master
  1//===----------------------------------------------------------------------===//
  2//
  3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4// See https://llvm.org/LICENSE.txt for license information.
  5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6//
  7//
  8//  Processor specific interpretation of DWARF unwind info.
  9//
 10//===----------------------------------------------------------------------===//
 11
 12#ifndef __DWARF_INSTRUCTIONS_HPP__
 13#define __DWARF_INSTRUCTIONS_HPP__
 14
 15#include <stdint.h>
 16#include <stdio.h>
 17#include <stdlib.h>
 18
 19#include "DwarfParser.hpp"
 20#include "Registers.hpp"
 21#include "config.h"
 22#include "dwarf2.h"
 23#include "libunwind_ext.h"
 24
 25
 26namespace libunwind {
 27
 28
 29/// DwarfInstructions maps abstract DWARF unwind instructions to a particular
 30/// architecture
 31template <typename A, typename R>
 32class DwarfInstructions {
 33public:
 34  typedef typename A::pint_t pint_t;
 35  typedef typename A::sint_t sint_t;
 36
 37  static int stepWithDwarf(A &addressSpace, pint_t pc, pint_t fdeStart,
 38                           R &registers, bool &isSignalFrame, bool stage2);
 39
 40private:
 41
 42  enum {
 43    DW_X86_64_RET_ADDR = 16
 44  };
 45
 46  enum {
 47    DW_X86_RET_ADDR = 8
 48  };
 49
 50  typedef typename CFI_Parser<A>::RegisterLocation  RegisterLocation;
 51  typedef typename CFI_Parser<A>::PrologInfo        PrologInfo;
 52  typedef typename CFI_Parser<A>::FDE_Info          FDE_Info;
 53  typedef typename CFI_Parser<A>::CIE_Info          CIE_Info;
 54
 55  static pint_t evaluateExpression(pint_t expression, A &addressSpace,
 56                                   const R &registers,
 57                                   pint_t initialStackValue);
 58  static pint_t getSavedRegister(A &addressSpace, const R &registers,
 59                                 pint_t cfa, const RegisterLocation &savedReg);
 60  static double getSavedFloatRegister(A &addressSpace, const R &registers,
 61                                  pint_t cfa, const RegisterLocation &savedReg);
 62  static v128 getSavedVectorRegister(A &addressSpace, const R &registers,
 63                                  pint_t cfa, const RegisterLocation &savedReg);
 64
 65  static pint_t getCFA(A &addressSpace, const PrologInfo &prolog,
 66                       const R &registers) {
 67    if (prolog.cfaRegister != 0)
 68      return (pint_t)((sint_t)registers.getRegister((int)prolog.cfaRegister) +
 69             prolog.cfaRegisterOffset);
 70    if (prolog.cfaExpression != 0)
 71      return evaluateExpression((pint_t)prolog.cfaExpression, addressSpace,
 72                                registers, 0);
 73    assert(0 && "getCFA(): unknown location");
 74    __builtin_unreachable();
 75  }
 76#if defined(_LIBUNWIND_TARGET_AARCH64)
 77  static bool isReturnAddressSigned(A &addressSpace, R registers, pint_t cfa,
 78                                    PrologInfo &prolog);
 79  static bool isReturnAddressSignedWithPC(A &addressSpace, R registers,
 80                                          pint_t cfa, PrologInfo &prolog);
 81#endif
 82};
 83
 84template <typename R>
 85auto getSparcWCookie(const R &r, int) -> decltype(r.getWCookie()) {
 86  return r.getWCookie();
 87}
 88template <typename R> uint64_t getSparcWCookie(const R &, long) {
 89  return 0;
 90}
 91
 92template <typename A, typename R>
 93typename A::pint_t DwarfInstructions<A, R>::getSavedRegister(
 94    A &addressSpace, const R &registers, pint_t cfa,
 95    const RegisterLocation &savedReg) {
 96  switch (savedReg.location) {
 97  case CFI_Parser<A>::kRegisterInCFA:
 98    return (pint_t)addressSpace.getRegister(cfa + (pint_t)savedReg.value);
 99
100  case CFI_Parser<A>::kRegisterInCFADecrypt: // sparc64 specific
101    return (pint_t)(addressSpace.getP(cfa + (pint_t)savedReg.value) ^
102           getSparcWCookie(registers, 0));
103
104  case CFI_Parser<A>::kRegisterAtExpression:
105    return (pint_t)addressSpace.getRegister(evaluateExpression(
