master
  1//! The engines provided here should be initialized from an external source.
  2//! For a thread-local cryptographically secure pseudo random number generator,
  3//! use `std.crypto.random`.
  4//! Be sure to use a CSPRNG when required, otherwise using a normal PRNG will
  5//! be faster and use substantially less stack space.
  6
  7const std = @import("std.zig");
  8const math = std.math;
  9const mem = std.mem;
 10const assert = std.debug.assert;
 11const maxInt = std.math.maxInt;
 12const Random = @This();
 13
 14/// Fast unbiased random numbers.
 15pub const DefaultPrng = Xoshiro256;
 16
 17/// Cryptographically secure random numbers.
 18pub const DefaultCsprng = ChaCha;
 19
 20pub const Ascon = @import("Random/Ascon.zig");
 21pub const ChaCha = @import("Random/ChaCha.zig");
 22
 23pub const Isaac64 = @import("Random/Isaac64.zig");
 24pub const Pcg = @import("Random/Pcg.zig");
 25pub const Xoroshiro128 = @import("Random/Xoroshiro128.zig");
 26pub const Xoshiro256 = @import("Random/Xoshiro256.zig");
 27pub const Sfc64 = @import("Random/Sfc64.zig");
 28pub const RomuTrio = @import("Random/RomuTrio.zig");
 29pub const SplitMix64 = @import("Random/SplitMix64.zig");
 30pub const ziggurat = @import("Random/ziggurat.zig");
 31
 32/// Any comparison of this field may result in illegal behavior, since it may be set to
 33/// `undefined` in cases where the random implementation does not have any associated
 34/// state.
 35ptr: *anyopaque,
 36fillFn: *const fn (ptr: *anyopaque, buf: []u8) void,
 37
 38pub fn init(pointer: anytype, comptime fillFn: fn (ptr: @TypeOf(pointer), buf: []u8) void) Random {
 39    const Ptr = @TypeOf(pointer);
 40    assert(@typeInfo(Ptr) == .pointer); // Must be a pointer
 41    assert(@typeInfo(Ptr).pointer.size == .one); // Must be a single-item pointer
 42    assert(@typeInfo(@typeInfo(Ptr).pointer.child) == .@"struct"); // Must point to a struct
 43    const gen = struct {
 44        fn fill(ptr: *anyopaque, buf: []u8) void {
 45            const self: Ptr = @ptrCast(@alignCast(ptr));
 46            fillFn(self, buf);
 47        }
 48    };
 49
 50    return .{
 51        .ptr = pointer,
 52        .fillFn = gen.fill,
 53    };
 54}
 55
 56/// Read random bytes into the specified buffer until full.
 57pub fn bytes(r: Random, buf: []u8) void {
 58    r.fillFn(r.ptr, buf);
 59}
 60
 61pub fn array(r: Random, comptime E: type, comptime N: usize) [N]E {
 62    var result: [N]E = undefined;
 63    bytes(r, &result);
 64    return result;
 65}
 66
 67pub fn boolean(r: Random) bool {
 68    return r.int(u1) != 0;
 69}
 70
 71/// Returns a random value from an enum, evenly distributed.
 72///
 73/// Note that this will not yield consistent results across all targets
 74/// due to dependence on the representation of `usize` as an index.
 75/// See `enumValueWithIndex` for further commentary.
 76pub inline fn enumValue(r: Random, comptime EnumType: type) EnumType {
 77    return r.enumValueWithIndex(EnumType, usize);
 78}
 79
 80/// Returns a random value from an enum, evenly distributed.
 81///
 82/// An index into an array of all named values is generated using the
 83/// specified `Index` type to determine the return value.
 84/// This allows for results to be independent of `usize` representation.
 85///
 86/// Prefer `enumValue` if this isn't important.
 87///
 88/// See `uintLessThan`, which this function uses in most cases,
 89/// for commentary on the runtime of this function.
 90pub fn enumValueWithIndex(r: Random, comptime EnumType: type, comptime Index: type) EnumType {
 91    comptime assert(@typeInfo(EnumType) == .@"enum");
 92
 93    // We won't use int -> enum casting because enum elements can have
 94    //  arbitrary values.  Instead we'll randomly pick one of the type's values.
 95    const values = comptime std.enums.values(EnumType);
 96    comptime assert(values.len > 0); // can't return anything
 97    comptime assert(maxInt(Index) >= values.len - 1); // can't access all values
 98    if (values.len == 1) return values[0];
 99
100    const index = if (comptime values.len - 1 == maxInt(Index))
101        r.int(Index)
102    else
103        r.uintLessThan(Index, values.len);
104
105    const MinInt = MinArrayIndex(Index);
106    return values[@as(MinInt, @intCast(index))];
107}
108
109/// Returns a random int `i` such that `minInt(T) <= i <= maxInt(T)`.
