master
  1const std = @import("std");
  2const crypto = std.crypto;
  3const math = std.math;
  4const mem = std.mem;
  5const meta = std.meta;
  6
  7const EncodingError = crypto.errors.EncodingError;
  8const IdentityElementError = crypto.errors.IdentityElementError;
  9const NonCanonicalError = crypto.errors.NonCanonicalError;
 10const NotSquareError = crypto.errors.NotSquareError;
 11
 12/// Group operations over secp256k1.
 13pub const Secp256k1 = struct {
 14    /// The underlying prime field.
 15    pub const Fe = @import("secp256k1/field.zig").Fe;
 16    /// Field arithmetic mod the order of the main subgroup.
 17    pub const scalar = @import("secp256k1/scalar.zig");
 18
 19    x: Fe,
 20    y: Fe,
 21    z: Fe = Fe.one,
 22
 23    is_base: bool = false,
 24
 25    /// The secp256k1 base point.
 26    pub const basePoint = Secp256k1{
 27        .x = Fe.fromInt(55066263022277343669578718895168534326250603453777594175500187360389116729240) catch unreachable,
 28        .y = Fe.fromInt(32670510020758816978083085130507043184471273380659243275938904335757337482424) catch unreachable,
 29        .z = Fe.one,
 30        .is_base = true,
 31    };
 32
 33    /// The secp256k1 neutral element.
 34    pub const identityElement = Secp256k1{ .x = Fe.zero, .y = Fe.one, .z = Fe.zero };
 35
 36    pub const B = Fe.fromInt(7) catch unreachable;
 37
 38    pub const Endormorphism = struct {
 39        const lambda: u256 = 37718080363155996902926221483475020450927657555482586988616620542887997980018;
 40        const beta: u256 = 55594575648329892869085402983802832744385952214688224221778511981742606582254;
 41
 42        const lambda_s = s: {
 43            var buf: [32]u8 = undefined;
 44            mem.writeInt(u256, &buf, Endormorphism.lambda, .little);
 45            break :s buf;
 46        };
 47
 48        pub const SplitScalar = struct {
 49            r1: [32]u8,
 50            r2: [32]u8,
 51        };
 52
 53        /// Compute r1 and r2 so that k = r1 + r2*lambda (mod L).
 54        pub fn splitScalar(s: [32]u8, endian: std.builtin.Endian) NonCanonicalError!SplitScalar {
 55            const b1_neg_s = comptime s: {
 56                var buf: [32]u8 = undefined;
 57                mem.writeInt(u256, &buf, 303414439467246543595250775667605759171, .little);
 58                break :s buf;
 59            };
 60            const b2_neg_s = comptime s: {
 61                var buf: [32]u8 = undefined;
 62                mem.writeInt(u256, &buf, scalar.field_order - 64502973549206556628585045361533709077, .little);
 63                break :s buf;
 64            };
 65            const k = mem.readInt(u256, &s, endian);
 66
 67            const t1 = math.mulWide(u256, k, 21949224512762693861512883645436906316123769664773102907882521278123970637873);
 68            const t2 = math.mulWide(u256, k, 103246583619904461035481197785446227098457807945486720222659797044629401272177);
 69
 70            const c1 = @as(u128, @truncate(t1 >> 384)) + @as(u1, @truncate(t1 >> 383));
 71            const c2 = @as(u128, @truncate(t2 >> 384)) + @as(u1, @truncate(t2 >> 383));
 72
 73            var buf: [32]u8 = undefined;
 74
 75            mem.writeInt(u256, &buf, c1, .little);
 76            const c1x = try scalar.mul(buf, b1_neg_s, .little);
 77
 78            mem.writeInt(u256, &buf, c2, .little);
 79            const c2x = try scalar.mul(buf, b2_neg_s, .little);
 80
 81            const r2 = try scalar.add(c1x, c2x, .little);
 82
 83            var r1 = try scalar.mul(r2, lambda_s, .little);
 84            r1 = try scalar.sub(s, r1, .little);
 85
 86            return SplitScalar{ .r1 = r1, .r2 = r2 };
 87        }
 88    };
 89
 90    /// Reject the neutral element.