106        (pint_t)savedReg.value, addressSpace, registers, cfa));
107
108  case CFI_Parser<A>::kRegisterIsExpression:
109    return evaluateExpression((pint_t)savedReg.value, addressSpace,
110                              registers, cfa);
111
112  case CFI_Parser<A>::kRegisterInRegister:
113    return registers.getRegister((int)savedReg.value);
114  case CFI_Parser<A>::kRegisterUndefined:
115    return 0;
116  case CFI_Parser<A>::kRegisterUnused:
117  case CFI_Parser<A>::kRegisterOffsetFromCFA:
118    // FIX ME
119    break;
120  }
121  _LIBUNWIND_ABORT("unsupported restore location for register");
122}
123
124template <typename A, typename R>
125double DwarfInstructions<A, R>::getSavedFloatRegister(
126    A &addressSpace, const R &registers, pint_t cfa,
127    const RegisterLocation &savedReg) {
128  switch (savedReg.location) {
129  case CFI_Parser<A>::kRegisterInCFA:
130    return addressSpace.getDouble(cfa + (pint_t)savedReg.value);
131
132  case CFI_Parser<A>::kRegisterAtExpression:
133    return addressSpace.getDouble(
134        evaluateExpression((pint_t)savedReg.value, addressSpace,
135                            registers, cfa));
136  case CFI_Parser<A>::kRegisterUndefined:
137    return 0.0;
138  case CFI_Parser<A>::kRegisterInRegister:
139#ifndef _LIBUNWIND_TARGET_ARM
140    return registers.getFloatRegister((int)savedReg.value);
141#endif
142  case CFI_Parser<A>::kRegisterIsExpression:
143  case CFI_Parser<A>::kRegisterUnused:
144  case CFI_Parser<A>::kRegisterOffsetFromCFA:
145  case CFI_Parser<A>::kRegisterInCFADecrypt:
146    // FIX ME
147    break;
148  }
149  _LIBUNWIND_ABORT("unsupported restore location for float register");
150}
151
152template <typename A, typename R>
153v128 DwarfInstructions<A, R>::getSavedVectorRegister(
154    A &addressSpace, const R &registers, pint_t cfa,
155    const RegisterLocation &savedReg) {
156  switch (savedReg.location) {
157  case CFI_Parser<A>::kRegisterInCFA:
158    return addressSpace.getVector(cfa + (pint_t)savedReg.value);
159
160  case CFI_Parser<A>::kRegisterAtExpression:
161    return addressSpace.getVector(
162        evaluateExpression((pint_t)savedReg.value, addressSpace,
163                            registers, cfa));
164
165  case CFI_Parser<A>::kRegisterIsExpression:
166  case CFI_Parser<A>::kRegisterUnused:
167  case CFI_Parser<A>::kRegisterUndefined:
168  case CFI_Parser<A>::kRegisterOffsetFromCFA:
169  case CFI_Parser<A>::kRegisterInRegister:
170  case CFI_Parser<A>::kRegisterInCFADecrypt:
171    // FIX ME
172    break;
173  }
174  _LIBUNWIND_ABORT("unsupported restore location for vector register");
175}
176#if defined(_LIBUNWIND_TARGET_AARCH64)
177template <typename A, typename R>
178bool DwarfInstructions<A, R>::isReturnAddressSigned(A &addressSpace,
179                                                    R registers, pint_t cfa,
180                                                    PrologInfo &prolog) {
181  pint_t raSignState;
182  auto regloc = prolog.savedRegisters[UNW_AARCH64_RA_SIGN_STATE];
183  if (regloc.location == CFI_Parser<A>::kRegisterUnused)
184    raSignState = static_cast<pint_t>(regloc.value);
185  else
186    raSignState = getSavedRegister(addressSpace, registers, cfa, regloc);
187
188  // Only bit[0] is meaningful.
189  return raSignState & 0x01;
190}
191
192template <typename A, typename R>
193bool DwarfInstructions<A, R>::isReturnAddressSignedWithPC(A &addressSpace,
194                                                          R registers,
195                                                          pint_t cfa,
196                                                          PrologInfo &prolog) {
197  pint_t raSignState;
198  auto regloc = prolog.savedRegisters[UNW_AARCH64_RA_SIGN_STATE];
199  if (regloc.location == CFI_Parser<A>::kRegisterUnused)
200    raSignState = static_cast<pint_t>(regloc.value);
201  else
202    raSignState = getSavedRegister(addressSpace, registers, cfa, regloc);
203
204  // Only bit[1] is meaningful.