110/// `i` is evenly distributed.
111pub fn int(r: Random, comptime T: type) T {
112    const bits = @typeInfo(T).int.bits;
113    const UnsignedT = std.meta.Int(.unsigned, bits);
114    const ceil_bytes = comptime std.math.divCeil(u16, bits, 8) catch unreachable;
115    const ByteAlignedT = std.meta.Int(.unsigned, ceil_bytes * 8);
116
117    var rand_bytes: [ceil_bytes]u8 = undefined;
118    r.bytes(&rand_bytes);
119
120    // use LE instead of native endian for better portability maybe?
121    // TODO: endian portability is pointless if the underlying prng isn't endian portable.
122    // TODO: document the endian portability of this library.
123    const byte_aligned_result = mem.readInt(ByteAlignedT, &rand_bytes, .little);
124    const unsigned_result: UnsignedT = @truncate(byte_aligned_result);
125    return @bitCast(unsigned_result);
126}
127
128/// Constant-time implementation off `uintLessThan`.
129/// The results of this function may be biased.
130pub fn uintLessThanBiased(r: Random, comptime T: type, less_than: T) T {
131    comptime assert(@typeInfo(T).int.signedness == .unsigned);
132    assert(0 < less_than);
133    return limitRangeBiased(T, r.int(T), less_than);
134}
135
136/// Returns an evenly distributed random unsigned integer `0 <= i < less_than`.
137/// This function assumes that the underlying `fillFn` produces evenly distributed values.
138/// Within this assumption, the runtime of this function is exponentially distributed.
139/// If `fillFn` were backed by a true random generator,
140/// the runtime of this function would technically be unbounded.
141/// However, if `fillFn` is backed by any evenly distributed pseudo random number generator,
142/// this function is guaranteed to return.
143/// If you need deterministic runtime bounds, use `uintLessThanBiased`.
144pub fn uintLessThan(r: Random, comptime T: type, less_than: T) T {
145    comptime assert(@typeInfo(T).int.signedness == .unsigned);
146    const bits = @typeInfo(T).int.bits;
147    assert(0 < less_than);
148
149    // adapted from:
150    //   http://www.pcg-random.org/posts/bounded-rands.html
151    //   "Lemire's (with an extra tweak from me)"
152    var x = r.int(T);
153    var m = math.mulWide(T, x, less_than);
154    var l: T = @truncate(m);
155    if (l < less_than) {
156        var t = -%less_than;
157
158        if (t >= less_than) {
159            t -= less_than;
160            if (t >= less_than) {
161                t %= less_than;
162            }
163        }
164        while (l < t) {
165            x = r.int(T);
166            m = math.mulWide(T, x, less_than);
167            l = @truncate(m);
168        }
169    }
170    return @intCast(m >> bits);
171}
172
173/// Constant-time implementation off `uintAtMost`.
174/// The results of this function may be biased.
175pub fn uintAtMostBiased(r: Random, comptime T: type, at_most: T) T {
176    assert(@typeInfo(T).int.signedness == .unsigned);
177    if (at_most == maxInt(T)) {
178        // have the full range
179        return r.int(T);
180    }
181    return r.uintLessThanBiased(T, at_most + 1);
182}
183
184/// Returns an evenly distributed random unsigned integer `0 <= i <= at_most`.
185/// See `uintLessThan`, which this function uses in most cases,
186/// for commentary on the runtime of this function.
187pub fn uintAtMost(r: Random, comptime T: type, at_most: T) T {
188    assert(@typeInfo(T).int.signedness == .unsigned);
189    if (at_most == maxInt(T)) {
190        // have the full range
191        return r.int(T);
192    }
193    return r.uintLessThan(T, at_most + 1);
194}
195
196/// Constant-time implementation off `intRangeLessThan`.
197/// The results of this function may be biased.
198pub fn intRangeLessThanBiased(r: Random, comptime T: type, at_least: T, less_than: T) T {
199    assert(at_least < less_than);
200    const info = @typeInfo(T).int;
201    if (info.signedness == .signed) {
202        // Two's complement makes this math pretty easy.
203        const UnsignedT = std.meta.Int(.unsigned, info.bits);
204        const lo: UnsignedT = @bitCast(at_least);
205        const hi: UnsignedT = @bitCast(less_than);
206        const result = lo +% r.uintLessThanBiased(UnsignedT, hi -% lo);
207        return @bitCast(result);
208    } else {
209        // The signed implementation would work fine, but we can use stricter arithmetic operators here.
210        return at_least + r.uintLessThanBiased(T, less_than - at_least);
211    }
212}
213
214/// Returns an evenly distributed random integer `at_least <= i < less_than`.
215/// See `uintLessThan`, which this function uses in most cases,
216/// for commentary on the runtime of this function.
217pub fn intRangeLessThan(r: Random, comptime T: type, at_least: T, less_than: T) T {
218    assert(at_least < less_than);
219    const info = @typeInfo(T).int;
220    if (info.signedness == .signed) {
221        // Two's complement makes this math pretty easy.
222        const UnsignedT = std.meta.Int(.unsigned, info.bits);
223        const lo: UnsignedT = @bitCast(at_least);
224        const hi: UnsignedT = @bitCast(less_than);
225        const result = lo +% r.uintLessThan(UnsignedT, hi -% lo);
226        return @bitCast(result);
227    } else {
228        // The signed implementation would work fine, but we can use stricter arithmetic operators here.
229        return at_least + r.uintLessThan(T, less_than - at_least);
230    }
231}
232
233/// Constant-time implementation off `intRangeAtMostBiased`.
234/// The results of this function may be biased.
235pub fn intRangeAtMostBiased(r: Random, comptime T: type, at_least: T, at_most: T) T {
236    assert(at_least <= at_most);
237    const info = @typeInfo(T).int;
238    if (info.signedness == .signed) {
239        // Two's complement makes this math pretty easy.
240        const UnsignedT = std.meta.Int(.unsigned, info.bits);
241        const lo: UnsignedT = @bitCast(at_least);
242        const hi: UnsignedT = @bitCast(at_most);
243        const result = lo +% r.uintAtMostBiased(UnsignedT, hi -% lo);
244        return @bitCast(result);
245    } else {
246        // The signed implementation would work fine, but we can use stricter arithmetic operators here.
247        return at_least + r.uintAtMostBiased(T, at_most - at_least);
248    }
249}
250
251/// Returns an evenly distributed random integer `at_least <= i <= at_most`.
252/// See `uintLessThan`, which this function uses in most cases,
253/// for commentary on the runtime of this function.
254pub fn intRangeAtMost(r: Random, comptime T: type, at_least: T, at_most: T) T {
255    assert(at_least <= at_most);
256    const info = @typeInfo(T).int;
257    if (info.signedness == .signed) {
258        // Two's complement makes this math pretty easy.
259        const UnsignedT = std.meta.Int(.unsigned, info.bits);
260        const lo: UnsignedT = @bitCast(at_least);
261        const hi: UnsignedT = @bitCast(at_most);
262        const result = lo +% r.uintAtMost(UnsignedT, hi -% lo);
263        return @bitCast(result);
264    } else {
265        // The signed implementation would work fine, but we can use stricter arithmetic operators here.
266        return at_least + r.uintAtMost(T, at_most - at_least);
267    }
268}
269
270/// Return a floating point value evenly distributed in the range [0, 1).
271pub fn float(r: Random, comptime T: type) T {
272    // Generate a uniformly random value for the mantissa.
273    // Then generate an exponentially biased random value for the exponent.
274    // This covers every possible value in the range.
275    switch (T) {
276        f32 => {
277            // Use 23 random bits for the mantissa, and the rest for the exponent.
278            // If all 41 bits are zero, generate additional random bits, until a
279            // set bit is found, or 126 bits have been generated.
280            const rand = r.int(u64);
281            var rand_lz = @clz(rand);
282            if (rand_lz >= 41) {
283                @branchHint(.unlikely);
284                rand_lz = 41 + @clz(r.int(u64));
285                if (rand_lz == 41 + 64) {
286                    @branchHint(.unlikely);
287                    // It is astronomically unlikely to reach this point.
288                    rand_lz += @clz(r.int(u32) | 0x7FF);
289                }
290            }
291            const mantissa: u23 = @truncate(rand);
292            const exponent = @as(u32, 126 - rand_lz) << 23;
293            return @bitCast(exponent | mantissa);
294        },
295        f64 => {
296            // Use 52 random bits for the mantissa, and the rest for the exponent.
297            // If all 12 bits are zero, generate additional random bits, until a
298            // set bit is found, or 1022 bits have been generated.
299            const rand = r.int(u64);
300            var rand_lz: u64 = @clz(rand);
301            if (rand_lz >= 12) {
302                rand_lz = 12;
303                while (true) {
304                    // It is astronomically unlikely for this loop to execute more than once.
305                    const addl_rand_lz = @clz(r.int(u64));
306                    rand_lz += addl_rand_lz;
307                    if (addl_rand_lz != 64) {
308                        @branchHint(.likely);
309                        break;
310                    }
311                    if (rand_lz >= 1022) {
312                        rand_lz = 1022;
313                        break;
314                    }
315                }
316            }
317            const mantissa = rand & 0xFFFFFFFFFFFFF;
318            const exponent = (1022 - rand_lz) << 52;
319            return @bitCast(exponent | mantissa);
320        },
321        else => @compileError("unknown floating point type"),
322    }
323}
324
325/// Return a floating point value normally distributed with mean = 0, stddev = 1.
326///
327/// To use different parameters, use: floatNorm(...) * desiredStddev + desiredMean.
328pub fn floatNorm(r: Random, comptime T: type) T {
329    const value = ziggurat.next_f64(r, ziggurat.NormDist);
330    switch (T) {
331        f32 => return @floatCast(value),
332        f64 => return value,
333        else => @compileError("unknown floating point type"),
334    }
335}
336
337/// Return an exponentially distributed float with a rate parameter of 1.
338///
339/// To use a different rate parameter, use: floatExp(...) / desiredRate.
340pub fn floatExp(r: Random, comptime T: type) T {
341    const value = ziggurat.next_f64(r, ziggurat.ExpDist);
342    switch (T) {
343        f32 => return @floatCast(value),
344        f64 => return value,
345        else => @compileError("unknown floating point type"),
346    }
347}
348
349/// Shuffle a slice into a random order.
350///
351/// Note that this will not yield consistent results across all targets
352/// due to dependence on the representation of `usize` as an index.
353/// See `shuffleWithIndex` for further commentary.
354pub inline fn shuffle(r: Random, comptime T: type, buf: []T) void {
355    r.shuffleWithIndex(T, buf, usize);
356}
357
358/// Shuffle a slice into a random order, using an index of a
359/// specified type to maintain distribution across targets.
360/// Asserts the index type can represent `buf.len`.
361///
362/// Indexes into the slice are generated using the specified `Index`
363/// type, which determines distribution properties. This allows for
364/// results to be independent of `usize` representation.
365///
366/// Prefer `shuffle` if this isn't important.
367///
368/// See `intRangeLessThan`, which this function uses,
369/// for commentary on the runtime of this function.
370pub fn shuffleWithIndex(r: Random, comptime T: type, buf: []T, comptime Index: type) void {
371    const MinInt = MinArrayIndex(Index);
372    if (buf.len < 2) {
373        return;
374    }
375
376    // `i <= j < max <= maxInt(MinInt)`
377    const max: MinInt = @intCast(buf.len);
378    var i: MinInt = 0;
379    while (i < max - 1) : (i += 1) {
380        const j: MinInt = @intCast(r.intRangeLessThan(Index, i, max));
381        mem.swap(T, &buf[i], &buf[j]);
382    }
383}
384
385/// Randomly selects an index into `proportions`, where the likelihood of each
386/// index is weighted by that proportion.
387/// It is more likely for the index of the last proportion to be returned
388/// than the index of the first proportion in the slice, and vice versa.
389///
390/// This is useful for selecting an item from a slice where weights are not equal.
391/// `T` must be a numeric type capable of holding the sum of `proportions`.
392pub fn weightedIndex(r: Random, comptime T: type, proportions: []const T) usize {
393    // This implementation works by summing the proportions and picking a
394    // random point in [0, sum).  We then loop over the proportions,
395    // accumulating until our accumulator is greater than the random point.
396
397    const sum = s: {
398        var sum: T = 0;
399        for (proportions) |v| sum += v;
400        break :s sum;
401    };
402
403    const point = switch (@typeInfo(T)) {
404        .int => |int_info| switch (int_info.signedness) {
405            .signed => r.intRangeLessThan(T, 0, sum),
406            .unsigned => r.uintLessThan(T, sum),
407        },
408        // take care that imprecision doesn't lead to a value slightly greater than sum
409        .float => @min(r.float(T) * sum, sum - std.math.floatEps(T)),
410        else => @compileError("weightedIndex does not support proportions of type " ++
411            @typeName(T)),
412    };
413
414    assert(point < sum);
415
416    var accumulator: T = 0;
417    for (proportions, 0..) |p, index| {
418        accumulator += p;
419        if (point < accumulator) return index;
420    } else unreachable;
421}
422
423/// Convert a random integer 0 <= random_int <= maxValue(T),
424/// into an integer 0 <= result < less_than.
425/// This function introduces a minor bias.
426pub fn limitRangeBiased(comptime T: type, random_int: T, less_than: T) T {
427    comptime assert(@typeInfo(T).int.signedness == .unsigned);
428    const bits = @typeInfo(T).int.bits;
429
430    // adapted from:
431    //   http://www.pcg-random.org/posts/bounded-rands.html
432    //   "Integer Multiplication (Biased)"
433    const m = math.mulWide(T, random_int, less_than);
434    return @intCast(m >> bits);
435}
436
437/// Returns the smallest of `Index` and `usize`.
438fn MinArrayIndex(comptime Index: type) type {
439    const index_info = @typeInfo(Index).int;
440    assert(index_info.signedness == .unsigned);
441    return if (index_info.bits >= @typeInfo(usize).int.bits) usize else Index;
442}
443
444test {
445    std.testing.refAllDecls(@This());
446    _ = @import("Random/test.zig");
447}