master
  1//===-- tsan_platform_linux.cpp -------------------------------------------===//
  2//
  3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4// See https://llvm.org/LICENSE.txt for license information.
  5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6//
  7//===----------------------------------------------------------------------===//
  8//
  9// This file is a part of ThreadSanitizer (TSan), a race detector.
 10//
 11// Linux- and BSD-specific code.
 12//===----------------------------------------------------------------------===//
 13
 14#include "sanitizer_common/sanitizer_platform.h"
 15#if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD
 16
 17#include "sanitizer_common/sanitizer_common.h"
 18#include "sanitizer_common/sanitizer_libc.h"
 19#include "sanitizer_common/sanitizer_linux.h"
 20#include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
 21#include "sanitizer_common/sanitizer_platform_limits_posix.h"
 22#include "sanitizer_common/sanitizer_posix.h"
 23#include "sanitizer_common/sanitizer_procmaps.h"
 24#include "sanitizer_common/sanitizer_stackdepot.h"
 25#include "sanitizer_common/sanitizer_stoptheworld.h"
 26#include "tsan_flags.h"
 27#include "tsan_platform.h"
 28#include "tsan_rtl.h"
 29
 30#include <fcntl.h>
 31#include <pthread.h>
 32#include <signal.h>
 33#include <stdio.h>
 34#include <stdlib.h>
 35#include <string.h>
 36#include <stdarg.h>
 37#include <sys/mman.h>
 38#if SANITIZER_LINUX
 39#include <sys/personality.h>
 40#include <setjmp.h>
 41#endif
 42#include <sys/syscall.h>
 43#include <sys/socket.h>
 44#include <sys/time.h>
 45#include <sys/types.h>
 46#include <sys/resource.h>
 47#include <sys/stat.h>
 48#include <unistd.h>
 49#include <sched.h>
 50#include <dlfcn.h>
 51#if SANITIZER_LINUX
 52#define __need_res_state
 53#include <resolv.h>
 54#endif
 55
 56#ifdef sa_handler
 57# undef sa_handler
 58#endif
 59
 60#ifdef sa_sigaction
 61# undef sa_sigaction
 62#endif
 63
 64#if SANITIZER_FREEBSD
 65extern "C" void *__libc_stack_end;
 66void *__libc_stack_end = 0;
 67#endif
 68
 69#if SANITIZER_LINUX && (defined(__aarch64__) || defined(__loongarch_lp64)) && \
 70    !SANITIZER_GO
 71# define INIT_LONGJMP_XOR_KEY 1
 72#else
 73# define INIT_LONGJMP_XOR_KEY 0
 74#endif
 75
 76#if INIT_LONGJMP_XOR_KEY
 77#include "interception/interception.h"
 78// Must be declared outside of other namespaces.
 79DECLARE_REAL(int, _setjmp, void *env)
 80#endif
 81
 82namespace __tsan {
 83
 84#if INIT_LONGJMP_XOR_KEY
 85static void InitializeLongjmpXorKey();
 86static uptr longjmp_xor_key;
 87#endif
 88
 89// Runtime detected VMA size.