205  return raSignState & 0x02;
206}
207#endif
208
209template <typename A, typename R>
210int DwarfInstructions<A, R>::stepWithDwarf(A &addressSpace, pint_t pc,
211                                           pint_t fdeStart, R &registers,
212                                           bool &isSignalFrame, bool stage2) {
213  FDE_Info fdeInfo;
214  CIE_Info cieInfo;
215  if (CFI_Parser<A>::decodeFDE(addressSpace, fdeStart, &fdeInfo,
216                               &cieInfo) == NULL) {
217    PrologInfo prolog;
218    if (CFI_Parser<A>::parseFDEInstructions(addressSpace, fdeInfo, cieInfo, pc,
219                                            R::getArch(), &prolog)) {
220      // get pointer to cfa (architecture specific)
221      pint_t cfa = getCFA(addressSpace, prolog, registers);
222
223      (void)stage2;
224      // __unw_step_stage2 is not used for cross unwinding, so we use
225      // __aarch64__ rather than LIBUNWIND_TARGET_AARCH64 to make sure we are
226      // building for AArch64 natively.
227#if defined(__aarch64__)
228      if (stage2 && cieInfo.mteTaggedFrame) {
229        pint_t sp = registers.getSP();
230        pint_t p = sp;
231        // AArch64 doesn't require the value of SP to be 16-byte aligned at
232        // all times, only at memory accesses and public interfaces [1]. Thus,
233        // a signal could arrive at a point where SP is not aligned properly.
234        // In that case, the kernel fixes up [2] the signal frame, but we
235        // still have a misaligned SP in the previous frame. If that signal
236        // handler caused stack unwinding, we would have an unaligned SP.
237        // We do not need to fix up the CFA, as that is the SP at a "public
238        // interface".
239        // [1]:
240        // https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst#622the-stack
241        // [2]:
242        // https://github.com/torvalds/linux/blob/1930a6e739c4b4a654a69164dbe39e554d228915/arch/arm64/kernel/signal.c#L718
243        p &= ~0xfULL;
244        // CFA is the bottom of the current stack frame.
245        for (; p < cfa; p += 16) {
246          __asm__ __volatile__(".arch armv8.5-a\n"
247                               ".arch_extension memtag\n"
248                               "stg %[Ptr], [%[Ptr]]\n"
249                               :
250                               : [Ptr] "r"(p)
251                               : "memory");
252        }
253      }
254#endif
255      // restore registers that DWARF says were saved
256      R newRegisters = registers;
257
258      // Typically, the CFA is the stack pointer at the call site in
259      // the previous frame. However, there are scenarios in which this is not
260      // true. For example, if we switched to a new stack. In that case, the
261      // value of the previous SP might be indicated by a CFI directive.
262      //
263      // We set the SP here to the CFA, allowing for it to be overridden
264      // by a CFI directive later on.
265      newRegisters.setSP(cfa);
266
267      pint_t returnAddress = 0;
268      constexpr int lastReg = R::lastDwarfRegNum();
269      static_assert(static_cast<int>(CFI_Parser<A>::kMaxRegisterNumber) >=
270                        lastReg,
271                    "register range too large");
272      assert(lastReg >= (int)cieInfo.returnAddressRegister &&
273             "register range does not contain return address register");
274      for (int i = 0; i <= lastReg; ++i) {
275        if (prolog.savedRegisters[i].location !=
276            CFI_Parser<A>::kRegisterUnused) {
277          if (registers.validFloatRegister(i))
278            newRegisters.setFloatRegister(
279                i, getSavedFloatRegister(addressSpace, registers, cfa,
280                                         prolog.savedRegisters[i]));
281          else if (registers.validVectorRegister(i))
282            newRegisters.setVectorRegister(
283                i, getSavedVectorRegister(addressSpace, registers, cfa,
284                                          prolog.savedRegisters[i]));
285          else if (i == (int)cieInfo.returnAddressRegister)
286            returnAddress = getSavedRegister(addressSpace, registers, cfa,
287                                             prolog.savedRegisters[i]);
288          else if (registers.validRegister(i))
289            newRegisters.setRegister(
290                i, getSavedRegister(addressSpace, registers, cfa,
291                                    prolog.savedRegisters[i]));
292          else
293            return UNW_EBADREG;
294        } else if (i == (int)cieInfo.returnAddressRegister) {
295            // Leaf function keeps the return address in register and there is no
296            // explicit instructions how to restore it.
