master
  1const std = @import("std.zig");
  2const builtin = @import("builtin");
  3const assert = std.debug.assert;
  4const testing = std.testing;
  5const math = std.math;
  6const windows = std.os.windows;
  7const posix = std.posix;
  8
  9pub const epoch = @import("time/epoch.zig");
 10
 11// Divisions of a nanosecond.
 12pub const ns_per_us = 1000;
 13pub const ns_per_ms = 1000 * ns_per_us;
 14pub const ns_per_s = 1000 * ns_per_ms;
 15pub const ns_per_min = 60 * ns_per_s;
 16pub const ns_per_hour = 60 * ns_per_min;
 17pub const ns_per_day = 24 * ns_per_hour;
 18pub const ns_per_week = 7 * ns_per_day;
 19
 20// Divisions of a microsecond.
 21pub const us_per_ms = 1000;
 22pub const us_per_s = 1000 * us_per_ms;
 23pub const us_per_min = 60 * us_per_s;
 24pub const us_per_hour = 60 * us_per_min;
 25pub const us_per_day = 24 * us_per_hour;
 26pub const us_per_week = 7 * us_per_day;
 27
 28// Divisions of a millisecond.
 29pub const ms_per_s = 1000;
 30pub const ms_per_min = 60 * ms_per_s;
 31pub const ms_per_hour = 60 * ms_per_min;
 32pub const ms_per_day = 24 * ms_per_hour;
 33pub const ms_per_week = 7 * ms_per_day;
 34
 35// Divisions of a second.
 36pub const s_per_min = 60;
 37pub const s_per_hour = s_per_min * 60;
 38pub const s_per_day = s_per_hour * 24;
 39pub const s_per_week = s_per_day * 7;
 40
 41/// An Instant represents a timestamp with respect to the currently
 42/// executing program that ticks during suspend and can be used to
 43/// record elapsed time unlike `nanoTimestamp`.
 44///
 45/// It tries to sample the system's fastest and most precise timer available.
 46/// It also tries to be monotonic, but this is not a guarantee due to OS/hardware bugs.
 47/// If you need monotonic readings for elapsed time, consider `Timer` instead.
 48pub const Instant = struct {
 49    timestamp: if (is_posix) posix.timespec else u64,
 50
 51    // true if we should use clock_gettime()
 52    const is_posix = switch (builtin.os.tag) {
 53        .windows, .uefi, .wasi => false,
 54        else => true,
 55    };
 56
 57    /// Queries the system for the current moment of time as an Instant.
 58    /// This is not guaranteed to be monotonic or steadily increasing, but for
 59    /// most implementations it is.
 60    /// Returns `error.Unsupported` when a suitable clock is not detected.
 61    pub fn now() error{Unsupported}!Instant {
 62        const clock_id = switch (builtin.os.tag) {
 63            .windows => {
 64                // QPC on windows doesn't fail on >= XP/2000 and includes time suspended.
 65                return .{ .timestamp = windows.QueryPerformanceCounter() };
 66            },
 67            .wasi => {
 68                var ns: std.os.wasi.timestamp_t = undefined;
 69                const rc = std.os.wasi.clock_time_get(.MONOTONIC, 1, &ns);
 70                if (rc != .SUCCESS) return error.Unsupported;
 71                return .{ .timestamp = ns };
 72            },
 73            .uefi => {
 74                const value, _ = std.os.uefi.system_table.runtime_services.getTime() catch return error.Unsupported;
 75                return .{ .timestamp = value.toEpoch() };
 76            },
 77            // On darwin, use UPTIME_RAW instead of MONOTONIC as it ticks while
 78            // suspended.
 79            .driverkit, .ios, .maccatalyst, .macos, .tvos, .visionos, .watchos => posix.CLOCK.UPTIME_RAW,
 80            // On freebsd derivatives, use MONOTONIC_FAST as currently there's
 81            // no precision tradeoff.
 82            .freebsd, .dragonfly => posix.CLOCK.MONOTONIC_FAST,
 83            // On linux, use BOOTTIME instead of MONOTONIC as it ticks while
 84            // suspended.
 85            .linux => posix.CLOCK.BOOTTIME,
 86            // On other posix systems, MONOTONIC is generally the fastest and
 87            // ticks while suspended.
 88            else => posix.CLOCK.MONOTONIC,
 89        };
 90
 91        const ts = posix.clock_gettime(clock_id) catch return error.Unsupported;
 92        return .{ .timestamp = ts };
 93    }
 94
 95    /// Quickly compares two instances between each other.
