master
  1//! An implementation of file-system watching based on the `FSEventStream` API in macOS.
  2//! While macOS supports kqueue, it does not allow detecting changes to files without
  3//! placing watches on each individual file, meaning FD limits are reached incredibly
  4//! quickly. The File System Events API works differently: it implements *recursive*
  5//! directory watches, managed by a system service. Rather than being in libc, the API is
  6//! exposed by the CoreServices framework. To avoid a compile dependency on the framework
  7//! bundle, we dynamically load CoreServices with `std.DynLib`.
  8//!
  9//! While the logic in this file *is* specialized to `std.Build.Watch`, efforts have been
 10//! made to keep that specialization to a minimum. Other use cases could be served with
 11//! relatively minimal modifications to the `watch_paths` field and its usages (in
 12//! particular the `setPaths` function). We avoid using the global GCD dispatch queue in
 13//! favour of creating our own and synchronizing with an explicit semaphore, meaning this
 14//! logic is thread-safe and does not affect process-global state.
 15//!
 16//! In theory, this API is quite good at avoiding filesystem race conditions. In practice,
 17//! the logic that would avoid them is currently disabled, because the build system kind
 18//! of relies on them at the time of writing to avoid redundant work -- see the comment at
 19//! the top of `wait` for details.
 20
 21const enable_debug_logs = false;
 22
 23core_services: std.DynLib,
 24resolved_symbols: ResolvedSymbols,
 25
 26paths_arena: std.heap.ArenaAllocator.State,
 27/// The roots of the recursive watches. FSEvents has relatively small limits on the number
 28/// of watched paths, so this slice must not be too long. The paths themselves are allocated
 29/// into `paths_arena`, but this slice is allocated into the GPA.
 30watch_roots: [][:0]const u8,
 31/// All of the paths being watched. Value is the set of steps which depend on the file/directory.
 32/// Keys and values are in `paths_arena`, but this map is allocated into the GPA.
 33watch_paths: std.StringArrayHashMapUnmanaged([]const *std.Build.Step),
 34
 35/// The semaphore we use to block the thread calling `wait` until the callback determines a relevant
 36/// event has occurred. This is retained across `wait` calls for simplicity and efficiency.
 37waiting_semaphore: dispatch_semaphore_t,
 38/// This dispatch queue is created by us and executes serially. It exists exclusively to trigger the
 39/// callbacks of the FSEventStream we create. This is not in use outside of `wait`, but is retained
 40/// across `wait` calls for simplicity and efficiency.
 41dispatch_queue: dispatch_queue_t,
 42/// In theory, this field avoids race conditions. In practice, it is essentially unused at the time
 43/// of writing. See the comment at the start of `wait` for details.
 44since_event: FSEventStreamEventId,
 45
 46/// All of the symbols we pull from the `dlopen`ed CoreServices framework. If any of these symbols
 47/// is not present, `init` will close the framework and return an error.
 48const ResolvedSymbols = struct {
 49    FSEventStreamCreate: *const fn (
 50        allocator: CFAllocatorRef,
 51        callback: FSEventStreamCallback,
 52        ctx: ?*const FSEventStreamContext,
 53        paths_to_watch: CFArrayRef,
 54        since_when: FSEventStreamEventId,
 55        latency: CFTimeInterval,
 56        flags: FSEventStreamCreateFlags,
 57    ) callconv(.c) FSEventStreamRef,
 58    FSEventStreamSetDispatchQueue: *const fn (stream: FSEventStreamRef, queue: dispatch_queue_t) callconv(.c) void,
 59    FSEventStreamStart: *const fn (stream: FSEventStreamRef) callconv(.c) bool,
 60    FSEventStreamStop: *const fn (stream: FSEventStreamRef) callconv(.c) void,
 61    FSEventStreamInvalidate: *const fn (stream: FSEventStreamRef) callconv(.c) void,
 62    FSEventStreamRelease: *const fn (stream: FSEventStreamRef) callconv(.c) void,
 63    FSEventStreamGetLatestEventId: *const fn (stream: ConstFSEventStreamRef) callconv(.c) FSEventStreamEventId,
 64    FSEventsGetCurrentEventId: *const fn () callconv(.c) FSEventStreamEventId,