 90uptr vmaSize;
 91
 92enum {
 93  MemTotal,
 94  MemShadow,
 95  MemMeta,
 96  MemFile,
 97  MemMmap,
 98  MemHeap,
 99  MemOther,
100  MemCount,
101};
102
103void FillProfileCallback(uptr p, uptr rss, bool file, uptr *mem) {
104  mem[MemTotal] += rss;
105  if (p >= ShadowBeg() && p < ShadowEnd())
106    mem[MemShadow] += rss;
107  else if (p >= MetaShadowBeg() && p < MetaShadowEnd())
108    mem[MemMeta] += rss;
109  else if ((p >= LoAppMemBeg() && p < LoAppMemEnd()) ||
110           (p >= MidAppMemBeg() && p < MidAppMemEnd()) ||
111           (p >= HiAppMemBeg() && p < HiAppMemEnd()))
112    mem[file ? MemFile : MemMmap] += rss;
113  else if (p >= HeapMemBeg() && p < HeapMemEnd())
114    mem[MemHeap] += rss;
115  else
116    mem[MemOther] += rss;
117}
118
119void WriteMemoryProfile(char *buf, uptr buf_size, u64 uptime_ns) {
120  uptr mem[MemCount];
121  internal_memset(mem, 0, sizeof(mem));
122  GetMemoryProfile(FillProfileCallback, mem);
123  auto meta = ctx->metamap.GetMemoryStats();
124  StackDepotStats stacks = StackDepotGetStats();
125  uptr nthread, nlive;
126  ctx->thread_registry.GetNumberOfThreads(&nthread, &nlive);
127  uptr trace_mem;
128  {
129    Lock l(&ctx->slot_mtx);
130    trace_mem = ctx->trace_part_total_allocated * sizeof(TracePart);
131  }
132  uptr internal_stats[AllocatorStatCount];
133  internal_allocator()->GetStats(internal_stats);
134  // All these are allocated from the common mmap region.
135  mem[MemMmap] -= meta.mem_block + meta.sync_obj + trace_mem +
136                  stacks.allocated + internal_stats[AllocatorStatMapped];
137  if (s64(mem[MemMmap]) < 0)
138    mem[MemMmap] = 0;
139  internal_snprintf(
140      buf, buf_size,
141      "==%zu== %llus [%zu]: RSS %zd MB: shadow:%zd meta:%zd file:%zd"
142      " mmap:%zd heap:%zd other:%zd intalloc:%zd memblocks:%zd syncobj:%zu"
143      " trace:%zu stacks=%zd threads=%zu/%zu\n",
144      internal_getpid(), uptime_ns / (1000 * 1000 * 1000), ctx->global_epoch,
145      mem[MemTotal] >> 20, mem[MemShadow] >> 20, mem[MemMeta] >> 20,
146      mem[MemFile] >> 20, mem[MemMmap] >> 20, mem[MemHeap] >> 20,
147      mem[MemOther] >> 20, internal_stats[AllocatorStatMapped] >> 20,
148      meta.mem_block >> 20, meta.sync_obj >> 20, trace_mem >> 20,
149      stacks.allocated >> 20, nlive, nthread);
150}
151
152#if !SANITIZER_GO
153// Mark shadow for .rodata sections with the special Shadow::kRodata marker.
154// Accesses to .rodata can't race, so this saves time, memory and trace space.
155static NOINLINE void MapRodata(char* buffer, uptr size) {
156  // First create temp file.
157  const char *tmpdir = GetEnv("TMPDIR");
158  if (tmpdir == 0)
159    tmpdir = GetEnv("TEST_TMPDIR");
160#ifdef P_tmpdir
161  if (tmpdir == 0)
162    tmpdir = P_tmpdir;
163#endif
164  if (tmpdir == 0)
165    return;
166  internal_snprintf(buffer, size, "%s/tsan.rodata.%d",
167                    tmpdir, (int)internal_getpid());
168  uptr openrv = internal_open(buffer, O_RDWR | O_CREAT | O_EXCL, 0600);
169  if (internal_iserror(openrv))
170    return;
171  internal_unlink(buffer);  // Unlink it now, so that we can reuse the buffer.
172  fd_t fd = openrv;
173  // Fill the file with Shadow::kRodata.
174  const uptr kMarkerSize = 512 * 1024 / sizeof(RawShadow);
175  InternalMmapVector<RawShadow> marker(kMarkerSize);
176  // volatile to prevent insertion of memset
177  for (volatile RawShadow *p = marker.data(); p < marker.data() + kMarkerSize;
178       p++)
179    *p = Shadow::kRodata;
180  internal_write(fd, marker.data(), marker.size() * sizeof(RawShadow));
181  // Map the file into memory.
