;
 
         all: T,
lib/std/special/compiler_rt/truncXfYf2.zig
@@ -36,8 +36,8 @@ pub fn __aeabi_f2h(a: f32) callconv(.AAPCS) u16 {
 }
 
 fn truncXfYf2(comptime dst_t: type, comptime src_t: type, a: src_t) dst_t {
-    const src_rep_t = std.meta.IntType(false, @typeInfo(src_t).Float.bits);
-    const dst_rep_t = std.meta.IntType(false, @typeInfo(dst_t).Float.bits);
+    const src_rep_t = std.meta.Int(false, @typeInfo(src_t).Float.bits);
+    const dst_rep_t = std.meta.Int(false, @typeInfo(dst_t).Float.bits);
     const srcSigBits = std.math.floatMantissaBits(src_t);
     const dstSigBits = std.math.floatMantissaBits(dst_t);
     const SrcShift = std.math.Log2Int(src_rep_t);
lib/std/special/compiler_rt/udivmod.zig
@@ -10,8 +10,8 @@ const high = 1 - low;
 pub fn udivmod(comptime DoubleInt: type, a: DoubleInt, b: DoubleInt, maybe_rem: ?*DoubleInt) DoubleInt {
     @setRuntimeSafety(is_test);
 
-    const SingleInt = @import("std").meta.IntType(false, @divExact(DoubleInt.bit_count, 2));
-    const SignedDoubleInt = @import("std").meta.IntType(true, DoubleInt.bit_count);
+    const SingleInt = @import("std").meta.Int(false, @divExact(DoubleInt.bit_count, 2));
+    const SignedDoubleInt = @import("std").meta.Int(true, DoubleInt.bit_count);
     const Log2SingleInt = @import("std").math.Log2Int(SingleInt);
 
     const n = @ptrCast(*const [2]SingleInt, &a).*; // TODO issue #421
lib/std/special/c.zig
@@ -511,7 +511,7 @@ export fn roundf(a: f32) f32 {
 fn generic_fmod(comptime T: type, x: T, y: T) T {
     @setRuntimeSafety(false);
 
-    const uint = std.meta.IntType(false, T.bit_count);
+    const uint = std.meta.Int(false, T.bit_count);
     const log2uint = math.Log2Int(uint);
     const digits = if (T == f32) 23 else 52;
     const exp_bits = if (T == f32) 9 else 12;
lib/std/child_process.zig
@@ -830,7 +830,7 @@ fn forkChildErrReport(fd: i32, err: ChildProcess.SpawnError) noreturn {
     os.exit(1);
 }
 
-const ErrInt = std.meta.IntType(false, @sizeOf(anyerror) * 8);
+const ErrInt = std.meta.Int(false, @sizeOf(anyerror) * 8);
 
 fn writeIntFd(fd: i32, value: ErrInt) !void {
     const file = File{
lib/std/fmt.zig
@@ -906,7 +906,7 @@ fn formatIntSigned(
         .fill = options.fill,
     };
     const bit_count = @typeInfo(@TypeOf(value)).Int.bits;
-    const Uint = std.meta.IntType(false, bit_count);
+    const Uint = std.meta.Int(false, bit_count);
     if (value < 0) {
         try out_stream.writeAll("-");
         const new_value = math.absCast(value);
@@ -930,7 +930,7 @@ fn formatIntUnsigned(
     assert(base >= 2);
     var buf: [math.max(@TypeOf(value).bit_count, 1)]u8 = undefined;
     const min_int_bits = comptime math.max(@TypeOf(value).bit_count, @TypeOf(base).bit_count);
-    const MinInt = std.meta.IntType(@TypeOf(value).is_signed, min_int_bits);
+    const MinInt = std.meta.Int(@TypeOf(value).is_signed, min_int_bits);
     var a: MinInt = value;
     var index: usize = buf.len;
 
lib/std/heap.zig
@@ -1015,7 +1015,7 @@ fn testAllocatorLargeAlignment(allocator: *mem.Allocator) mem.Allocator.Error!vo
     //  very near usize?
     if (mem.page_size << 2 > maxInt(usize)) return;
 
-    const USizeShift = std.meta.IntType(false, std.math.log2(usize.bit_count));
+    const USizeShift = std.meta.Int(false, std.math.log2(usize.bit_count));
     const large_align = @as(u29, mem.page_size << 2);
 
     var align_mask: usize = undefined;
lib/std/math.zig
@@ -458,7 +458,7 @@ pub fn Log2Int(comptime T: type) type {
         count += 1;
     }
 