297            returnAddress = registers.getRegister(cieInfo.returnAddressRegister);
298        }
299      }
300
301      isSignalFrame = cieInfo.isSignalFrame;
302
303#if defined(_LIBUNWIND_TARGET_AARCH64)
304      // If the target is aarch64 then the return address may have been signed
305      // using the v8.3 pointer authentication extensions. The original
306      // return address needs to be authenticated before the return address is
307      // restored. autia1716 is used instead of autia as autia1716 assembles
308      // to a NOP on pre-v8.3a architectures.
309      if ((R::getArch() == REGISTERS_ARM64) &&
310          isReturnAddressSigned(addressSpace, registers, cfa, prolog) &&
311          returnAddress != 0) {
312#if !defined(_LIBUNWIND_IS_NATIVE_ONLY)
313        return UNW_ECROSSRASIGNING;
314#else
315        register unsigned long long x17 __asm("x17") = returnAddress;
316        register unsigned long long x16 __asm("x16") = cfa;
317
318        // We use the hint versions of the authentication instructions below to
319        // ensure they're assembled by the compiler even for targets with no
320        // FEAT_PAuth/FEAT_PAuth_LR support.
321        if (isReturnAddressSignedWithPC(addressSpace, registers, cfa, prolog)) {
322          register unsigned long long x15 __asm("x15") =
323              prolog.ptrAuthDiversifier;
324          if (cieInfo.addressesSignedWithBKey) {
325            asm("hint 0x27\n\t" // pacm
326                "hint 0xe"
327                : "+r"(x17)
328                : "r"(x16), "r"(x15)); // autib1716
329          } else {
330            asm("hint 0x27\n\t" // pacm
331                "hint 0xc"
332                : "+r"(x17)
333                : "r"(x16), "r"(x15)); // autia1716
334          }
335        } else {
336          if (cieInfo.addressesSignedWithBKey)
337            asm("hint 0xe" : "+r"(x17) : "r"(x16)); // autib1716
338          else
339            asm("hint 0xc" : "+r"(x17) : "r"(x16)); // autia1716
340        }
341        returnAddress = x17;
342#endif
343      }
344#endif
345
346#if defined(_LIBUNWIND_IS_NATIVE_ONLY) && defined(_LIBUNWIND_TARGET_ARM) &&    \
347    defined(__ARM_FEATURE_PAUTH)
348      if ((R::getArch() == REGISTERS_ARM) &&
349          prolog.savedRegisters[UNW_ARM_RA_AUTH_CODE].value) {
350        pint_t pac =
351            getSavedRegister(addressSpace, registers, cfa,
352                             prolog.savedRegisters[UNW_ARM_RA_AUTH_CODE]);
353        __asm__ __volatile__("autg %0, %1, %2"
354                             :
355                             : "r"(pac), "r"(returnAddress), "r"(cfa)
356                             :);
357      }
358#endif
359
360#if defined(_LIBUNWIND_TARGET_SPARC)
361      if (R::getArch() == REGISTERS_SPARC) {
362        // Skip call site instruction and delay slot
363        returnAddress += 8;
364        // Skip unimp instruction if function returns a struct
365        if ((addressSpace.get32(returnAddress) & 0xC1C00000) == 0)
366          returnAddress += 4;
367      }
368#endif
369
370#if defined(_LIBUNWIND_TARGET_SPARC64)
371      // Skip call site instruction and delay slot.
372      if (R::getArch() == REGISTERS_SPARC64)
373        returnAddress += 8;
374#endif
375
376#if defined(_LIBUNWIND_TARGET_PPC64)
377#define PPC64_ELFV1_R2_LOAD_INST_ENCODING 0xe8410028u // ld r2,40(r1)
378#define PPC64_ELFV1_R2_OFFSET 40
379#define PPC64_ELFV2_R2_LOAD_INST_ENCODING 0xe8410018u // ld r2,24(r1)
380#define PPC64_ELFV2_R2_OFFSET 24
381      // If the instruction at return address is a TOC (r2) restore,
382      // then r2 was saved and needs to be restored.
383      // ELFv2 ABI specifies that the TOC Pointer must be saved at SP + 24,
384      // while in ELFv1 ABI it is saved at SP + 40.