 96    pub fn order(self: Instant, other: Instant) std.math.Order {
 97        // windows and wasi timestamps are in u64 which is easily comparible
 98        if (!is_posix) {
 99            return std.math.order(self.timestamp, other.timestamp);
100        }
101
102        var ord = std.math.order(self.timestamp.sec, other.timestamp.sec);
103        if (ord == .eq) {
104            ord = std.math.order(self.timestamp.nsec, other.timestamp.nsec);
105        }
106        return ord;
107    }
108
109    /// Returns elapsed time in nanoseconds since the `earlier` Instant.
110    /// This assumes that the `earlier` Instant represents a moment in time before or equal to `self`.
111    /// This also assumes that the time that has passed between both Instants fits inside a u64 (~585 yrs).
112    pub fn since(self: Instant, earlier: Instant) u64 {
113        switch (builtin.os.tag) {
114            .windows => {
115                // We don't need to cache QPF as it's internally just a memory read to KUSER_SHARED_DATA
116                // (a read-only page of info updated and mapped by the kernel to all processes):
117                // https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/ns-ntddk-kuser_shared_data
118                // https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/api/ntexapi_x/kuser_shared_data/index.htm
119                const qpc = self.timestamp - earlier.timestamp;
120                const qpf = windows.QueryPerformanceFrequency();
121
122                // 10Mhz (1 qpc tick every 100ns) is a common enough QPF value that we can optimize on it.
123                // https://github.com/microsoft/STL/blob/785143a0c73f030238ef618890fd4d6ae2b3a3a0/stl/inc/chrono#L694-L701
124                const common_qpf = 10_000_000;
125                if (qpf == common_qpf) {
126                    return qpc * (ns_per_s / common_qpf);
127                }
128
129                // Convert to ns using fixed point.
130                const scale = @as(u64, std.time.ns_per_s << 32) / @as(u32, @intCast(qpf));
131                const result = (@as(u96, qpc) * scale) >> 32;
132                return @as(u64, @truncate(result));
133            },
134            .uefi, .wasi => {
135                // UEFI and WASI timestamps are directly in nanoseconds
136                return self.timestamp - earlier.timestamp;
137            },
138            else => {
139                // Convert timespec diff to ns
140                const seconds = @as(u64, @intCast(self.timestamp.sec - earlier.timestamp.sec));
141                const elapsed = (seconds * ns_per_s) + @as(u32, @intCast(self.timestamp.nsec));
142                return elapsed - @as(u32, @intCast(earlier.timestamp.nsec));
143            },
144        }
145    }
146};
147
148/// A monotonic, high performance timer.
149///
150/// Timer.start() is used to initialize the timer
151/// and gives the caller an opportunity to check for the existence of a supported clock.
152/// Once a supported clock is discovered,
153/// it is assumed that it will be available for the duration of the Timer's use.
154///
155/// Monotonicity is ensured by saturating on the most previous sample.
156/// This means that while timings reported are monotonic,
157/// they're not guaranteed to tick at a steady rate as this is up to the underlying system.
158pub const Timer = struct {
159    started: Instant,
160    previous: Instant,
161
162    pub const Error = error{TimerUnsupported};
163
164    /// Initialize the timer by querying for a supported clock.
165    /// Returns `error.TimerUnsupported` when such a clock is unavailable.
166    /// This should only fail in hostile environments such as linux seccomp misuse.
167    pub fn start() Error!Timer {
168        const current = Instant.now() catch return error.TimerUnsupported;
169        return Timer{ .started = current, .previous = current };
170    }
171
172    /// Reads the timer value since start or the last reset in nanoseconds.
173    pub fn read(self: *Timer) u64 {
174        const current = self.sample();
175        return current.since(self.started);
176    }
177
178    /// Resets the timer value to 0/now.
179    pub fn reset(self: *Timer) void {
180        const current = self.sample();
181        self.started = current;
182    }
183
184    /// Returns the current value of the timer in nanoseconds, then resets it.
185    pub fn lap(self: *Timer) u64 {
186        const current = self.sample();
187        defer self.started = current;
188        return current.since(self.started);
189    }
190
191    /// Returns an Instant sampled at the callsite that is
192    /// guaranteed to be monotonic with respect to the timer's starting point.
193    fn sample(self: *Timer) Instant {
194        const current = Instant.now() catch unreachable;
195        if (current.order(self.previous) == .gt) {
196            self.previous = current;
197        }
198        return self.previous;
199    }
200};
201
202test Timer {
203    const io = std.testing.io;
204
205    var timer = try Timer.start();
206
207    try std.Io.Clock.Duration.sleep(.{ .clock = .awake, .raw = .fromMilliseconds(10) }, io);
208    const time_0 = timer.read();
209    try testing.expect(time_0 > 0);
210
211    const time_1 = timer.lap();
212    try testing.expect(time_1 >= time_0);
213}
214
215test {
216    _ = epoch;
217}