182  uptr page = internal_mmap(0, GetPageSizeCached(), PROT_READ | PROT_WRITE,
183                            MAP_PRIVATE | MAP_ANONYMOUS, fd, 0);
184  if (internal_iserror(page)) {
185    internal_close(fd);
186    return;
187  }
188  // Map the file into shadow of .rodata sections.
189  MemoryMappingLayout proc_maps(/*cache_enabled*/true);
190  // Reusing the buffer 'buffer'.
191  MemoryMappedSegment segment(buffer, size);
192  while (proc_maps.Next(&segment)) {
193    if (segment.filename[0] != 0 && segment.filename[0] != '[' &&
194        segment.IsReadable() && segment.IsExecutable() &&
195        !segment.IsWritable() && IsAppMem(segment.start)) {
196      // Assume it's .rodata
197      char *shadow_start = (char *)MemToShadow(segment.start);
198      char *shadow_end = (char *)MemToShadow(segment.end);
199      for (char *p = shadow_start; p < shadow_end;
200           p += marker.size() * sizeof(RawShadow)) {
201        internal_mmap(
202            p, Min<uptr>(marker.size() * sizeof(RawShadow), shadow_end - p),
203            PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0);
204      }
205    }
206  }
207  internal_close(fd);
208}
209
210void InitializeShadowMemoryPlatform() {
211  char buffer[256];  // Keep in a different frame.
212  MapRodata(buffer, sizeof(buffer));
213}
214
215#endif  // #if !SANITIZER_GO
216
217#  if !SANITIZER_GO
218static void ReExecIfNeeded(bool ignore_heap) {
219  // Go maps shadow memory lazily and works fine with limited address space.
220  // Unlimited stack is not a problem as well, because the executable
221  // is not compiled with -pie.
222  bool reexec = false;
223  // TSan doesn't play well with unlimited stack size (as stack
224  // overlaps with shadow memory). If we detect unlimited stack size,
225  // we re-exec the program with limited stack size as a best effort.
226  if (StackSizeIsUnlimited()) {
227    const uptr kMaxStackSize = 32 * 1024 * 1024;
228    VReport(1,
229            "Program is run with unlimited stack size, which wouldn't "
230            "work with ThreadSanitizer.\n"
231            "Re-execing with stack size limited to %zd bytes.\n",
232            kMaxStackSize);
233    SetStackSizeLimitInBytes(kMaxStackSize);
234    reexec = true;
235  }
236
237  if (!AddressSpaceIsUnlimited()) {
238    Report(
239        "WARNING: Program is run with limited virtual address space,"
240        " which wouldn't work with ThreadSanitizer.\n");
241    Report("Re-execing with unlimited virtual address space.\n");
242    SetAddressSpaceUnlimited();
243    reexec = true;
244  }
245
246#    if SANITIZER_LINUX
247#      if SANITIZER_ANDROID && (defined(__aarch64__) || defined(__x86_64__))
248  // ASLR personality check.
249  int old_personality = personality(0xffffffff);
250  bool aslr_on =
251      (old_personality != -1) && ((old_personality & ADDR_NO_RANDOMIZE) == 0);
252
253  // After patch "arm64: mm: support ARCH_MMAP_RND_BITS." is introduced in
254  // linux kernel, the random gap between stack and mapped area is increased
255  // from 128M to 36G on 39-bit aarch64. As it is almost impossible to cover
256  // this big range, we should disable randomized virtual space on aarch64.
257  if (aslr_on) {
258    VReport(1,
259            "WARNING: Program is run with randomized virtual address "
260            "space, which wouldn't work with ThreadSanitizer on Android.\n"
261            "Re-execing with fixed virtual address space.\n");
262
263    if (personality(old_personality | ADDR_NO_RANDOMIZE) == -1) {
264      Printf(
265          "FATAL: ThreadSanitizer: unable to disable ASLR (perhaps "
266          "sandboxing is enabled?).\n");
267      Printf("FATAL: Please rerun without sandboxing and/or ASLR.\n");
268      Die();
269    }
270
271    reexec = true;
272  }
273#      endif
274
275  if (reexec) {
276    // Don't check the address space since we're going to re-exec anyway.