385      if (R::getArch() == REGISTERS_PPC64 && returnAddress != 0) {
386        pint_t sp = newRegisters.getRegister(UNW_REG_SP);
387        pint_t r2 = 0;
388        switch (addressSpace.get32(returnAddress)) {
389        case PPC64_ELFV1_R2_LOAD_INST_ENCODING:
390          r2 = addressSpace.get64(sp + PPC64_ELFV1_R2_OFFSET);
391          break;
392        case PPC64_ELFV2_R2_LOAD_INST_ENCODING:
393          r2 = addressSpace.get64(sp + PPC64_ELFV2_R2_OFFSET);
394          break;
395        }
396        if (r2)
397          newRegisters.setRegister(UNW_PPC64_R2, r2);
398      }
399#endif
400
401      // Return address is address after call site instruction, so setting IP to
402      // that does simulates a return.
403      newRegisters.setIP(returnAddress);
404
405      // Simulate the step by replacing the register set with the new ones.
406      registers = newRegisters;
407
408      return UNW_STEP_SUCCESS;
409    }
410  }
411  return UNW_EBADFRAME;
412}
413
414template <typename A, typename R>
415typename A::pint_t
416DwarfInstructions<A, R>::evaluateExpression(pint_t expression, A &addressSpace,
417                                            const R &registers,
418                                            pint_t initialStackValue) {
419  const bool log = false;
420  pint_t p = expression;
421  pint_t expressionEnd = expression + 20; // temp, until len read
422  pint_t length = (pint_t)addressSpace.getULEB128(p, expressionEnd);
423  expressionEnd = p + length;
424  if (log)
425    fprintf(stderr, "evaluateExpression(): length=%" PRIu64 "\n",
426            (uint64_t)length);
427  pint_t stack[100];
428  pint_t *sp = stack;
429  *(++sp) = initialStackValue;
430
431  while (p < expressionEnd) {
432    if (log) {
433      for (pint_t *t = sp; t > stack; --t) {
434        fprintf(stderr, "sp[] = 0x%" PRIx64 "\n", (uint64_t)(*t));
435      }
436    }
437    uint8_t opcode = addressSpace.get8(p++);
438    sint_t svalue, svalue2;
439    pint_t value;
440    uint32_t reg;
441    switch (opcode) {
442    case DW_OP_addr:
443      // push immediate address sized value
444      value = addressSpace.getP(p);
445      p += sizeof(pint_t);
446      *(++sp) = value;
447      if (log)
448        fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)value);
449      break;
450
451    case DW_OP_deref:
452      // pop stack, dereference, push result
453      value = *sp--;
454      *(++sp) = addressSpace.getP(value);
455      if (log)
456        fprintf(stderr, "dereference 0x%" PRIx64 "\n", (uint64_t)value);
457      break;
458
459    case DW_OP_const1u:
460      // push immediate 1 byte value
461      value = addressSpace.get8(p);
462      p += 1;
463      *(++sp) = value;
464      if (log)
465        fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)value);
466      break;
467
468    case DW_OP_const1s:
469      // push immediate 1 byte signed value
470      svalue = (int8_t) addressSpace.get8(p);
471      p += 1;
472      *(++sp) = (pint_t)svalue;
473      if (log)
474        fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)svalue);
475      break;
476
477    case DW_OP_const2u:
478      // push immediate 2 byte value
479      value = addressSpace.get16(p);
480      p += 2;
481      *(++sp) = value;
482      if (log)
483        fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)value);
484      break;
485
486    case DW_OP_const2s:
487      // push immediate 2 byte signed value
488      svalue = (int16_t) addressSpace.get16(p);
489      p += 2;
490      *(++sp) = (pint_t)svalue;
491      if (log)
492        fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)svalue);
493      break;
494
495    case DW_OP_const4u:
496      // push immediate 4 byte value
497      value = addressSpace.get32(p);
498      p += 4;
499      *(++sp) = value;
500      if (log)
501        fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)value);
502      break;
503
504    case DW_OP_const4s:
505      // push immediate 4 byte signed value