 65    CFRelease: *const fn (cf: *const anyopaque) callconv(.c) void,
 66    CFArrayCreate: *const fn (
 67        allocator: CFAllocatorRef,
 68        values: [*]const usize,
 69        num_values: CFIndex,
 70        call_backs: ?*const CFArrayCallBacks,
 71    ) callconv(.c) CFArrayRef,
 72    CFStringCreateWithCString: *const fn (
 73        alloc: CFAllocatorRef,
 74        c_str: [*:0]const u8,
 75        encoding: CFStringEncoding,
 76    ) callconv(.c) CFStringRef,
 77    CFAllocatorCreate: *const fn (allocator: CFAllocatorRef, context: *const CFAllocatorContext) callconv(.c) CFAllocatorRef,
 78    kCFAllocatorUseContext: *const CFAllocatorRef,
 79};
 80
 81pub fn init() error{ OpenFrameworkFailed, MissingCoreServicesSymbol }!FsEvents {
 82    var core_services = std.DynLib.open("/System/Library/Frameworks/CoreServices.framework/CoreServices") catch
 83        return error.OpenFrameworkFailed;
 84    errdefer core_services.close();
 85
 86    var resolved_symbols: ResolvedSymbols = undefined;
 87    inline for (@typeInfo(ResolvedSymbols).@"struct".fields) |f| {
 88        @field(resolved_symbols, f.name) = core_services.lookup(f.type, f.name) orelse return error.MissingCoreServicesSymbol;
 89    }
 90
 91    return .{
 92        .core_services = core_services,
 93        .resolved_symbols = resolved_symbols,
 94        .paths_arena = .{},
 95        .watch_roots = &.{},
 96        .watch_paths = .empty,
 97        .waiting_semaphore = dispatch_semaphore_create(0),
 98        .dispatch_queue = dispatch_queue_create("zig-watch", .SERIAL),
 99        // Not `.since_now`, because this means we can init `FsEvents` *before* we do work in order
100        // to notice any changes which happened during said work.
101        .since_event = resolved_symbols.FSEventsGetCurrentEventId(),
102    };
103}
104
105pub fn deinit(fse: *FsEvents, gpa: Allocator) void {
106    dispatch_release(fse.waiting_semaphore);
107    dispatch_release(fse.dispatch_queue);
108    fse.core_services.close();
109
110    gpa.free(fse.watch_roots);
111    fse.watch_paths.deinit(gpa);
112    {
113        var paths_arena = fse.paths_arena.promote(gpa);
114        paths_arena.deinit();
115    }
116}
117
118pub fn setPaths(fse: *FsEvents, gpa: Allocator, steps: []const *std.Build.Step) !void {
119    var paths_arena_instance = fse.paths_arena.promote(gpa);
120    defer fse.paths_arena = paths_arena_instance.state;
121    const paths_arena = paths_arena_instance.allocator();
122
123    const cwd_path = try std.process.getCwdAlloc(gpa);
124    defer gpa.free(cwd_path);
125
126    var need_dirs: std.StringArrayHashMapUnmanaged(void) = .empty;
127    defer need_dirs.deinit(gpa);
128
129    fse.watch_paths.clearRetainingCapacity();
130
131    // We take `step` by pointer for a slight memory optimization in a moment.
132    for (steps) |*step| {
133        for (step.*.inputs.table.keys(), step.*.inputs.table.values()) |path, *files| {
134            const resolved_dir = try std.fs.path.resolvePosix(paths_arena, &.{ cwd_path, path.root_dir.path orelse ".", path.sub_path });
135            try need_dirs.put(gpa, resolved_dir, {});
136            for (files.items) |file_name| {
137                const watch_path = if (std.mem.eql(u8, file_name, "."))
138                    resolved_dir
139                else
140                    try std.fs.path.join(paths_arena, &.{ resolved_dir, file_name });
141                const gop = try fse.watch_paths.getOrPut(gpa, watch_path);
142                if (gop.found_existing) {
143                    const old_steps = gop.value_ptr.*;
144                    const new_steps = try paths_arena.alloc(*std.Build.Step, old_steps.len + 1);
145                    @memcpy(new_steps[0..old_steps.len], old_steps);
146                    new_steps[old_steps.len] = step.*;
147                    gop.value_ptr.* = new_steps;
148                } else {
149                    // This is why we captured `step` by pointer! We can avoid allocating a slice of one
150                    // step in the arena in the common case where a file is referenced by only one step.