 91    pub fn rejectIdentity(p: Secp256k1) IdentityElementError!void {
 92        const affine_0 = @intFromBool(p.x.equivalent(AffineCoordinates.identityElement.x)) & (@intFromBool(p.y.isZero()) | @intFromBool(p.y.equivalent(AffineCoordinates.identityElement.y)));
 93        const is_identity = @intFromBool(p.z.isZero()) | affine_0;
 94        if (is_identity != 0) {
 95            return error.IdentityElement;
 96        }
 97    }
 98
 99    /// Create a point from affine coordinates after checking that they match the curve equation.
100    pub fn fromAffineCoordinates(p: AffineCoordinates) EncodingError!Secp256k1 {
101        const x = p.x;
102        const y = p.y;
103        const x3B = x.sq().mul(x).add(B);
104        const yy = y.sq();
105        const on_curve = @intFromBool(x3B.equivalent(yy));
106        const is_identity = @intFromBool(x.equivalent(AffineCoordinates.identityElement.x)) & @intFromBool(y.equivalent(AffineCoordinates.identityElement.y));
107        if ((on_curve | is_identity) == 0) {
108            return error.InvalidEncoding;
109        }
110        var ret = Secp256k1{ .x = x, .y = y, .z = Fe.one };
111        ret.z.cMov(Secp256k1.identityElement.z, is_identity);
112        return ret;
113    }
114
115    /// Create a point from serialized affine coordinates.
116    pub fn fromSerializedAffineCoordinates(xs: [32]u8, ys: [32]u8, endian: std.builtin.Endian) (NonCanonicalError || EncodingError)!Secp256k1 {
117        const x = try Fe.fromBytes(xs, endian);
118        const y = try Fe.fromBytes(ys, endian);
119        return fromAffineCoordinates(.{ .x = x, .y = y });
120    }
121
122    /// Recover the Y coordinate from the X coordinate.
123    pub fn recoverY(x: Fe, is_odd: bool) NotSquareError!Fe {
124        const x3B = x.sq().mul(x).add(B);
125        var y = try x3B.sqrt();
126        const yn = y.neg();
127        y.cMov(yn, @intFromBool(is_odd) ^ @intFromBool(y.isOdd()));
128        return y;
129    }
130
131    /// Deserialize a SEC1-encoded point.
132    pub fn fromSec1(s: []const u8) (EncodingError || NotSquareError || NonCanonicalError)!Secp256k1 {
133        if (s.len < 1) return error.InvalidEncoding;
134        const encoding_type = s[0];
135        const encoded = s[1..];
136        switch (encoding_type) {
137            0 => {
138                if (encoded.len != 0) return error.InvalidEncoding;
139                return Secp256k1.identityElement;
140            },
141            2, 3 => {
142                if (encoded.len != 32) return error.InvalidEncoding;
143                const x = try Fe.fromBytes(encoded[0..32].*, .big);
144                const y_is_odd = (encoding_type == 3);
145                const y = try recoverY(x, y_is_odd);
146                return Secp256k1{ .x = x, .y = y };
147            },
148            4 => {
149                if (encoded.len != 64) return error.InvalidEncoding;
150                const x = try Fe.fromBytes(encoded[0..32].*, .big);
151                const y = try Fe.fromBytes(encoded[32..64].*, .big);
152                return Secp256k1.fromAffineCoordinates(.{ .x = x, .y = y });
153            },
154            else => return error.InvalidEncoding,
155        }
156    }
157
158    /// Serialize a point using the compressed SEC-1 format.
159    pub fn toCompressedSec1(p: Secp256k1) [33]u8 {
160        var out: [33]u8 = undefined;
161        const xy = p.affineCoordinates();
162        out[0] = if (xy.y.isOdd()) 3 else 2;
163        out[1..].* = xy.x.toBytes(.big);
164        return out;
165    }
166
167    /// Serialize a point using the uncompressed SEC-1 format.
168    pub fn toUncompressedSec1(p: Secp256k1) [65]u8 {
169        var out: [65]u8 = undefined;
170        out[0] = 4;
171        const xy = p.affineCoordinates();
172        out[1..33].* = xy.x.toBytes(.big);
173        out[33..65].* = xy.y.toBytes(.big);
174        return out;
175    }
176
177    /// Return a random point.
178    pub fn random() Secp256k1 {
179        const n = scalar.random(.little);
180        return basePoint.mul(n, .little) catch unreachable;
181    }
182
183    /// Flip the sign of the X coordinate.