506      svalue = (int32_t)addressSpace.get32(p);
507      p += 4;
508      *(++sp) = (pint_t)svalue;
509      if (log)
510        fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)svalue);
511      break;
512
513    case DW_OP_const8u:
514      // push immediate 8 byte value
515      value = (pint_t)addressSpace.get64(p);
516      p += 8;
517      *(++sp) = value;
518      if (log)
519        fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)value);
520      break;
521
522    case DW_OP_const8s:
523      // push immediate 8 byte signed value
524      value = (pint_t)addressSpace.get64(p);
525      p += 8;
526      *(++sp) = value;
527      if (log)
528        fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)value);
529      break;
530
531    case DW_OP_constu:
532      // push immediate ULEB128 value
533      value = (pint_t)addressSpace.getULEB128(p, expressionEnd);
534      *(++sp) = value;
535      if (log)
536        fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)value);
537      break;
538
539    case DW_OP_consts:
540      // push immediate SLEB128 value
541      svalue = (sint_t)addressSpace.getSLEB128(p, expressionEnd);
542      *(++sp) = (pint_t)svalue;
543      if (log)
544        fprintf(stderr, "push 0x%" PRIx64 "\n", (uint64_t)svalue);
545      break;
546
547    case DW_OP_dup:
548      // push top of stack
549      value = *sp;
550      *(++sp) = value;
551      if (log)
552        fprintf(stderr, "duplicate top of stack\n");
553      break;
554
555    case DW_OP_drop:
556      // pop
557      --sp;
558      if (log)
559        fprintf(stderr, "pop top of stack\n");
560      break;
561
562    case DW_OP_over:
563      // dup second
564      value = sp[-1];
565      *(++sp) = value;
566      if (log)
567        fprintf(stderr, "duplicate second in stack\n");
568      break;
569
570    case DW_OP_pick:
571      // pick from
572      reg = addressSpace.get8(p);
573      p += 1;
574      value = sp[-(int)reg];
575      *(++sp) = value;
576      if (log)
577        fprintf(stderr, "duplicate %d in stack\n", reg);
578      break;
579
580    case DW_OP_swap:
581      // swap top two
582      value = sp[0];
583      sp[0] = sp[-1];
584      sp[-1] = value;
585      if (log)
586        fprintf(stderr, "swap top of stack\n");
587      break;
588
589    case DW_OP_rot:
590      // rotate top three
591      value = sp[0];
592      sp[0] = sp[-1];
593      sp[-1] = sp[-2];
594      sp[-2] = value;
595      if (log)
596        fprintf(stderr, "rotate top three of stack\n");
597      break;
598
599    case DW_OP_xderef:
600      // pop stack, dereference, push result
601      value = *sp--;
602      *sp = *((pint_t*)value);
603      if (log)
604        fprintf(stderr, "x-dereference 0x%" PRIx64 "\n", (uint64_t)value);
605      break;
606
607    case DW_OP_abs:
608      svalue = (sint_t)*sp;
609      if (svalue < 0)
610        *sp = (pint_t)(-svalue);
611      if (log)
612        fprintf(stderr, "abs\n");
613      break;
614
615    case DW_OP_and:
616      value = *sp--;
617      *sp &= value;
618      if (log)
619        fprintf(stderr, "and\n");
620      break;
621
622    case DW_OP_div:
623      svalue = (sint_t)(*sp--);
624      svalue2 = (sint_t)*sp;
625      *sp = (pint_t)(svalue2 / svalue);
626      if (log)
627        fprintf(stderr, "div\n");
628      break;
629
630    case DW_OP_minus:
631      value = *sp--;
632      *sp = *sp - value;
633      if (log)
634        fprintf(stderr, "minus\n");
635      break;
636
637    case DW_OP_mod:
638      svalue = (sint_t)(*sp--);
639      svalue2 = (sint_t)*sp;
640      *sp = (pint_t)(svalue2 % svalue);
641      if (log)
642        fprintf(stderr, "module\n");
643      break;
644
645    case DW_OP_mul:
646      svalue = (sint_t)(*sp--);
647      svalue2 = (sint_t)*sp;
648      *sp = (pint_t)(svalue2 * svalue);
649      if (log)
650        fprintf(stderr, "mul\n");
651      break;
652
653    case DW_OP_neg:
654      *sp = 0 - *sp;
655      if (log)
656        fprintf(stderr, "neg\n");