-    return std.meta.IntType(false, count);
+    return std.meta.Int(false, count);
 }
 
 pub fn IntFittingRange(comptime from: comptime_int, comptime to: comptime_int) type {
@@ -474,7 +474,7 @@ pub fn IntFittingRange(comptime from: comptime_int, comptime to: comptime_int) t
     if (is_signed) {
         magnitude_bits += 1;
     }
-    return std.meta.IntType(is_signed, magnitude_bits);
+    return std.meta.Int(is_signed, magnitude_bits);
 }
 
 test "math.IntFittingRange" {
@@ -686,7 +686,7 @@ fn testRem() void {
 /// Result is an unsigned integer.
 pub fn absCast(x: var) switch (@typeInfo(@TypeOf(x))) {
     .ComptimeInt => comptime_int,
-    .Int => |intInfo| std.meta.IntType(false, intInfo.bits),
+    .Int => |intInfo| std.meta.Int(false, intInfo.bits),
     else => @compileError("absCast only accepts integers"),
 } {
     switch (@typeInfo(@TypeOf(x))) {
@@ -698,7 +698,7 @@ pub fn absCast(x: var) switch (@typeInfo(@TypeOf(x))) {
             }
         },
         .Int => |intInfo| {
-            const Uint = std.meta.IntType(false, intInfo.bits);
+            const Uint = std.meta.Int(false, intInfo.bits);
             if (x < 0) {
                 return ~@bitCast(Uint, x +% -1);
             } else {
@@ -719,10 +719,10 @@ test "math.absCast" {
 
 /// Returns the negation of the integer parameter.
 /// Result is a signed integer.
-pub fn negateCast(x: var) !std.meta.IntType(true, @TypeOf(x).bit_count) {
+pub fn negateCast(x: var) !std.meta.Int(true, @TypeOf(x).bit_count) {
     if (@TypeOf(x).is_signed) return negate(x);
 
-    const int = std.meta.IntType(true, @TypeOf(x).bit_count);
+    const int = std.meta.Int(true, @TypeOf(x).bit_count);
     if (x > -minInt(int)) return error.Overflow;
 
     if (x == -minInt(int)) return minInt(int);
@@ -808,11 +808,11 @@ fn testFloorPowerOfTwo() void {
 /// Returns the next power of two (if the value is not already a power of two).
 /// Only unsigned integers can be used. Zero is not an allowed input.
 /// Result is a type with 1 more bit than the input type.
-pub fn ceilPowerOfTwoPromote(comptime T: type, value: T) std.meta.IntType(T.is_signed, T.bit_count + 1) {
+pub fn ceilPowerOfTwoPromote(comptime T: type, value: T) std.meta.Int(T.is_signed, T.bit_count + 1) {
     comptime assert(@typeInfo(T) == .Int);
     comptime assert(!T.is_signed);
     assert(value != 0);
-    comptime const PromotedType = std.meta.IntType(T.is_signed, T.bit_count + 1);
+    comptime const PromotedType = std.meta.Int(T.is_signed, T.bit_count + 1);
     comptime const shiftType = std.math.Log2Int(PromotedType);
     return @as(PromotedType, 1) << @intCast(shiftType, T.bit_count - @clz(T, value - 1));
 }
@@ -823,7 +823,7 @@ pub fn ceilPowerOfTwoPromote(comptime T: type, value: T) std.meta.IntType(T.is_s
 pub fn ceilPowerOfTwo(comptime T: type, value: T) (error{Overflow}!T) {
     comptime assert(@typeInfo(T) == .Int);
     comptime assert(!T.is_signed);
-    comptime const PromotedType = std.meta.IntType(T.is_signed, T.bit_count + 1);
+    comptime const PromotedType = std.meta.Int(T.is_signed, T.bit_count + 1);
     comptime const overflowBit = @as(PromotedType, 1) << T.bit_count;
     var x = ceilPowerOfTwoPromote(T, value);
     if (overflowBit & x != 0) {
@@ -965,8 +965,8 @@ test "max value type" {
     testing.expect(x == 2147483647);
 }
 
-pub fn mulWide(comptime T: type, a: T, b: T) std.meta.IntType(T.is_signed, T.bit_count * 2) {
-    const ResultInt = std.meta.IntType(T.is_signed, T.bit_count * 2);
+pub fn mulWide(comptime T: type, a: T, b: T) std.meta.Int(T.is_signed, T.bit_count * 2) {
+    const ResultInt = std.meta.Int(T.is_signed, T.bit_count * 2);
     return @as(ResultInt, a) * @as(ResultInt, b);
 }
 
lib/std/mem.zig
@@ -1065,7 +1065,7 @@ pub fn writeIntSliceLittle(comptime T: type, buffer: []u8, value: T) void {
         return set(u8, buffer, 0);
 