151                    gop.value_ptr.* = step[0..1];
152                }
153            }
154        }
155    }
156
157    {
158        // There's no point looking at directories inside other ones (e.g. "/foo" and "/foo/bar").
159        // To eliminate these, we'll re-add directories in order of path length with a redundancy check.
160        const old_dirs = try gpa.dupe([]const u8, need_dirs.keys());
161        defer gpa.free(old_dirs);
162        std.mem.sort([]const u8, old_dirs, {}, struct {
163            fn lessThan(ctx: void, a: []const u8, b: []const u8) bool {
164                ctx;
165                return std.mem.lessThan(u8, a, b);
166            }
167        }.lessThan);
168        need_dirs.clearRetainingCapacity();
169        for (old_dirs) |dir_path| {
170            var it: std.fs.path.ComponentIterator(.posix, u8) = .init(dir_path);
171            while (it.next()) |component| {
172                if (need_dirs.contains(component.path)) {
173                    // this path is '/foo/bar/qux', but '/foo' or '/foo/bar' was already added
174                    break;
175                }
176            } else {
177                need_dirs.putAssumeCapacityNoClobber(dir_path, {});
178            }
179        }
180    }
181
182    // `need_dirs` is now a set of directories to watch with no redundancy. In practice, this is very
183    // likely to have reduced it to a quite small set (e.g. it'll typically coalesce a full `src/`
184    // directory into one entry). However, the FSEventStream API has a fairly low undocumented limit
185    // on total watches (supposedly 4096), so we should handle the case where we exceed it. To be
186    // safe, because this API can be a little unpredictable, we'll cap ourselves a little *below*
187    // that known limit.
188    if (need_dirs.count() > 2048) {
189        // Fallback: watch the whole filesystem. This is excessive, but... it *works* :P
190        if (enable_debug_logs) watch_log.debug("too many dirs; recursively watching root", .{});
191        fse.watch_roots = try gpa.realloc(fse.watch_roots, 1);
192        fse.watch_roots[0] = "/";
193    } else {
194        fse.watch_roots = try gpa.realloc(fse.watch_roots, need_dirs.count());
195        for (fse.watch_roots, need_dirs.keys()) |*out, in| {
196            out.* = try paths_arena.dupeZ(u8, in);
197        }
198    }
199    if (enable_debug_logs) {
200        watch_log.debug("watching {d} paths using {d} recursive watches:", .{ fse.watch_paths.count(), fse.watch_roots.len });
201        for (fse.watch_roots) |dir_path| {
202            watch_log.debug("- '{s}'", .{dir_path});
203        }
204    }
205}
206
207pub fn wait(fse: *FsEvents, gpa: Allocator, timeout_ns: ?u64) error{ OutOfMemory, StartFailed }!std.Build.Watch.WaitResult {
208    if (fse.watch_roots.len == 0) @panic("nothing to watch");
209
210    const rs = fse.resolved_symbols;
211
212    // At the time of writing, using `since_event` in the obvious way causes redundant rebuilds
213    // to occur, because one step modifies a file which is an input to another step. The solution
214    // to this problem will probably be either:
215    //
216    // a) Don't include the output of one step as a watch input of another; only mark external
217    //    files as watch inputs. Or...
218    //
219    // b) Note the current event ID when a step begins, and disregard events preceding that ID
220    //    when considering whether to dirty that step in `eventCallback`.
221    //
222    // For now, to avoid the redundant rebuilds, we bypass this `since_event` mechanism. This does
223    // introduce race conditions, but the other `std.Build.Watch` implementations suffer from those
224    // too at the time of writing, so this is kind of expected.