277  } else if (!CheckAndProtect(false, ignore_heap, false)) {
278    // ASLR personality check.
279    // N.B. 'personality' is sometimes forbidden by sandboxes, so we only call
280    // this as a last resort (when the memory mapping is incompatible and TSan
281    // would fail anyway).
282    int old_personality = personality(0xffffffff);
283    bool aslr_on =
284        (old_personality != -1) && ((old_personality & ADDR_NO_RANDOMIZE) == 0);
285
286    if (aslr_on) {
287      // Disable ASLR if the memory layout was incompatible.
288      // Alternatively, we could just keep re-execing until we get lucky
289      // with a compatible randomized layout, but the risk is that if it's
290      // not an ASLR-related issue, we will be stuck in an infinite loop of
291      // re-execing (unless we change ReExec to pass a parameter of the
292      // number of retries allowed.)
293      VReport(1,
294              "WARNING: ThreadSanitizer: memory layout is incompatible, "
295              "possibly due to high-entropy ASLR.\n"
296              "Re-execing with fixed virtual address space.\n"
297              "N.B. reducing ASLR entropy is preferable.\n");
298
299      if (personality(old_personality | ADDR_NO_RANDOMIZE) == -1) {
300        Printf(
301            "FATAL: ThreadSanitizer: encountered an incompatible memory "
302            "layout but was unable to disable ASLR (perhaps sandboxing is "
303            "enabled?).\n");
304        Printf(
305            "FATAL: Please rerun with lower ASLR entropy, ASLR disabled, "
306            "and/or sandboxing disabled.\n");
307        Die();
308      }
309
310      reexec = true;
311    } else {
312      Printf(
313          "FATAL: ThreadSanitizer: memory layout is incompatible, "
314          "even though ASLR is disabled.\n"
315          "Please file a bug.\n");
316      DumpProcessMap();
317      Die();
318    }
319  }
320#    endif  // SANITIZER_LINUX
321
322  if (reexec)
323    ReExec();
324}
325#  endif
326
327void InitializePlatformEarly() {
328  vmaSize =
329    (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
330#if defined(__aarch64__)
331# if !SANITIZER_GO
332  if (vmaSize != 39 && vmaSize != 42 && vmaSize != 48) {
333    Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
334    Printf("FATAL: Found %zd - Supported 39, 42 and 48\n", vmaSize);
335    Die();
336  }
337#else
338  if (vmaSize != 48) {
339    Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
340    Printf("FATAL: Found %zd - Supported 48\n", vmaSize);
341    Die();
342  }
343#endif
344#elif SANITIZER_LOONGARCH64
345# if !SANITIZER_GO
346  if (vmaSize != 47) {
347    Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
348    Printf("FATAL: Found %zd - Supported 47\n", vmaSize);
349    Die();
350  }
351#    else
352  if (vmaSize != 47) {
353    Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
354    Printf("FATAL: Found %zd - Supported 47\n", vmaSize);
355    Die();
356  }
357#    endif
358#elif defined(__powerpc64__)
359# if !SANITIZER_GO
360  if (vmaSize != 44 && vmaSize != 46 && vmaSize != 47) {
361    Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
362    Printf("FATAL: Found %zd - Supported 44, 46, and 47\n", vmaSize);
363    Die();
364  }
365# else
366  if (vmaSize != 46 && vmaSize != 47) {
367    Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
368    Printf("FATAL: Found %zd - Supported 46, and 47\n", vmaSize);
369    Die();
370  }
371# endif
372#elif defined(__mips64)
373# if !SANITIZER_GO
374  if (vmaSize != 40) {
375    Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
376    Printf("FATAL: Found %zd - Supported 40\n", vmaSize);
377    Die();
378  }
379# else
380  if (vmaSize != 47) {
381    Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
382    Printf("FATAL: Found %zd - Supported 47\n", vmaSize);
383    Die();
384  }
385# endif
386#  elif SANITIZER_RISCV64
387  // the bottom half of vma is allocated for userspace
388  vmaSize = vmaSize + 1;
389#    if !SANITIZER_GO
390  if (vmaSize != 39 && vmaSize != 48) {
391    Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
392    Printf("FATAL: Found %zd - Supported 39 and 48\n", vmaSize);
393    Die();
394  }
395#    else
396  if (vmaSize != 48) {
397    Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
398    Printf("FATAL: Found %zd - Supported 48\n", vmaSize);
399    Die();
400  }
401#    endif
402#  endif
403
404#  if !SANITIZER_GO
405  // Heap has not been allocated yet
406  ReExecIfNeeded(false);
407#  endif
408}
409
410void InitializePlatform() {
411  DisableCoreDumperIfNecessary();
412
413  // Go maps shadow memory lazily and works fine with limited address space.