657      break;
658
659    case DW_OP_not:
660      svalue = (sint_t)(*sp);
661      *sp = (pint_t)(~svalue);
662      if (log)
663        fprintf(stderr, "not\n");
664      break;
665
666    case DW_OP_or:
667      value = *sp--;
668      *sp |= value;
669      if (log)
670        fprintf(stderr, "or\n");
671      break;
672
673    case DW_OP_plus:
674      value = *sp--;
675      *sp += value;
676      if (log)
677        fprintf(stderr, "plus\n");
678      break;
679
680    case DW_OP_plus_uconst:
681      // pop stack, add uelb128 constant, push result
682      *sp += static_cast<pint_t>(addressSpace.getULEB128(p, expressionEnd));
683      if (log)
684        fprintf(stderr, "add constant\n");
685      break;
686
687    case DW_OP_shl:
688      value = *sp--;
689      *sp = *sp << value;
690      if (log)
691        fprintf(stderr, "shift left\n");
692      break;
693
694    case DW_OP_shr:
695      value = *sp--;
696      *sp = *sp >> value;
697      if (log)
698        fprintf(stderr, "shift left\n");
699      break;
700
701    case DW_OP_shra:
702      value = *sp--;
703      svalue = (sint_t)*sp;
704      *sp = (pint_t)(svalue >> value);
705      if (log)
706        fprintf(stderr, "shift left arithmetic\n");
707      break;
708
709    case DW_OP_xor:
710      value = *sp--;
711      *sp ^= value;
712      if (log)
713        fprintf(stderr, "xor\n");
714      break;
715
716    case DW_OP_skip:
717      svalue = (int16_t) addressSpace.get16(p);
718      p += 2;
719      p = (pint_t)((sint_t)p + svalue);
720      if (log)
721        fprintf(stderr, "skip %" PRIu64 "\n", (uint64_t)svalue);
722      break;
723
724    case DW_OP_bra:
725      svalue = (int16_t) addressSpace.get16(p);
726      p += 2;
727      if (*sp--)
728        p = (pint_t)((sint_t)p + svalue);
729      if (log)
730        fprintf(stderr, "bra %" PRIu64 "\n", (uint64_t)svalue);
731      break;
732
733    case DW_OP_eq:
734      value = *sp--;
735      *sp = (*sp == value);
736      if (log)
737        fprintf(stderr, "eq\n");
738      break;
739
740    case DW_OP_ge:
741      value = *sp--;
742      *sp = (*sp >= value);
743      if (log)
744        fprintf(stderr, "ge\n");
745      break;
746
747    case DW_OP_gt:
748      value = *sp--;
749      *sp = (*sp > value);
750      if (log)
751        fprintf(stderr, "gt\n");
752      break;
753
754    case DW_OP_le:
755      value = *sp--;
756      *sp = (*sp <= value);
757      if (log)
758        fprintf(stderr, "le\n");
759      break;
760
761    case DW_OP_lt:
762      value = *sp--;
763      *sp = (*sp < value);
764      if (log)
765        fprintf(stderr, "lt\n");
766      break;
767
768    case DW_OP_ne:
769      value = *sp--;
770      *sp = (*sp != value);
771      if (log)
772        fprintf(stderr, "ne\n");
773      break;
774
775    case DW_OP_lit0:
776    case DW_OP_lit1:
777    case DW_OP_lit2:
778    case DW_OP_lit3:
779    case DW_OP_lit4:
780    case DW_OP_lit5:
781    case DW_OP_lit6:
782    case DW_OP_lit7:
783    case DW_OP_lit8:
784    case DW_OP_lit9:
785    case DW_OP_lit10:
786    case DW_OP_lit11:
787    case DW_OP_lit12:
788    case DW_OP_lit13:
789    case DW_OP_lit14:
790    case DW_OP_lit15:
791    case DW_OP_lit16:
792    case DW_OP_lit17:
793    case DW_OP_lit18:
794    case DW_OP_lit19:
795    case DW_OP_lit20:
796    case DW_OP_lit21:
797    case DW_OP_lit22:
798    case DW_OP_lit23:
799    case DW_OP_lit24:
800    case DW_OP_lit25:
801    case DW_OP_lit26:
802    case DW_OP_lit27:
803    case DW_OP_lit28:
804    case DW_OP_lit29:
805    case DW_OP_lit30:
806    case DW_OP_lit31:
807      value = static_cast<pint_t>(opcode - DW_OP_lit0);
808      *(++sp) = value;
809      if (log)
810        fprintf(stderr, "push literal 0x%" PRIx64 "\n", (uint64_t)value);
811      break;
812
813    case DW_OP_reg0:
814    case DW_OP_reg1:
815    case DW_OP_reg2:
816    case DW_OP_reg3:
817    case DW_OP_reg4:
818    case DW_OP_reg5:
819    case DW_OP_reg6:
820    case DW_OP_reg7:
821    case DW_OP_reg8:
822    case DW_OP_reg9:
823    case DW_OP_reg10:
824    case DW_OP_reg11:
825    case DW_OP_reg12:
826    case DW_OP_reg13:
827    case DW_OP_reg14:
828    case DW_OP_reg15:
829    case DW_OP_reg16:
830    case DW_OP_reg17:
831    case DW_OP_reg18:
832    case DW_OP_reg19:
833    case DW_OP_reg20:
834    case DW_OP_reg21:
835    case DW_OP_reg22:
836    case DW_OP_reg23:
837    case DW_OP_reg24:
838    case DW_OP_reg25:
839    case DW_OP_reg26:
840    case DW_OP_reg27:
841    case DW_OP_reg28:
842    case DW_OP_reg29:
843    case DW_OP_reg30:
844    case DW_OP_reg31:
845      reg = static_cast<uint32_t>(opcode - DW_OP_reg0);
846      *(++sp) = registers.getRegister((int)reg);
847      if (log)
848        fprintf(stderr, "push reg %d\n", reg);
849      break;
850
851    case DW_OP_regx:
852      reg = static_cast<uint32_t>(addressSpace.getULEB128(p, expressionEnd));
853      *(++sp) = registers.getRegister((int)reg);
854      if (log)
855        fprintf(stderr, "push reg %d + 0x%" PRIx64 "\n", reg, (uint64_t)svalue);
856      break;
857
858    case DW_OP_breg0:
859    case DW_OP_breg1:
860    case DW_OP_breg2:
861    case DW_OP_breg3:
862    case DW_OP_breg4:
863    case DW_OP_breg5:
864    case DW_OP_breg6:
865    case DW_OP_breg7:
866    case DW_OP_breg8:
867    case DW_OP_breg9:
868    case DW_OP_breg10:
869    case DW_OP_breg11:
870    case DW_OP_breg12:
871    case DW_OP_breg13:
872    case DW_OP_breg14:
873    case DW_OP_breg15:
874    case DW_OP_breg16:
875    case DW_OP_breg17:
876    case DW_OP_breg18:
877    case DW_OP_breg19:
878    case DW_OP_breg20:
879    case DW_OP_breg21:
880    case DW_OP_breg22:
881    case DW_OP_breg23:
882    case DW_OP_breg24:
883    case DW_OP_breg25:
884    case DW_OP_breg26:
885    case DW_OP_breg27:
886    case DW_OP_breg28:
887    case DW_OP_breg29:
888    case DW_OP_breg30:
889    case DW_OP_breg31:
890      reg = static_cast<uint32_t>(opcode - DW_OP_breg0);
891      svalue = (sint_t)addressSpace.getSLEB128(p, expressionEnd);
892      svalue += static_cast<sint_t>(registers.getRegister((int)reg));
893      *(++sp) = (pint_t)(svalue);
894      if (log)
895        fprintf(stderr, "push reg %d + 0x%" PRIx64 "\n", reg, (uint64_t)svalue);
896      break;
897
898    case DW_OP_bregx:
899      reg = static_cast<uint32_t>(addressSpace.getULEB128(p, expressionEnd));
900      svalue = (sint_t)addressSpace.getSLEB128(p, expressionEnd);
901      svalue += static_cast<sint_t>(registers.getRegister((int)reg));
902      *(++sp) = (pint_t)(svalue);
903      if (log)
904        fprintf(stderr, "push reg %d + 0x%" PRIx64 "\n", reg, (uint64_t)svalue);
905      break;
906
907    case DW_OP_fbreg:
908      _LIBUNWIND_ABORT("DW_OP_fbreg not implemented");
909      break;
910
911    case DW_OP_piece:
912      _LIBUNWIND_ABORT("DW_OP_piece not implemented");
913      break;
914
915    case DW_OP_deref_size:
916      // pop stack, dereference, push result
917      value = *sp--;
918      switch (addressSpace.get8(p++)) {
919      case 1:
920        value = addressSpace.get8(value);
921        break;
922      case 2:
923        value = addressSpace.get16(value);
924        break;
925      case 4:
926        value = addressSpace.get32(value);
927        break;
928      case 8:
929        value = (pint_t)addressSpace.get64(value);
930        break;
931      default:
932        _LIBUNWIND_ABORT("DW_OP_deref_size with bad size");
933      }
934      *(++sp) = value;
935      if (log)
936        fprintf(stderr, "sized dereference 0x%" PRIx64 "\n", (uint64_t)value);
937      break;
938
939    case DW_OP_xderef_size:
940    case DW_OP_nop:
941    case DW_OP_push_object_addres:
942    case DW_OP_call2:
943    case DW_OP_call4:
944    case DW_OP_call_ref:
945    default:
946      _LIBUNWIND_ABORT("DWARF opcode not implemented");
947    }
948
949  }
950  if (log)
951    fprintf(stderr, "expression evaluates to 0x%" PRIx64 "\n", (uint64_t)*sp);
952  return *sp;
953}
954
955
956
957} // namespace libunwind
958
959#endif // __DWARF_INSTRUCTIONS_HPP__