225    fse.since_event = .since_now;
226
227    const cf_allocator = rs.CFAllocatorCreate(rs.kCFAllocatorUseContext.*, &.{
228        .version = 0,
229        .info = @constCast(&gpa),
230        .retain = null,
231        .release = null,
232        .copy_description = null,
233        .allocate = &cf_alloc_callbacks.allocate,
234        .reallocate = &cf_alloc_callbacks.reallocate,
235        .deallocate = &cf_alloc_callbacks.deallocate,
236        .preferred_size = null,
237    }) orelse return error.OutOfMemory;
238    defer rs.CFRelease(cf_allocator);
239
240    const cf_paths = try gpa.alloc(?CFStringRef, fse.watch_roots.len);
241    @memset(cf_paths, null);
242    defer {
243        for (cf_paths) |o| if (o) |p| rs.CFRelease(p);
244        gpa.free(cf_paths);
245    }
246    for (fse.watch_roots, cf_paths) |raw_path, *cf_path| {
247        cf_path.* = rs.CFStringCreateWithCString(cf_allocator, raw_path, .utf8);
248    }
249    const cf_paths_array = rs.CFArrayCreate(cf_allocator, @ptrCast(cf_paths), @intCast(cf_paths.len), null);
250    defer rs.CFRelease(cf_paths_array);
251
252    const callback_ctx: EventCallbackCtx = .{
253        .fse = fse,
254        .gpa = gpa,
255    };
256    const event_stream = rs.FSEventStreamCreate(
257        null,
258        &eventCallback,
259        &.{
260            .version = 0,
261            .info = @constCast(&callback_ctx),
262            .retain = null,
263            .release = null,
264            .copy_description = null,
265        },
266        cf_paths_array,
267        fse.since_event,
268        0.05, // 0.05s latency; higher values increase efficiency by coalescing more events
269        .{ .watch_root = true, .file_events = true },
270    );
271    defer rs.FSEventStreamRelease(event_stream);
272    rs.FSEventStreamSetDispatchQueue(event_stream, fse.dispatch_queue);
273    defer rs.FSEventStreamInvalidate(event_stream);
274    if (!rs.FSEventStreamStart(event_stream)) return error.StartFailed;
275    defer rs.FSEventStreamStop(event_stream);
276    const result = dispatch_semaphore_wait(fse.waiting_semaphore, timeout: {
277        const ns = timeout_ns orelse break :timeout .forever;
278        break :timeout dispatch_time(.now, @intCast(ns));
279    });
280    return switch (result) {
281        0 => .dirty,
282        else => .timeout,
283    };
284}
285
286const cf_alloc_callbacks = struct {
287    const log = std.log.scoped(.cf_alloc);
288    fn allocate(size: CFIndex, hint: CFOptionFlags, info: ?*const anyopaque) callconv(.c) ?*const anyopaque {
289        if (enable_debug_logs) log.debug("allocate {d}", .{size});
290        _ = hint;
291        const gpa: *const Allocator = @ptrCast(@alignCast(info));
292        const mem = gpa.alignedAlloc(u8, .of(usize), @intCast(size + @sizeOf(usize))) catch return null;
293        const metadata: *usize = @ptrCast(mem);
294        metadata.* = @intCast(size);
295        return mem[@sizeOf(usize)..].ptr;
296    }
297    fn reallocate(ptr: ?*anyopaque, new_size: CFIndex, hint: CFOptionFlags, info: ?*const anyopaque) callconv(.c) ?*const anyopaque {
298        if (enable_debug_logs) log.debug("reallocate @{*} {d}", .{ ptr, new_size });
299        _ = hint;
300        if (ptr == null or new_size == 0) return null; // not a bug: documentation explicitly states that realloc on NULL should return NULL
301        const gpa: *const Allocator = @ptrCast(@alignCast(info));
302        const old_base: [*]align(@alignOf(usize)) u8 = @alignCast(@as([*]u8, @ptrCast(ptr)) - @sizeOf(usize));
303        const old_size = @as(*const usize, @ptrCast(old_base)).*;
304        const old_mem = old_base[0 .. old_size + @sizeOf(usize)];
305        const new_mem = gpa.realloc(old_mem, @intCast(new_size + @sizeOf(usize))) catch return null;
306        const metadata: *usize = @ptrCast(new_mem);
307        metadata.* = @intCast(new_size);
308        return new_mem[@sizeOf(usize)..].ptr;
309    }
310    fn deallocate(ptr: *anyopaque, info: ?*const anyopaque) callconv(.c) void {
311        if (enable_debug_logs) log.debug("deallocate @{*}", .{ptr});
312        const gpa: *const Allocator = @ptrCast(@alignCast(info));
313        const old_base: [*]align(@alignOf(usize)) u8 = @alignCast(@as([*]u8, @ptrCast(ptr)) - @sizeOf(usize));
314        const old_size = @as(*const usize, @ptrCast(old_base)).*;
315        const old_mem = old_base[0 .. old_size + @sizeOf(usize)];
316        gpa.free(old_mem);
317    }
318};
319
320const EventCallbackCtx = struct {
321    fse: *FsEvents,
322    gpa: Allocator,
323};
324
325fn eventCallback(
326    stream: ConstFSEventStreamRef,
327    client_callback_info: ?*anyopaque,
328    num_events: usize,
329    events_paths_ptr: *anyopaque,
330    events_flags_ptr: [*]const FSEventStreamEventFlags,
331    events_ids_ptr: [*]const FSEventStreamEventId,
332) callconv(.c) void {
333    const ctx: *const EventCallbackCtx = @ptrCast(@alignCast(client_callback_info));
334    const fse = ctx.fse;
335    const gpa = ctx.gpa;
336    const rs = fse.resolved_symbols;
337    const events_paths_ptr_casted: [*]const [*:0]const u8 = @ptrCast(@alignCast(events_paths_ptr));
338    const events_paths = events_paths_ptr_casted[0..num_events];
339    const events_ids = events_ids_ptr[0..num_events];
340    const events_flags = events_flags_ptr[0..num_events];
341    var any_dirty = false;
342    for (events_paths, events_ids, events_flags) |event_path_nts, event_id, event_flags| {
343        _ = event_id;
344        if (event_flags.history_done) continue; // sentinel
345        const event_path = std.mem.span(event_path_nts);
346        switch (event_flags.must_scan_sub_dirs) {
347            false => {
348                if (fse.watch_paths.get(event_path)) |steps| {
349                    assert(steps.len > 0);
350                    for (steps) |s| dirtyStep(s, gpa, &any_dirty);
351                }
352                if (std.fs.path.dirname(event_path)) |event_dirname| {
353                    // Modifying '/foo/bar' triggers the watch on '/foo'.
354                    if (fse.watch_paths.get(event_dirname)) |steps| {
355                        assert(steps.len > 0);
356                        for (steps) |s| dirtyStep(s, gpa, &any_dirty);
357                    }
358                }
359            },
360            true => {
361                // This is unlikely, but can occasionally happen when bottlenecked: events have been
362                // coalesced into one. We want to see if any of these events are actually relevant
363                // to us. The only way we can reasonably do that in this rare edge case is iterate
364                // the watch paths and see if any is under this directory. That's acceptable because
365                // we would otherwise kick off a rebuild which would be clearing those paths anyway.
366                const changed_path = std.fs.path.dirname(event_path) orelse event_path;
367                for (fse.watch_paths.keys(), fse.watch_paths.values()) |watching_path, steps| {
368                    if (dirStartsWith(watching_path, changed_path)) {
369                        for (steps) |s| dirtyStep(s, gpa, &any_dirty);
370                    }
371                }
372            },
373        }
374    }
375    if (any_dirty) {
376        fse.since_event = rs.FSEventStreamGetLatestEventId(stream);
377        _ = dispatch_semaphore_signal(fse.waiting_semaphore);
378    }
379}
380fn dirtyStep(s: *std.Build.Step, gpa: Allocator, any_dirty: *bool) void {
381    if (s.state == .precheck_done) return;
382    s.recursiveReset(gpa);
383    any_dirty.* = true;
384}
385fn dirStartsWith(path: []const u8, prefix: []const u8) bool {
386    if (std.mem.eql(u8, path, prefix)) return true;
387    if (!std.mem.startsWith(u8, path, prefix)) return false;
388    if (path[prefix.len] != '/') return false; // `path` is `/foo/barx`, `prefix` is `/foo/bar`
389    return true; // `path` is `/foo/bar/...`, `prefix` is `/foo/bar`
390}
391
392const dispatch_time_t = enum(u64) {
393    now = 0,
394    forever = std.math.maxInt(u64),
395    _,
396};
397extern fn dispatch_time(base: dispatch_time_t, delta_ns: i64) dispatch_time_t;
398
399const dispatch_semaphore_t = *opaque {};
400extern fn dispatch_semaphore_create(value: isize) dispatch_semaphore_t;
401extern fn dispatch_semaphore_wait(dsema: dispatch_semaphore_t, timeout: dispatch_time_t) isize;
402extern fn dispatch_semaphore_signal(dsema: dispatch_semaphore_t) isize;
403
404const dispatch_queue_t = *opaque {};
405const dispatch_queue_attr_t = ?*opaque {
406    const SERIAL: dispatch_queue_attr_t = null;
407};
408extern fn dispatch_queue_create(label: [*:0]const u8, attr: dispatch_queue_attr_t) dispatch_queue_t;
409extern fn dispatch_release(object: *anyopaque) void;
410
411const CFAllocatorRef = ?*const opaque {};
412const CFArrayRef = *const opaque {};
413const CFStringRef = *const opaque {};
414const CFTimeInterval = f64;
415const CFIndex = i32;
416const CFOptionFlags = enum(u32) { _ };
417const CFAllocatorRetainCallBack = *const fn (info: ?*const anyopaque) callconv(.c) *const anyopaque;
418const CFAllocatorReleaseCallBack = *const fn (info: ?*const anyopaque) callconv(.c) void;
419const CFAllocatorCopyDescriptionCallBack = *const fn (info: ?*const anyopaque) callconv(.c) CFStringRef;
420const CFAllocatorAllocateCallBack = *const fn (alloc_size: CFIndex, hint: CFOptionFlags, info: ?*const anyopaque) callconv(.c) ?*const anyopaque;
421const CFAllocatorReallocateCallBack = *const fn (ptr: ?*anyopaque, new_size: CFIndex, hint: CFOptionFlags, info: ?*const anyopaque) callconv(.c) ?*const anyopaque;
422const CFAllocatorDeallocateCallBack = *const fn (ptr: *anyopaque, info: ?*const anyopaque) callconv(.c) void;
423const CFAllocatorPreferredSizeCallBack = *const fn (size: CFIndex, hint: CFOptionFlags, info: ?*const anyopaque) callconv(.c) CFIndex;
424const CFAllocatorContext = extern struct {
425    version: CFIndex,
426    info: ?*anyopaque,
427    retain: ?CFAllocatorRetainCallBack,
428    release: ?CFAllocatorReleaseCallBack,
429    copy_description: ?CFAllocatorCopyDescriptionCallBack,
430    allocate: CFAllocatorAllocateCallBack,
431    reallocate: ?CFAllocatorReallocateCallBack,
432    deallocate: ?CFAllocatorDeallocateCallBack,
433    preferred_size: ?CFAllocatorPreferredSizeCallBack,
434};
435const CFArrayCallBacks = opaque {};
436const CFStringEncoding = enum(u32) {
437    invalid_id = std.math.maxInt(u32),
438    mac_roman = 0,
439    windows_latin_1 = 0x500,
440    iso_latin_1 = 0x201,
441    next_step_latin = 0xB01,
442    ascii = 0x600,
443    unicode = 0x100,
444    utf8 = 0x8000100,
445    non_lossy_ascii = 0xBFF,
446};
447
448const FSEventStreamRef = *opaque {};
449const ConstFSEventStreamRef = *const @typeInfo(FSEventStreamRef).pointer.child;
450const FSEventStreamCallback = *const fn (
451    stream: ConstFSEventStreamRef,
452    client_callback_info: ?*anyopaque,
453    num_events: usize,
454    event_paths: *anyopaque,
455    event_flags: [*]const FSEventStreamEventFlags,
456    event_ids: [*]const FSEventStreamEventId,
457) callconv(.c) void;
458const FSEventStreamContext = extern struct {
459    version: CFIndex,
460    info: ?*anyopaque,
461    retain: ?CFAllocatorRetainCallBack,
462    release: ?CFAllocatorReleaseCallBack,
463    copy_description: ?CFAllocatorCopyDescriptionCallBack,
464};
465const FSEventStreamEventId = enum(u64) {
466    since_now = std.math.maxInt(u64),
467    _,
468};
469const FSEventStreamCreateFlags = packed struct(u32) {
470    use_cf_types: bool = false,
471    no_defer: bool = false,
472    watch_root: bool = false,
473    ignore_self: bool = false,
474    file_events: bool = false,
475    _: u27 = 0,
476};
477const FSEventStreamEventFlags = packed struct(u32) {
478    must_scan_sub_dirs: bool,
479    user_dropped: bool,
480    kernel_dropped: bool,
481    event_ids_wrapped: bool,
482    history_done: bool,
483    root_changed: bool,
484    mount: bool,
485    unmount: bool,
486    _: u24 = 0,
487};
488
489const std = @import("std");
490const assert = std.debug.assert;
491const Allocator = std.mem.Allocator;
492const watch_log = std.log.scoped(.watch);
493const FsEvents = @This();