414  // Unlimited stack is not a problem as well, because the executable
415  // is not compiled with -pie.
416#if !SANITIZER_GO
417  {
418#    if SANITIZER_LINUX && (defined(__aarch64__) || defined(__loongarch_lp64))
419    // Initialize the xor key used in {sig}{set,long}jump.
420    InitializeLongjmpXorKey();
421#    endif
422  }
423
424  // We called ReExecIfNeeded() in InitializePlatformEarly(), but there are
425  // intervening allocations that result in an edge case:
426  // 1) InitializePlatformEarly(): memory layout is compatible
427  // 2) Intervening allocations happen
428  // 3) InitializePlatform(): memory layout is incompatible and fails
429  //    CheckAndProtect()
430#    if !SANITIZER_GO
431  // Heap has already been allocated
432  ReExecIfNeeded(true);
433#    endif
434
435  // Earlier initialization steps already re-exec'ed until we got a compatible
436  // memory layout, so we don't expect any more issues here.
437  if (!CheckAndProtect(true, true, true)) {
438    Printf(
439        "FATAL: ThreadSanitizer: unexpectedly found incompatible memory "
440        "layout.\n");
441    Printf("FATAL: Please file a bug.\n");
442    DumpProcessMap();
443    Die();
444  }
445
446#endif  // !SANITIZER_GO
447}
448
449#if !SANITIZER_GO
450// Extract file descriptors passed to glibc internal __res_iclose function.
451// This is required to properly "close" the fds, because we do not see internal
452// closes within glibc. The code is a pure hack.
453int ExtractResolvFDs(void *state, int *fds, int nfd) {
454#if SANITIZER_LINUX && !SANITIZER_ANDROID
455  int cnt = 0;
456  struct __res_state *statp = (struct __res_state*)state;
457  for (int i = 0; i < MAXNS && cnt < nfd; i++) {
458    if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1)
459      fds[cnt++] = statp->_u._ext.nssocks[i];
460  }
461  return cnt;
462#else
463  return 0;
464#endif
465}
466
467// Extract file descriptors passed via UNIX domain sockets.
468// This is required to properly handle "open" of these fds.
469// see 'man recvmsg' and 'man 3 cmsg'.