     // TODO I want to call writeIntLittle here but comptime eval facilities aren't good enough
-    const uint = std.meta.IntType(false, T.bit_count);
+    const uint = std.meta.Int(false, T.bit_count);
     var bits = @truncate(uint, value);
     for (buffer) |*b| {
         b.* = @truncate(u8, bits);
@@ -1085,7 +1085,7 @@ pub fn writeIntSliceBig(comptime T: type, buffer: []u8, value: T) void {
         return set(u8, buffer, 0);
 
     // TODO I want to call writeIntBig here but comptime eval facilities aren't good enough
-    const uint = std.meta.IntType(false, T.bit_count);
+    const uint = std.meta.Int(false, T.bit_count);
     var bits = @truncate(uint, value);
     var index: usize = buffer.len;
     while (index != 0) {
lib/std/os.zig
@@ -3681,7 +3681,7 @@ pub fn res_mkquery(
     // Make a reasonably unpredictable id
     var ts: timespec = undefined;
     clock_gettime(CLOCK_REALTIME, &ts) catch {};
-    const UInt = std.meta.IntType(false, @TypeOf(ts.tv_nsec).bit_count);
+    const UInt = std.meta.Int(false, @TypeOf(ts.tv_nsec).bit_count);
     const unsec = @bitCast(UInt, ts.tv_nsec);
     const id = @truncate(u32, unsec + unsec / 65536);
     q[0] = @truncate(u8, id / 256);
lib/std/packed_int_array.zig
@@ -34,13 +34,13 @@ pub fn PackedIntIo(comptime Int: type, comptime endian: builtin.Endian) type {
 
     //we bitcast the desired Int type to an unsigned version of itself
     // to avoid issues with shifting signed ints.
-    const UnInt = std.meta.IntType(false, int_bits);
+    const UnInt = std.meta.Int(false, int_bits);
 
     //The maximum container int type
-    const MinIo = std.meta.IntType(false, min_io_bits);
+    const MinIo = std.meta.Int(false, min_io_bits);
 
     //The minimum container int type
-    const MaxIo = std.meta.IntType(false, max_io_bits);
+    const MaxIo = std.meta.Int(false, max_io_bits);
 
     return struct {
         pub fn get(bytes: []const u8, index: usize, bit_offset: u7) Int {
@@ -322,7 +322,7 @@ test "PackedIntArray" {
     inline while (bits <= 256) : (bits += 1) {
         //alternate unsigned and signed
         const even = bits % 2 == 0;
-        const I = std.meta.IntType(even, bits);
+        const I = std.meta.Int(even, bits);
 
         const PackedArray = PackedIntArray(I, int_count);
         const expected_bytes = ((bits * int_count) + 7) / 8;
@@ -369,7 +369,7 @@ test "PackedIntSlice" {
     inline while (bits <= 256) : (bits += 1) {
         //alternate unsigned and signed
         const even = bits % 2 == 0;
-        const I = std.meta.IntType(even, bits);
+        const I = std.meta.Int(even, bits);
         const P = PackedIntSlice(I);
 
         var data = P.init(&buffer, int_count);
@@ -399,7 +399,7 @@ test "PackedIntSlice of PackedInt(Array/Slice)" {
 
     comptime var bits = 0;
     inline while (bits <= max_bits) : (bits += 1) {
-        const Int = std.meta.IntType(false, bits);
+        const Int = std.meta.Int(false, bits);
 
         const PackedArray = PackedIntArray(Int, int_count);
         var packed_array = @as(PackedArray, undefined);
lib/std/rand.zig
@@ -45,8 +45,8 @@ pub const Random = struct {
     /// Returns a random int `i` such that `0 <= i <= maxInt(T)`.
     /// `i` is evenly distributed.
     pub fn int(r: *Random, comptime T: type) T {
-        const UnsignedT = std.meta.IntType(false, T.bit_count);
-        const ByteAlignedT = std.meta.IntType(false, @divTrunc(T.bit_count + 7, 8) * 8);
+        const UnsignedT = std.meta.Int(false, T.bit_count);
+        const ByteAlignedT = std.meta.Int(false, @divTrunc(T.bit_count + 7, 8) * 8);
 
         var rand_bytes: [@sizeOf(ByteAlignedT)]u8 = undefined;
         r.bytes(rand_bytes[0..]);
@@ -85,9 +85,9 @@ pub const Random = struct {
         comptime assert(T.bit_count <= 64); // TODO: workaround: LLVM ERROR: Unsupported library call operation!
         assert(0 < less_than);
         // Small is typically u32
-        const Small = std.meta.IntType(false, @divTrunc(T.bit_count + 31, 32) * 32);
+        const Small = std.meta.Int(false, @divTrunc(T.bit_count + 31, 32) * 32);
         // Large is typically u64
-        const Large = std.meta.IntType(false, Small.bit_count * 2);
+        const Large = std.meta.Int(false, Small.bit_count * 2);
 
         // adapted from:
         //   http://www.pcg-random.org/posts/bounded-rands.html
@@ -99,7 +99,7 @@ pub const Random = struct {
             // TODO: workaround for https://github.com/ziglang/zig/issues/1770
             // should be:
             //   var t: Small = -%less_than;
-            var t: Small = @bitCast(Small, -%@bitCast(std.meta.IntType(true, Small.bit_count), @as(Small, less_than)));
+            var t: Small = @bitCast(Small, -%@bitCast(std.meta.Int(true, Small.bit_count), @as(Small, less_than)));
 
             if (t >= less_than) {
                 t -= less_than;
@@ -145,7 +145,7 @@ pub const Random = struct {
         assert(at_least < less_than);
         if (T.is_signed) {
             // Two's complement makes this math pretty easy.
-            const UnsignedT = std.meta.IntType(false, T.bit_count);
+            const UnsignedT = std.meta.Int(false, T.bit_count);
             const lo = @bitCast(UnsignedT, at_least);
             const hi = @bitCast(UnsignedT, less_than);
             const result = lo +% r.uintLessThanBiased(UnsignedT, hi -% lo);
@@ -163,7 +163,7 @@ pub const Random = struct {
         assert(at_least < less_than);
         if (T.is_signed) {
             // Two's complement makes this math pretty easy.
-            const UnsignedT = std.meta.IntType(false, T.bit_count);
+            const UnsignedT = std.meta.Int(false, T.bit_count);
             const lo = @bitCast(UnsignedT, at_least);
             const hi = @bitCast(UnsignedT, less_than);
             const result = lo +% r.uintLessThan(UnsignedT, hi -% lo);
@@ -180,7 +180,7 @@ pub const Random = struct {
         assert(at_least <= at_most);
         if (T.is_signed) {
             // Two's complement makes this math pretty easy.
-            const UnsignedT = std.meta.IntType(false, T.bit_count);
+            const UnsignedT = std.meta.Int(false, T.bit_count);
             const lo = @bitCast(UnsignedT, at_least);
             const hi = @bitCast(UnsignedT, at_most);
             const result = lo +% r.uintAtMostBiased(UnsignedT, hi -% lo);
@@ -198,7 +198,7 @@ pub const Random = struct {
         assert(at_least <= at_most);
         if (T.is_signed) {
             // Two's complement makes this math pretty easy.
-            const UnsignedT = std.meta.IntType(false, T.bit_count);
+            const UnsignedT = std.meta.Int(false, T.bit_count);
             const lo = @bitCast(UnsignedT, at_least);
             const hi = @bitCast(UnsignedT, at_most);
             const result = lo +% r.uintAtMost(UnsignedT, hi -% lo);
@@ -275,7 +275,7 @@ pub const Random = struct {
 /// This function introduces a minor bias.
 pub fn limitRangeBiased(comptime T: type, random_int: T, less_than: T) T {
     comptime assert(T.is_signed == false);
-    const T2 = std.meta.IntType(false, T.bit_count * 2);
+    const T2 = std.meta.Int(false, T.bit_count * 2);
 
     // adapted from:
     //   http://www.pcg-random.org/posts/bounded-rands.html
lib/std/target.zig
@@ -459,7 +459,7 @@ pub const Target = struct {
                 pub const needed_bit_count = 155;
                 pub const byte_count = (needed_bit_count + 7) / 8;
                 pub const usize_count = (byte_count + (@sizeOf(usize) - 1)) / @sizeOf(usize);
-                pub const Index = std.math.Log2Int(std.meta.IntType(false, usize_count * @bitSizeOf(usize)));
+                pub const Index = std.math.Log2Int(std.meta.Int(false, usize_count * @bitSizeOf(usize)));
                 pub const ShiftInt = std.math.Log2Int(usize);
 
                 pub const empty = Set{ .ints = [1]usize{0} ** usize_count };
test/stage1/behavior/bit_shifting.zig
@@ -2,9 +2,9 @@ const std = @import("std");
 const expect = std.testing.expect;
 
 fn ShardedTable(comptime Key: type, comptime mask_bit_count: comptime_int, comptime V: type) type {
-    expect(Key == std.meta.IntType(false, Key.bit_count));
+    expect(Key == std.meta.Int(false, Key.bit_count));
     expect(Key.bit_count >= mask_bit_count);
-    const ShardKey = std.meta.IntType(false, mask_bit_count);
+    const ShardKey = std.meta.Int(false, mask_bit_count);
     const shift_amount = Key.bit_count - ShardKey.bit_count;
     return struct {
         const Self = @This();