184    pub fn neg(p: Secp256k1) Secp256k1 {
185        return .{ .x = p.x, .y = p.y.neg(), .z = p.z };
186    }
187
188    /// Double a secp256k1 point.
189    // Algorithm 9 from https://eprint.iacr.org/2015/1060.pdf
190    pub fn dbl(p: Secp256k1) Secp256k1 {
191        var t0 = p.y.sq();
192        var Z3 = t0.dbl();
193        Z3 = Z3.dbl();
194        Z3 = Z3.dbl();
195        var t1 = p.y.mul(p.z);
196        var t2 = p.z.sq();
197        // b3 = (2^2)^2 + 2^2 + 1
198        const t2_4 = t2.dbl().dbl();
199        t2 = t2_4.dbl().dbl().add(t2_4).add(t2);
200        var X3 = t2.mul(Z3);
201        var Y3 = t0.add(t2);
202        Z3 = t1.mul(Z3);
203        t1 = t2.dbl();
204        t2 = t1.add(t2);
205        t0 = t0.sub(t2);
206        Y3 = t0.mul(Y3);
207        Y3 = X3.add(Y3);
208        t1 = p.x.mul(p.y);
209        X3 = t0.mul(t1);
210        X3 = X3.dbl();
211        return .{
212            .x = X3,
213            .y = Y3,
214            .z = Z3,
215        };
216    }
217
218    /// Add secp256k1 points, the second being specified using affine coordinates.
219    // Algorithm 8 from https://eprint.iacr.org/2015/1060.pdf
220    pub fn addMixed(p: Secp256k1, q: AffineCoordinates) Secp256k1 {
221        var t0 = p.x.mul(q.x);
222        var t1 = p.y.mul(q.y);
223        var t3 = q.x.add(q.y);
224        var t4 = p.x.add(p.y);
225        t3 = t3.mul(t4);
226        t4 = t0.add(t1);
227        t3 = t3.sub(t4);
228        t4 = q.y.mul(p.z);
229        t4 = t4.add(p.y);
230        var Y3 = q.x.mul(p.z);
231        Y3 = Y3.add(p.x);
232        var X3 = t0.dbl();
233        t0 = X3.add(t0);
234        // b3 = (2^2)^2 + 2^2 + 1
235        const t2_4 = p.z.dbl().dbl();
236        var t2 = t2_4.dbl().dbl().add(t2_4).add(p.z);
237        var Z3 = t1.add(t2);
238        t1 = t1.sub(t2);
239        const Y3_4 = Y3.dbl().dbl();
240        Y3 = Y3_4.dbl().dbl().add(Y3_4).add(Y3);
241        X3 = t4.mul(Y3);
242        t2 = t3.mul(t1);
243        X3 = t2.sub(X3);
244        Y3 = Y3.mul(t0);
245        t1 = t1.mul(Z3);
246        Y3 = t1.add(Y3);
247        t0 = t0.mul(t3);
248        Z3 = Z3.mul(t4);
249        Z3 = Z3.add(t0);
250
251        var ret = Secp256k1{
252            .x = X3,
253            .y = Y3,
254            .z = Z3,
255        };
256        ret.cMov(p, @intFromBool(q.x.isZero()));
257        return ret;
258    }
259
260    /// Add secp256k1 points.
261    // Algorithm 7 from https://eprint.iacr.org/2015/1060.pdf
262    pub fn add(p: Secp256k1, q: Secp256k1) Secp256k1 {
263        var t0 = p.x.mul(q.x);
264        var t1 = p.y.mul(q.y);
265        var t2 = p.z.mul(q.z);
266        var t3 = p.x.add(p.y);
267        var t4 = q.x.add(q.y);
268        t3 = t3.mul(t4);
269        t4 = t0.add(t1);
270        t3 = t3.sub(t4);
271        t4 = p.y.add(p.z);
272        var X3 = q.y.add(q.z);
273        t4 = t4.mul(X3);
274        X3 = t1.add(t2);
275        t4 = t4.sub(X3);
276        X3 = p.x.add(p.z);
277        var Y3 = q.x.add(q.z);
278        X3 = X3.mul(Y3);
279        Y3 = t0.add(t2);
280        Y3 = X3.sub(Y3);
281        X3 = t0.dbl();
282        t0 = X3.add(t0);
283        // b3 = (2^2)^2 + 2^2 + 1
284        const t2_4 = t2.dbl().dbl();
285        t2 = t2_4.dbl().dbl().add(t2_4).add(t2);
286        var Z3 = t1.add(t2);
287        t1 = t1.sub(t2);
288        const Y3_4 = Y3.dbl().dbl();
289        Y3 = Y3_4.dbl().dbl().add(Y3_4).add(Y3);
290        X3 = t4.mul(Y3);
291        t2 = t3.mul(t1);
292        X3 = t2.sub(X3);
293        Y3 = Y3.mul(t0);
294        t1 = t1.mul(Z3);
295        Y3 = t1.add(Y3);
296        t0 = t0.mul(t3);
297        Z3 = Z3.mul(t4);
298        Z3 = Z3.add(t0);
299
300        return .{
301            .x = X3,
302            .y = Y3,
303            .z = Z3,
304        };
305    }
306
307    /// Subtract secp256k1 points.
308    pub fn sub(p: Secp256k1, q: Secp256k1) Secp256k1 {
309        return p.add(q.neg());
310    }
311
312    /// Subtract secp256k1 points, the second being specified using affine coordinates.
313    pub fn subMixed(p: Secp256k1, q: AffineCoordinates) Secp256k1 {
314        return p.addMixed(q.neg());
315    }
316
317    /// Return affine coordinates.
318    pub fn affineCoordinates(p: Secp256k1) AffineCoordinates {
319        const affine_0 = @intFromBool(p.x.equivalent(AffineCoordinates.identityElement.x)) & (@intFromBool(p.y.isZero()) | @intFromBool(p.y.equivalent(AffineCoordinates.identityElement.y)));
320        const is_identity = @intFromBool(p.z.isZero()) | affine_0;
321        const zinv = p.z.invert();
322        var ret = AffineCoordinates{
323            .x = p.x.mul(zinv),
324            .y = p.y.mul(zinv),
325        };
326        ret.cMov(AffineCoordinates.identityElement, is_identity);
327        return ret;
328    }
329
330    /// Return true if both coordinate sets represent the same point.
331    pub fn equivalent(a: Secp256k1, b: Secp256k1) bool {
332        if (a.sub(b).rejectIdentity()) {
333            return false;
334        } else |_| {
335            return true;
336        }
337    }
338
339    fn cMov(p: *Secp256k1, a: Secp256k1, c: u1) void {
340        p.x.cMov(a.x, c);
341        p.y.cMov(a.y, c);
342        p.z.cMov(a.z, c);
343    }
344
345    fn pcSelect(comptime n: usize, pc: *const [n]Secp256k1, b: u8) Secp256k1 {
346        var t = Secp256k1.identityElement;
347        comptime var i: u8 = 1;
348        inline while (i < pc.len) : (i += 1) {
349            t.cMov(pc[i], @as(u1, @truncate((@as(usize, b ^ i) -% 1) >> 8)));
350        }
351        return t;
352    }
353
354    fn slide(s: [32]u8) [2 * 32 + 1]i8 {
355        var e: [2 * 32 + 1]i8 = undefined;
356        for (s, 0..) |x, i| {
357            e[i * 2 + 0] = @as(i8, @as(u4, @truncate(x)));
358            e[i * 2 + 1] = @as(i8, @as(u4, @truncate(x >> 4)));
359        }
360        // Now, e[0..63] is between 0 and 15, e[63] is between 0 and 7
361        var carry: i8 = 0;
362        for (e[0..64]) |*x| {
363            x.* += carry;
364            carry = (x.* + 8) >> 4;
365            x.* -= carry * 16;
366            std.debug.assert(x.* >= -8 and x.* <= 8);
367        }
368        e[64] = carry;
369        // Now, e[*] is between -8 and 8, including e[64]
370        std.debug.assert(carry >= -8 and carry <= 8);
371        return e;
372    }
373
374    fn pcMul(pc: *const [9]Secp256k1, s: [32]u8, comptime vartime: bool) IdentityElementError!Secp256k1 {
375        std.debug.assert(vartime);
376        const e = slide(s);
377        var q = Secp256k1.identityElement;
378        var pos = e.len - 1;
379        while (true) : (pos -= 1) {
380            const slot = e[pos];
381            if (slot > 0) {
382                q = q.add(pc[@as(usize, @intCast(slot))]);
383            } else if (slot < 0) {
384                q = q.sub(pc[@as(usize, @intCast(-slot))]);
385            }
386            if (pos == 0) break;
387            q = q.dbl().dbl().dbl().dbl();
388        }
389        try q.rejectIdentity();
390        return q;
391    }
392
393    fn pcMul16(pc: *const [16]Secp256k1, s: [32]u8, comptime vartime: bool) IdentityElementError!Secp256k1 {
394        var q = Secp256k1.identityElement;
395        var pos: usize = 252;
396        while (true) : (pos -= 4) {
397            const slot = @as(u4, @truncate((s[pos >> 3] >> @as(u3, @truncate(pos)))));
398            if (vartime) {
399                if (slot != 0) {
400                    q = q.add(pc[slot]);
401                }
402            } else {
403                q = q.add(pcSelect(16, pc, slot));
404            }
405            if (pos == 0) break;
406            q = q.dbl().dbl().dbl().dbl();
407        }
408        try q.rejectIdentity();
409        return q;
410    }
411
412    fn precompute(p: Secp256k1, comptime count: usize) [1 + count]Secp256k1 {
413        var pc: [1 + count]Secp256k1 = undefined;
414        pc[0] = Secp256k1.identityElement;
415        pc[1] = p;
416        var i: usize = 2;
417        while (i <= count) : (i += 1) {
418            pc[i] = if (i % 2 == 0) pc[i / 2].dbl() else pc[i - 1].add(p);
419        }
420        return pc;
421    }
422
423    const basePointPc = pc: {
424        @setEvalBranchQuota(50000);
425        break :pc precompute(Secp256k1.basePoint, 15);
426    };
427
428    /// Multiply an elliptic curve point by a scalar.
429    /// Return error.IdentityElement if the result is the identity element.
430    pub fn mul(p: Secp256k1, s_: [32]u8, endian: std.builtin.Endian) IdentityElementError!Secp256k1 {
431        const s = if (endian == .little) s_ else Fe.orderSwap(s_);
432        if (p.is_base) {
433            return pcMul16(&basePointPc, s, false);
434        }
435        try p.rejectIdentity();
436        const pc = precompute(p, 15);
437        return pcMul16(&pc, s, false);
438    }
439
440    /// Multiply an elliptic curve point by a *PUBLIC* scalar *IN VARIABLE TIME*
441    /// This can be used for signature verification.
442    pub fn mulPublic(p: Secp256k1, s_: [32]u8, endian: std.builtin.Endian) (IdentityElementError || NonCanonicalError)!Secp256k1 {
443        const s = if (endian == .little) s_ else Fe.orderSwap(s_);
444        const zero = comptime scalar.Scalar.zero.toBytes(.little);
445        if (mem.eql(u8, &zero, &s)) {
446            return error.IdentityElement;
447        }
448        const pc = precompute(p, 8);
449        var lambda_p = try pcMul(&pc, Endormorphism.lambda_s, true);
450        var split_scalar = try Endormorphism.splitScalar(s, .little);
451        var px = p;
452
453        // If a key is negative, flip the sign to keep it half-sized,
454        // and flip the sign of the Y point coordinate to compensate.
455        if (split_scalar.r1[split_scalar.r1.len / 2] != 0) {
456            split_scalar.r1 = scalar.neg(split_scalar.r1, .little) catch zero;
457            px = px.neg();
458        }
459        if (split_scalar.r2[split_scalar.r2.len / 2] != 0) {
460            split_scalar.r2 = scalar.neg(split_scalar.r2, .little) catch zero;
461            lambda_p = lambda_p.neg();
462        }
463        return mulDoubleBasePublicEndo(px, split_scalar.r1, lambda_p, split_scalar.r2);
464    }
465
466    // Half-size double-base public multiplication when using the curve endomorphism.
467    // Scalars must be in little-endian.
468    // The second point is unlikely to be the generator, so don't even try to use the comptime table for it.
469    fn mulDoubleBasePublicEndo(p1: Secp256k1, s1: [32]u8, p2: Secp256k1, s2: [32]u8) IdentityElementError!Secp256k1 {
470        var pc1_array: [9]Secp256k1 = undefined;
471        const pc1 = if (p1.is_base) basePointPc[0..9] else pc: {
472            pc1_array = precompute(p1, 8);
473            break :pc &pc1_array;
474        };
475        const pc2 = precompute(p2, 8);
476        std.debug.assert(s1[s1.len / 2] == 0);
477        std.debug.assert(s2[s2.len / 2] == 0);
478        const e1 = slide(s1);
479        const e2 = slide(s2);
480        var q = Secp256k1.identityElement;
481        var pos: usize = 2 * 32 / 2; // second half is all zero
482        while (true) : (pos -= 1) {
483            const slot1 = e1[pos];
484            if (slot1 > 0) {
485                q = q.add(pc1[@as(usize, @intCast(slot1))]);
486            } else if (slot1 < 0) {
487                q = q.sub(pc1[@as(usize, @intCast(-slot1))]);
488            }
489            const slot2 = e2[pos];
490            if (slot2 > 0) {
491                q = q.add(pc2[@as(usize, @intCast(slot2))]);
492            } else if (slot2 < 0) {
493                q = q.sub(pc2[@as(usize, @intCast(-slot2))]);
494            }
495            if (pos == 0) break;
496            q = q.dbl().dbl().dbl().dbl();
497        }
498        try q.rejectIdentity();
499        return q;
500    }
501
502    /// Double-base multiplication of public parameters - Compute (p1*s1)+(p2*s2) *IN VARIABLE TIME*
503    /// This can be used for signature verification.
504    pub fn mulDoubleBasePublic(p1: Secp256k1, s1_: [32]u8, p2: Secp256k1, s2_: [32]u8, endian: std.builtin.Endian) IdentityElementError!Secp256k1 {
505        const s1 = if (endian == .little) s1_ else Fe.orderSwap(s1_);
506        const s2 = if (endian == .little) s2_ else Fe.orderSwap(s2_);
507        try p1.rejectIdentity();
508        var pc1_array: [9]Secp256k1 = undefined;
509        const pc1 = if (p1.is_base) basePointPc[0..9] else pc: {
510            pc1_array = precompute(p1, 8);
511            break :pc &pc1_array;
512        };
513        try p2.rejectIdentity();
514        var pc2_array: [9]Secp256k1 = undefined;
515        const pc2 = if (p2.is_base) basePointPc[0..9] else pc: {
516            pc2_array = precompute(p2, 8);
517            break :pc &pc2_array;
518        };
519        const e1 = slide(s1);
520        const e2 = slide(s2);
521        var q = Secp256k1.identityElement;
522        var pos: usize = 2 * 32;
523        while (true) : (pos -= 1) {
524            const slot1 = e1[pos];
525            if (slot1 > 0) {
526                q = q.add(pc1[@as(usize, @intCast(slot1))]);
527            } else if (slot1 < 0) {
528                q = q.sub(pc1[@as(usize, @intCast(-slot1))]);
529            }
530            const slot2 = e2[pos];
531            if (slot2 > 0) {
532                q = q.add(pc2[@as(usize, @intCast(slot2))]);
533            } else if (slot2 < 0) {
534                q = q.sub(pc2[@as(usize, @intCast(-slot2))]);
535            }
536            if (pos == 0) break;
537            q = q.dbl().dbl().dbl().dbl();
538        }
539        try q.rejectIdentity();
540        return q;
541    }
542};
543
544/// A point in affine coordinates.
545pub const AffineCoordinates = struct {
546    x: Secp256k1.Fe,
547    y: Secp256k1.Fe,
548
549    /// Identity element in affine coordinates.
550    pub const identityElement = AffineCoordinates{ .x = Secp256k1.identityElement.x, .y = Secp256k1.identityElement.y };
551
552    pub fn neg(p: AffineCoordinates) AffineCoordinates {
553        return .{ .x = p.x, .y = p.y.neg() };
554    }
555
556    fn cMov(p: *AffineCoordinates, a: AffineCoordinates, c: u1) void {
557        p.x.cMov(a.x, c);
558        p.y.cMov(a.y, c);
559    }
560};
561
562test {
563    if (@import("builtin").zig_backend == .stage2_c) return error.SkipZigTest;
564
565    _ = @import("tests/secp256k1.zig");
566}