470int ExtractRecvmsgFDs(void *msgp, int *fds, int nfd) {
471  int res = 0;
472  msghdr *msg = (msghdr*)msgp;
473  struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg);
474  for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
475    if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS)
476      continue;
477    int n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(fds[0]);
478    for (int i = 0; i < n; i++) {
479      fds[res++] = ((int*)CMSG_DATA(cmsg))[i];
480      if (res == nfd)
481        return res;
482    }
483  }
484  return res;
485}
486
487// Reverse operation of libc stack pointer mangling
488static uptr UnmangleLongJmpSp(uptr mangled_sp) {
489#if defined(__x86_64__)
490# if SANITIZER_LINUX
491  // Reverse of:
492  //   xor  %fs:0x30, %rsi
493  //   rol  $0x11, %rsi
494  uptr sp;
495  asm("ror  $0x11,     %0 \n"
496      "xor  %%fs:0x30, %0 \n"
497      : "=r" (sp)
498      : "0" (mangled_sp));
499  return sp;
500# else
501  return mangled_sp;
502# endif
503#elif defined(__aarch64__)
504# if SANITIZER_LINUX
505  return mangled_sp ^ longjmp_xor_key;
506# else
507  return mangled_sp;
508# endif
509#elif defined(__loongarch_lp64)
510  return mangled_sp ^ longjmp_xor_key;
511#elif defined(__powerpc64__)
512  // Reverse of:
513  //   ld   r4, -28696(r13)
514  //   xor  r4, r3, r4
515  uptr xor_key;
516  asm("ld  %0, -28696(%%r13)" : "=r" (xor_key));
517  return mangled_sp ^ xor_key;
518#elif defined(__mips__)
519  return mangled_sp;
520#    elif SANITIZER_RISCV64
521  return mangled_sp;
522#    elif defined(__s390x__)
523  // tcbhead_t.stack_guard
524  uptr xor_key = ((uptr *)__builtin_thread_pointer())[5];
525  return mangled_sp ^ xor_key;
526#    else
527#      error "Unknown platform"
528#    endif
529}
530
531#if SANITIZER_NETBSD
532# ifdef __x86_64__
533#  define LONG_JMP_SP_ENV_SLOT 6
534# else
535#  error unsupported
536# endif
537#elif defined(__powerpc__)
538# define LONG_JMP_SP_ENV_SLOT 0
539#elif SANITIZER_FREEBSD
540# ifdef __aarch64__
541#  define LONG_JMP_SP_ENV_SLOT 1
542# else
543#  define LONG_JMP_SP_ENV_SLOT 2
544# endif
545#elif SANITIZER_LINUX
546# ifdef __aarch64__
547#  define LONG_JMP_SP_ENV_SLOT 13
548# elif defined(__loongarch__)
549#  define LONG_JMP_SP_ENV_SLOT 1
550# elif defined(__mips64)
551#  define LONG_JMP_SP_ENV_SLOT 1
552#      elif SANITIZER_RISCV64
553#        define LONG_JMP_SP_ENV_SLOT 13
554#      elif defined(__s390x__)
555#        define LONG_JMP_SP_ENV_SLOT 9
556#      else
557#        define LONG_JMP_SP_ENV_SLOT 6
558#      endif
559#endif
560
561uptr ExtractLongJmpSp(uptr *env) {
562  uptr mangled_sp = env[LONG_JMP_SP_ENV_SLOT];
563  return UnmangleLongJmpSp(mangled_sp);
564}
565
566#if INIT_LONGJMP_XOR_KEY
567// GLIBC mangles the function pointers in jmp_buf (used in {set,long}*jmp
568// functions) by XORing them with a random key.  For AArch64 it is a global
569// variable rather than a TCB one (as for x86_64/powerpc).  We obtain the key by
570// issuing a setjmp and XORing the SP pointer values to derive the key.
571static void InitializeLongjmpXorKey() {
572  // 1. Call REAL(setjmp), which stores the mangled SP in env.
573  jmp_buf env;
574  REAL(_setjmp)(env);
575
576  // 2. Retrieve vanilla/mangled SP.
577  uptr sp;
578#ifdef __loongarch__
579  asm("move  %0, $sp" : "=r" (sp));
580#else
581  asm("mov  %0, sp" : "=r" (sp));
582#endif
583  uptr mangled_sp = ((uptr *)&env)[LONG_JMP_SP_ENV_SLOT];
584
585  // 3. xor SPs to obtain key.
