master
  1// Ported from musl, which is licensed under the MIT license:
  2// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
  3//
  4// https://git.musl-libc.org/cgit/musl/tree/src/complex/csinhf.c
  5// https://git.musl-libc.org/cgit/musl/tree/src/complex/csinh.c
  6
  7const std = @import("../../std.zig");
  8const testing = std.testing;
  9const math = std.math;
 10const cmath = math.complex;
 11const Complex = cmath.Complex;
 12
 13const ldexp_cexp = @import("ldexp.zig").ldexp_cexp;
 14
 15/// Returns the hyperbolic sine of z.
 16pub fn sinh(z: anytype) Complex(@TypeOf(z.re, z.im)) {
 17    const T = @TypeOf(z.re, z.im);
 18    return switch (T) {
 19        f32 => sinh32(z),
 20        f64 => sinh64(z),
 21        else => @compileError("tan not implemented for " ++ @typeName(z)),
 22    };
 23}
 24
 25fn sinh32(z: Complex(f32)) Complex(f32) {
 26    const x = z.re;
 27    const y = z.im;
 28
 29    const hx = @as(u32, @bitCast(x));
 30    const ix = hx & 0x7fffffff;
 31
 32    const hy = @as(u32, @bitCast(y));
 33    const iy = hy & 0x7fffffff;
 34
 35    if (ix < 0x7f800000 and iy < 0x7f800000) {
 36        if (iy == 0) {
 37            return Complex(f32).init(math.sinh(x), y);
 38        }
 39        // small x: normal case
 40        if (ix < 0x41100000) {
 41            return Complex(f32).init(math.sinh(x) * @cos(y), math.cosh(x) * @sin(y));
 42        }
 43
 44        // |x|>= 9, so cosh(x) ~= exp(|x|)
 45        if (ix < 0x42b17218) {
 46            // x < 88.7: exp(|x|) won't overflow
 47            const h = @exp(@abs(x)) * 0.5;
 48            return Complex(f32).init(math.copysign(h, x) * @cos(y), h * @sin(y));
 49        }
 50        // x < 192.7: scale to avoid overflow
 51        else if (ix < 0x4340b1e7) {
 52            const v = Complex(f32).init(@abs(x), y);
 53            const r = ldexp_cexp(v, -1);
 54            return Complex(f32).init(r.re * math.copysign(@as(f32, 1.0), x), r.im);
 55        }
 56        // x >= 192.7: result always overflows
 57        else {
 58            const h = 0x1p127 * x;
 59            return Complex(f32).init(h * @cos(y), h * h * @sin(y));
 60        }
 61    }
 62
 63    if (ix == 0 and iy >= 0x7f800000) {
 64        return Complex(f32).init(math.copysign(@as(f32, 0.0), x * (y - y)), y - y);
 65    }
 66
 67    if (iy == 0 and ix >= 0x7f800000) {
 68        if (hx & 0x7fffff == 0) {
 69            return Complex(f32).init(x, y);
 70        }
 71        return Complex(f32).init(x, math.copysign(@as(f32, 0.0), y));
 72    }
 73
 74    if (ix < 0x7f800000 and iy >= 0x7f800000) {
 75        return Complex(f32).init(y - y, x * (y - y));
 76    }
 77
 78    if (ix >= 0x7f800000 and (hx & 0x7fffff) == 0) {
 79        if (iy >= 0x7f800000) {
 80            return Complex(f32).init(x * x, x * (y - y));
 81        }
 82        return Complex(f32).init(x * @cos(y), math.inf(f32) * @sin(y));
 83    }
 84
 85    return Complex(f32).init((x * x) * (y - y), (x + x) * (y - y));
 86}
 87
 88fn sinh64(z: Complex(f64)) Complex(f64) {
 89    const x = z.re;
 90    const y = z.im;
 91
 92    const fx: u64 = @bitCast(x);
 93    const hx: u32 = @intCast(fx >> 32);
 94    const lx: u32 = @truncate(fx);
 95    const ix = hx & 0x7fffffff;
 96
 97    const fy: u64 = @bitCast(y);
 98    const hy: u32 = @intCast(fy >> 32);
 99    const ly: u32 = @truncate(fy);
100    const iy = hy & 0x7fffffff;
101
102    if (ix < 0x7ff00000 and iy < 0x7ff00000) {
103        if (iy | ly == 0) {
104            return Complex(f64).init(math.sinh(x), y);
105        }
106        // small x: normal case
107        if (ix < 0x40360000) {
108            return Complex(f64).init(math.sinh(x) * @cos(y), math.cosh(x) * @sin(y));
109        }
110
111        // |x|>= 22, so cosh(x) ~= exp(|x|)
112        if (ix < 0x40862e42) {
113            // x < 710: exp(|x|) won't overflow
114            const h = @exp(@abs(x)) * 0.5;
115            return Complex(f64).init(math.copysign(h, x) * @cos(y), h * @sin(y));
116        }
117        // x < 1455: scale to avoid overflow
118        else if (ix < 0x4096bbaa) {
119            const v = Complex(f64).init(@abs(x), y);
120            const r = ldexp_cexp(v, -1);
121            return Complex(f64).init(r.re * math.copysign(@as(f64, 1.0), x), r.im);
122        }
123        // x >= 1455: result always overflows
124        else {
125            const h = 0x1p1023 * x;
126            return Complex(f64).init(h * @cos(y), h * h * @sin(y));
127        }
128    }
129
130    if (ix | lx == 0 and iy >= 0x7ff00000) {
131        return Complex(f64).init(math.copysign(@as(f64, 0.0), x * (y - y)), y - y);
132    }
133
134    if (iy | ly == 0 and ix >= 0x7ff00000) {
135        if ((hx & 0xfffff) | lx == 0) {
136            return Complex(f64).init(x, y);
137        }
138        return Complex(f64).init(x, math.copysign(@as(f64, 0.0), y));
139    }
140
141    if (ix < 0x7ff00000 and iy >= 0x7ff00000) {
142        return Complex(f64).init(y - y, x * (y - y));
143    }
144
145    if (ix >= 0x7ff00000 and (hx & 0xfffff) | lx == 0) {
146        if (iy >= 0x7ff00000) {
147            return Complex(f64).init(x * x, x * (y - y));
148        }
149        return Complex(f64).init(x * @cos(y), math.inf(f64) * @sin(y));
150    }
151
152    return Complex(f64).init((x * x) * (y - y), (x + x) * (y - y));
153}
154
155test sinh32 {
156    const epsilon = math.floatEps(f32);
157    const a = Complex(f32).init(5, 3);
158    const c = sinh(a);
159
160    try testing.expectApproxEqAbs(-73.460617, c.re, epsilon);
161    try testing.expectApproxEqAbs(10.472508, c.im, epsilon);
162}
163
164test sinh64 {
165    const epsilon = math.floatEps(f64);
166    const a = Complex(f64).init(5, 3);
167    const c = sinh(a);
168
169    try testing.expectApproxEqAbs(-73.46062169567367, c.re, epsilon);
170    try testing.expectApproxEqAbs(10.472508533940392, c.im, epsilon);
171}