Commit 2fe7b06f3d

Andrew Kelley <andrew@ziglang.org>
2021-10-05 21:32:26
add support for f128 `@mulAdd`
std: add f128 implementations of fma, frexp, and ilogb. Expose `fmal` in zig's freestanding libc. This makes `@mulAdd` work correctly for f128. Fixes a CI regression from yesterday, where I added a usage of f128 `@mulAdd` into the self-hosted compiler.
1 parent 6115cf2
Changed files (6)
lib/std/math/fma.zig
@@ -1,6 +1,7 @@
-// Ported from musl, which is licensed under the MIT license:
+// Ported from musl, which is MIT licensed:
 // https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
 //
+// https://git.musl-libc.org/cgit/musl/tree/src/math/fmal.c
 // https://git.musl-libc.org/cgit/musl/tree/src/math/fmaf.c
 // https://git.musl-libc.org/cgit/musl/tree/src/math/fma.c
 
@@ -13,6 +14,7 @@ pub fn fma(comptime T: type, x: T, y: T, z: T) T {
     return switch (T) {
         f32 => fma32(x, y, z),
         f64 => fma64(x, y, z),
+        f128 => fma128(x, y, z),
         else => @compileError("fma not implemented for " ++ @typeName(T)),
     };
 }
@@ -142,12 +144,159 @@ fn add_and_denorm(a: f64, b: f64, scale: i32) f64 {
     return math.scalbn(sum.hi, scale);
 }
 
-test "math.fma" {
+/// A struct that represents a floating-point number with twice the precision
+/// of f128.  We maintain the invariant that "hi" stores the high-order
+/// bits of the result.
+const dd128 = struct {
+    hi: f128,
+    lo: f128,
+};
+
+/// Compute a+b exactly, returning the exact result in a struct dd.  We assume
+/// that both a and b are finite, but make no assumptions about their relative
+/// magnitudes.
+fn dd_add128(a: f128, b: f128) dd128 {
+    var ret: dd128 = undefined;
+    ret.hi = a + b;
+    const s = ret.hi - a;
+    ret.lo = (a - (ret.hi - s)) + (b - s);
+    return ret;
+}
+
+/// Compute a+b, with a small tweak:  The least significant bit of the
+/// result is adjusted into a sticky bit summarizing all the bits that
+/// were lost to rounding.  This adjustment negates the effects of double
+/// rounding when the result is added to another number with a higher
+/// exponent.  For an explanation of round and sticky bits, see any reference
+/// on FPU design, e.g.,
+///
+///     J. Coonen.  An Implementation Guide to a Proposed Standard for
+///     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
+fn add_adjusted128(a: f128, b: f128) f128 {
+    var sum = dd_add128(a, b);
+    if (sum.lo != 0) {
+        var uhii = @bitCast(u128, sum.hi);
+        if (uhii & 1 == 0) {
+            // hibits += copysign(1.0, sum.hi, sum.lo)
+            const uloi = @bitCast(u128, sum.lo);
+            uhii += 1 - ((uhii ^ uloi) >> 126);
+            sum.hi = @bitCast(f128, uhii);
+        }
+    }
+    return sum.hi;
+}
+
+/// Compute ldexp(a+b, scale) with a single rounding error. It is assumed
+/// that the result will be subnormal, and care is taken to ensure that
+/// double rounding does not occur.
+fn add_and_denorm128(a: f128, b: f128, scale: i32) f128 {
+    var sum = dd_add128(a, b);
+    // If we are losing at least two bits of accuracy to denormalization,
+    // then the first lost bit becomes a round bit, and we adjust the
+    // lowest bit of sum.hi to make it a sticky bit summarizing all the
+    // bits in sum.lo. With the sticky bit adjusted, the hardware will
+    // break any ties in the correct direction.
+    //
+    // If we are losing only one bit to denormalization, however, we must
+    // break the ties manually.
+    if (sum.lo != 0) {
+        var uhii = @bitCast(u128, sum.hi);
+        const bits_lost = -@intCast(i32, (uhii >> 112) & 0x7FFF) - scale + 1;
+        if ((bits_lost != 1) == (uhii & 1 != 0)) {
+            const uloi = @bitCast(u128, sum.lo);
+            uhii += 1 - (((uhii ^ uloi) >> 126) & 2);
+            sum.hi = @bitCast(f128, uhii);
+        }
+    }
+    return math.scalbn(sum.hi, scale);
+}
+
+/// Compute a*b exactly, returning the exact result in a struct dd.  We assume
+/// that both a and b are normalized, so no underflow or overflow will occur.
+/// The current rounding mode must be round-to-nearest.
+fn dd_mul128(a: f128, b: f128) dd128 {
+    var ret: dd128 = undefined;
+    const split: f128 = 0x1.0p57 + 1.0;
+
+    var p = a * split;
+    var ha = a - p;
+    ha += p;
+    var la = a - ha;
+
+    p = b * split;
+    var hb = b - p;
+    hb += p;
+    var lb = b - hb;
+
+    p = ha * hb;
+    var q = ha * lb + la * hb;
+
+    ret.hi = p + q;
+    ret.lo = p - ret.hi + q + la * lb;
+    return ret;
+}
+
+/// Fused multiply-add: Compute x * y + z with a single rounding error.
+///
+/// We use scaling to avoid overflow/underflow, along with the
+/// canonical precision-doubling technique adapted from:
+///
+///      Dekker, T.  A Floating-Point Technique for Extending the
+///      Available Precision.  Numer. Math. 18, 224-242 (1971).
+fn fma128(x: f128, y: f128, z: f128) f128 {
+    if (!math.isFinite(x) or !math.isFinite(y)) {
+        return x * y + z;
+    }
+    if (!math.isFinite(z)) {
+        return z;
+    }
+    if (x == 0.0 or y == 0.0) {
+        return x * y + z;
+    }
+    if (z == 0.0) {
+        return x * y;
+    }
+
+    const x1 = math.frexp(x);
+    var ex = x1.exponent;
+    var xs = x1.significand;
+    const x2 = math.frexp(y);
+    var ey = x2.exponent;
+    var ys = x2.significand;
+    const x3 = math.frexp(z);
+    var ez = x3.exponent;
+    var zs = x3.significand;
+
+    var spread = ex + ey - ez;
+    if (spread <= 113 * 2) {
+        zs = math.scalbn(zs, -spread);
+    } else {
+        zs = math.copysign(f128, math.f128_min, zs);
+    }
+
+    const xy = dd_mul128(xs, ys);
+    const r = dd_add128(xy.hi, zs);
+    spread = ex + ey;
+
+    if (r.hi == 0.0) {
+        return xy.hi + zs + math.scalbn(xy.lo, spread);
+    }
+
+    const adj = add_adjusted128(r.lo, xy.lo);
+    if (spread + math.ilogb(r.hi) > -16383) {
+        return math.scalbn(r.hi + adj, spread);
+    } else {
+        return add_and_denorm128(r.hi, adj, spread);
+    }
+}
+
+test "type dispatch" {
     try expect(fma(f32, 0.0, 1.0, 1.0) == fma32(0.0, 1.0, 1.0));
     try expect(fma(f64, 0.0, 1.0, 1.0) == fma64(0.0, 1.0, 1.0));
+    try expect(fma(f128, 0.0, 1.0, 1.0) == fma128(0.0, 1.0, 1.0));
 }
 
-test "math.fma32" {
+test "32" {
     const epsilon = 0.000001;
 
     try expect(math.approxEqAbs(f32, fma32(0.0, 5.0, 9.124), 9.124, epsilon));
@@ -159,7 +308,7 @@ test "math.fma32" {
     try expect(math.approxEqAbs(f32, fma32(123123.234375, 5.0, 9.124), 615625.295875, epsilon));
 }
 
-test "math.fma64" {
+test "64" {
     const epsilon = 0.000001;
 
     try expect(math.approxEqAbs(f64, fma64(0.0, 5.0, 9.124), 9.124, epsilon));
@@ -170,3 +319,15 @@ test "math.fma64" {
     try expect(math.approxEqAbs(f64, fma64(89.123, 5.0, 9.124), 454.739, epsilon));
     try expect(math.approxEqAbs(f64, fma64(123123.234375, 5.0, 9.124), 615625.295875, epsilon));
 }
+
+test "128" {
+    const epsilon = 0.000001;
+
+    try expect(math.approxEqAbs(f128, fma128(0.0, 5.0, 9.124), 9.124, epsilon));
+    try expect(math.approxEqAbs(f128, fma128(0.2, 5.0, 9.124), 10.124, epsilon));
+    try expect(math.approxEqAbs(f128, fma128(0.8923, 5.0, 9.124), 13.5855, epsilon));
+    try expect(math.approxEqAbs(f128, fma128(1.5, 5.0, 9.124), 16.624, epsilon));
+    try expect(math.approxEqAbs(f128, fma128(37.45, 5.0, 9.124), 196.374, epsilon));
+    try expect(math.approxEqAbs(f128, fma128(89.123, 5.0, 9.124), 454.739, epsilon));
+    try expect(math.approxEqAbs(f128, fma128(123123.234375, 5.0, 9.124), 615625.295875, epsilon));
+}
lib/std/math/frexp.zig
@@ -1,6 +1,7 @@
-// Ported from musl, which is licensed under the MIT license:
+// Ported from musl, which is MIT licensed:
 // https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
 //
+// https://git.musl-libc.org/cgit/musl/tree/src/math/frexpl.c
 // https://git.musl-libc.org/cgit/musl/tree/src/math/frexpf.c
 // https://git.musl-libc.org/cgit/musl/tree/src/math/frexp.c
 
@@ -8,14 +9,12 @@ const std = @import("../std.zig");
 const math = std.math;
 const expect = std.testing.expect;
 
-fn frexp_result(comptime T: type) type {
+pub fn Frexp(comptime T: type) type {
     return struct {
         significand: T,
         exponent: i32,
     };
 }
-pub const frexp32_result = frexp_result(f32);
-pub const frexp64_result = frexp_result(f64);
 
 /// Breaks x into a normalized fraction and an integral power of two.
 /// f == frac * 2^exp, with |frac| in the interval [0.5, 1).
@@ -24,17 +23,20 @@ pub const frexp64_result = frexp_result(f64);
 ///  - frexp(+-0)   = +-0, 0
 ///  - frexp(+-inf) = +-inf, 0
 ///  - frexp(nan)   = nan, undefined
-pub fn frexp(x: anytype) frexp_result(@TypeOf(x)) {
+pub fn frexp(x: anytype) Frexp(@TypeOf(x)) {
     const T = @TypeOf(x);
     return switch (T) {
         f32 => frexp32(x),
         f64 => frexp64(x),
+        f128 => frexp128(x),
         else => @compileError("frexp not implemented for " ++ @typeName(T)),
     };
 }
 
-fn frexp32(x: f32) frexp32_result {
-    var result: frexp32_result = undefined;
+// TODO: unify all these implementations using generics
+
+fn frexp32(x: f32) Frexp(f32) {
+    var result: Frexp(f32) = undefined;
 
     var y = @bitCast(u32, x);
     const e = @intCast(i32, y >> 23) & 0xFF;
@@ -70,8 +72,8 @@ fn frexp32(x: f32) frexp32_result {
     return result;
 }
 
-fn frexp64(x: f64) frexp64_result {
-    var result: frexp64_result = undefined;
+fn frexp64(x: f64) Frexp(f64) {
+    var result: Frexp(f64) = undefined;
 
     var y = @bitCast(u64, x);
     const e = @intCast(i32, y >> 52) & 0x7FF;
@@ -107,7 +109,44 @@ fn frexp64(x: f64) frexp64_result {
     return result;
 }
 
-test "math.frexp" {
+fn frexp128(x: f128) Frexp(f128) {
+    var result: Frexp(f128) = undefined;
+
+    var y = @bitCast(u128, x);
+    const e = @intCast(i32, y >> 112) & 0x7FFF;
+
+    if (e == 0) {
+        if (x != 0) {
+            // subnormal
+            result = frexp128(x * 0x1.0p120);
+            result.exponent -= 120;
+        } else {
+            // frexp(+-0) = (+-0, 0)
+            result.significand = x;
+            result.exponent = 0;
+        }
+        return result;
+    } else if (e == 0x7FFF) {
+        // frexp(nan) = (nan, undefined)
+        result.significand = x;
+        result.exponent = undefined;
+
+        // frexp(+-inf) = (+-inf, 0)
+        if (math.isInf(x)) {
+            result.exponent = 0;
+        }
+
+        return result;
+    }
+
+    result.exponent = e - 0x3FFE;
+    y &= 0x8000FFFFFFFFFFFFFFFFFFFFFFFFFFFF;
+    y |= 0x3FFE0000000000000000000000000000;
+    result.significand = @bitCast(f128, y);
+    return result;
+}
+
+test "type dispatch" {
     const a = frexp(@as(f32, 1.3));
     const b = frexp32(1.3);
     try expect(a.significand == b.significand and a.exponent == b.exponent);
@@ -115,11 +154,15 @@ test "math.frexp" {
     const c = frexp(@as(f64, 1.3));
     const d = frexp64(1.3);
     try expect(c.significand == d.significand and c.exponent == d.exponent);
+
+    const e = frexp(@as(f128, 1.3));
+    const f = frexp128(1.3);
+    try expect(e.significand == f.significand and e.exponent == f.exponent);
 }
 
-test "math.frexp32" {
+test "32" {
     const epsilon = 0.000001;
-    var r: frexp32_result = undefined;
+    var r: Frexp(f32) = undefined;
 
     r = frexp32(1.3);
     try expect(math.approxEqAbs(f32, r.significand, 0.65, epsilon) and r.exponent == 1);
@@ -128,9 +171,9 @@ test "math.frexp32" {
     try expect(math.approxEqAbs(f32, r.significand, 0.609558, epsilon) and r.exponent == 7);
 }
 
-test "math.frexp64" {
+test "64" {
     const epsilon = 0.000001;
-    var r: frexp64_result = undefined;
+    var r: Frexp(f64) = undefined;
 
     r = frexp64(1.3);
     try expect(math.approxEqAbs(f64, r.significand, 0.65, epsilon) and r.exponent == 1);
@@ -139,8 +182,19 @@ test "math.frexp64" {
     try expect(math.approxEqAbs(f64, r.significand, 0.609558, epsilon) and r.exponent == 7);
 }
 
-test "math.frexp32.special" {
-    var r: frexp32_result = undefined;
+test "128" {
+    const epsilon = 0.000001;
+    var r: Frexp(f128) = undefined;
+
+    r = frexp128(1.3);
+    try expect(math.approxEqAbs(f128, r.significand, 0.65, epsilon) and r.exponent == 1);
+
+    r = frexp128(78.0234);
+    try expect(math.approxEqAbs(f128, r.significand, 0.609558, epsilon) and r.exponent == 7);
+}
+
+test "32 special" {
+    var r: Frexp(f32) = undefined;
 
     r = frexp32(0.0);
     try expect(r.significand == 0.0 and r.exponent == 0);
@@ -158,8 +212,8 @@ test "math.frexp32.special" {
     try expect(math.isNan(r.significand));
 }
 
-test "math.frexp64.special" {
-    var r: frexp64_result = undefined;
+test "64 special" {
+    var r: Frexp(f64) = undefined;
 
     r = frexp64(0.0);
     try expect(r.significand == 0.0 and r.exponent == 0);
@@ -176,3 +230,22 @@ test "math.frexp64.special" {
     r = frexp64(math.nan(f64));
     try expect(math.isNan(r.significand));
 }
+
+test "128 special" {
+    var r: Frexp(f128) = undefined;
+
+    r = frexp128(0.0);
+    try expect(r.significand == 0.0 and r.exponent == 0);
+
+    r = frexp128(-0.0);
+    try expect(r.significand == -0.0 and r.exponent == 0);
+
+    r = frexp128(math.inf(f128));
+    try expect(math.isPositiveInf(r.significand) and r.exponent == 0);
+
+    r = frexp128(-math.inf(f128));
+    try expect(math.isNegativeInf(r.significand) and r.exponent == 0);
+
+    r = frexp128(math.nan(f128));
+    try expect(math.isNan(r.significand));
+}
lib/std/math/ilogb.zig
@@ -1,6 +1,7 @@
-// Ported from musl, which is licensed under the MIT license:
+// Ported from musl, which is MIT licensed.
 // https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
 //
+// https://git.musl-libc.org/cgit/musl/tree/src/math/ilogbl.c
 // https://git.musl-libc.org/cgit/musl/tree/src/math/ilogbf.c
 // https://git.musl-libc.org/cgit/musl/tree/src/math/ilogb.c
 
@@ -21,10 +22,13 @@ pub fn ilogb(x: anytype) i32 {
     return switch (T) {
         f32 => ilogb32(x),
         f64 => ilogb64(x),
+        f128 => ilogb128(x),
         else => @compileError("ilogb not implemented for " ++ @typeName(T)),
     };
 }
 
+// TODO: unify these implementations with generics
+
 // NOTE: Should these be exposed publicly?
 const fp_ilogbnan = -1 - @as(i32, maxInt(u32) >> 1);
 const fp_ilogb0 = fp_ilogbnan;
@@ -100,12 +104,43 @@ fn ilogb64(x: f64) i32 {
     return e - 0x3FF;
 }
 
-test "math.ilogb" {
+fn ilogb128(x: f128) i32 {
+    var u = @bitCast(u128, x);
+    var e = @intCast(i32, (u >> 112) & 0x7FFF);
+
+    if (math.isNan(x)) {
+        return maxInt(i32);
+    }
+
+    if (e == 0) {
+        u <<= 16;
+        if (u == 0) {
+            math.raiseInvalid();
+            return fp_ilogb0;
+        }
+
+        // subnormal x
+        return ilogb128(x * 0x1p120) - 120;
+    }
+
+    if (e == 0x7FFF) {
+        math.raiseInvalid();
+        if (u << 16 != 0) {
+            return fp_ilogbnan;
+        } else {
+            return maxInt(i32);
+        }
+    }
+
+    return e - 0x3FFF;
+}
+
+test "type dispatch" {
     try expect(ilogb(@as(f32, 0.2)) == ilogb32(0.2));
     try expect(ilogb(@as(f64, 0.2)) == ilogb64(0.2));
 }
 
-test "math.ilogb32" {
+test "32" {
     try expect(ilogb32(0.0) == fp_ilogb0);
     try expect(ilogb32(0.5) == -1);
     try expect(ilogb32(0.8923) == -1);
@@ -114,7 +149,7 @@ test "math.ilogb32" {
     try expect(ilogb32(2398.23) == 11);
 }
 
-test "math.ilogb64" {
+test "64" {
     try expect(ilogb64(0.0) == fp_ilogb0);
     try expect(ilogb64(0.5) == -1);
     try expect(ilogb64(0.8923) == -1);
@@ -123,16 +158,32 @@ test "math.ilogb64" {
     try expect(ilogb64(2398.23) == 11);
 }
 
-test "math.ilogb32.special" {
+test "128" {
+    try expect(ilogb128(0.0) == fp_ilogb0);
+    try expect(ilogb128(0.5) == -1);
+    try expect(ilogb128(0.8923) == -1);
+    try expect(ilogb128(10.0) == 3);
+    try expect(ilogb128(-123984) == 16);
+    try expect(ilogb128(2398.23) == 11);
+}
+
+test "32 special" {
     try expect(ilogb32(math.inf(f32)) == maxInt(i32));
     try expect(ilogb32(-math.inf(f32)) == maxInt(i32));
     try expect(ilogb32(0.0) == minInt(i32));
     try expect(ilogb32(math.nan(f32)) == maxInt(i32));
 }
 
-test "math.ilogb64.special" {
+test "64 special" {
     try expect(ilogb64(math.inf(f64)) == maxInt(i32));
     try expect(ilogb64(-math.inf(f64)) == maxInt(i32));
     try expect(ilogb64(0.0) == minInt(i32));
     try expect(ilogb64(math.nan(f64)) == maxInt(i32));
 }
+
+test "128 special" {
+    try expect(ilogb128(math.inf(f128)) == maxInt(i32));
+    try expect(ilogb128(-math.inf(f128)) == maxInt(i32));
+    try expect(ilogb128(0.0) == minInt(i32));
+    try expect(ilogb128(math.nan(f128)) == maxInt(i32));
+}
lib/std/special/c_stage1.zig
@@ -656,6 +656,10 @@ export fn ceil(x: f64) f64 {
     return math.ceil(x);
 }
 
+export fn fmal(a: f128, b: f128, c: f128) f128 {
+    return math.fma(f128, a, b, c);
+}
+
 export fn fma(a: f64, b: f64, c: f64) f64 {
     return math.fma(f64, a, b, c);
 }
lib/std/math.zig
@@ -229,8 +229,7 @@ pub const floor = @import("math/floor.zig").floor;
 pub const trunc = @import("math/trunc.zig").trunc;
 pub const round = @import("math/round.zig").round;
 pub const frexp = @import("math/frexp.zig").frexp;
-pub const frexp32_result = @import("math/frexp.zig").frexp32_result;
-pub const frexp64_result = @import("math/frexp.zig").frexp64_result;
+pub const Frexp = @import("math/frexp.zig").Frexp;
 pub const modf = @import("math/modf.zig").modf;
 pub const modf32_result = @import("math/modf.zig").modf32_result;
 pub const modf64_result = @import("math/modf.zig").modf64_result;
test/behavior/muladd.zig
@@ -24,11 +24,10 @@ fn testMulAdd() !void {
         var c: f64 = 6.25;
         try expect(@mulAdd(f64, a, b, c) == 20);
     }
-    // Awaits implementation in libm.zig
-    //{
-    //    var a: f16 = 5.5;
-    //    var b: f128 = 2.5;
-    //    var c: f128 = 6.25;
-    //try expect(@mulAdd(f128, a, b, c) == 20);
-    //}
+    {
+        var a: f16 = 5.5;
+        var b: f128 = 2.5;
+        var c: f128 = 6.25;
+        try expect(@mulAdd(f128, a, b, c) == 20);
+    }
 }