586  longjmp_xor_key = mangled_sp ^ sp;
587}
588#endif
589
590extern "C" void __tsan_tls_initialization() {}
591
592void ImitateTlsWrite(ThreadState *thr, uptr tls_addr, uptr tls_size) {
593  // Check that the thr object is in tls;
594  const uptr thr_beg = (uptr)thr;
595  const uptr thr_end = (uptr)thr + sizeof(*thr);
596  CHECK_GE(thr_beg, tls_addr);
597  CHECK_LE(thr_beg, tls_addr + tls_size);
598  CHECK_GE(thr_end, tls_addr);
599  CHECK_LE(thr_end, tls_addr + tls_size);
600  // Since the thr object is huge, skip it.
601  const uptr pc = StackTrace::GetNextInstructionPc(
602      reinterpret_cast<uptr>(__tsan_tls_initialization));
603  MemoryRangeImitateWrite(thr, pc, tls_addr, thr_beg - tls_addr);
604  MemoryRangeImitateWrite(thr, pc, thr_end, tls_addr + tls_size - thr_end);
605}
606
607// Note: this function runs with async signals enabled,
608// so it must not touch any tsan state.
609int call_pthread_cancel_with_cleanup(int (*fn)(void *arg),
610                                     void (*cleanup)(void *arg), void *arg) {
611  // pthread_cleanup_push/pop are hardcore macros mess.
612  // We can't intercept nor call them w/o including pthread.h.
613  int res;
614  pthread_cleanup_push(cleanup, arg);
615  res = fn(arg);
616  pthread_cleanup_pop(0);
617  return res;
618}
619#endif  // !SANITIZER_GO
620
621#if !SANITIZER_GO
622void ReplaceSystemMalloc() { }
623#endif
624
625#if !SANITIZER_GO
626#if SANITIZER_ANDROID
627// On Android, one thread can call intercepted functions after
628// DestroyThreadState(), so add a fake thread state for "dead" threads.
629static ThreadState *dead_thread_state = nullptr;
630
631ThreadState *cur_thread() {
632  ThreadState* thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr());
633  if (thr == nullptr) {
634    __sanitizer_sigset_t emptyset;
635    internal_sigfillset(&emptyset);
636    __sanitizer_sigset_t oldset;
637    CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset));
638    thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr());
639    if (thr == nullptr) {
640      thr = reinterpret_cast<ThreadState*>(MmapOrDie(sizeof(ThreadState),
641                                                     "ThreadState"));
642      *get_android_tls_ptr() = reinterpret_cast<uptr>(thr);
643      if (dead_thread_state == nullptr) {
644        dead_thread_state = reinterpret_cast<ThreadState*>(
645            MmapOrDie(sizeof(ThreadState), "ThreadState"));
646        dead_thread_state->fast_state.SetIgnoreBit();
647        dead_thread_state->ignore_interceptors = 1;
648        dead_thread_state->is_dead = true;
649        *const_cast<u32*>(&dead_thread_state->tid) = -1;
650        CHECK_EQ(0, internal_mprotect(dead_thread_state, sizeof(ThreadState),
651                                      PROT_READ));
652      }
653    }
654    CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr));
655  }
656  return thr;
657}
658
659void set_cur_thread(ThreadState *thr) {
660  *get_android_tls_ptr() = reinterpret_cast<uptr>(thr);
661}
662
663void cur_thread_finalize() {
664  __sanitizer_sigset_t emptyset;
665  internal_sigfillset(&emptyset);
666  __sanitizer_sigset_t oldset;
667  CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset));
668  ThreadState* thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr());
669  if (thr != dead_thread_state) {
670    *get_android_tls_ptr() = reinterpret_cast<uptr>(dead_thread_state);
671    UnmapOrDie(thr, sizeof(ThreadState));
672  }
673  CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr));
674}
675#endif  // SANITIZER_ANDROID
676#endif  // if !SANITIZER_GO
677
678}  // namespace __tsan
679
680#endif  // SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD