master
  1//===-- tsan_mman.cpp -----------------------------------------------------===//
  2//
  3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4// See https://llvm.org/LICENSE.txt for license information.
  5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6//
  7//===----------------------------------------------------------------------===//
  8//
  9// This file is a part of ThreadSanitizer (TSan), a race detector.
 10//
 11//===----------------------------------------------------------------------===//
 12#include "tsan_mman.h"
 13
 14#include "sanitizer_common/sanitizer_allocator_checks.h"
 15#include "sanitizer_common/sanitizer_allocator_interface.h"
 16#include "sanitizer_common/sanitizer_allocator_report.h"
 17#include "sanitizer_common/sanitizer_common.h"
 18#include "sanitizer_common/sanitizer_errno.h"
 19#include "sanitizer_common/sanitizer_placement_new.h"
 20#include "sanitizer_common/sanitizer_stackdepot.h"
 21#include "tsan_flags.h"
 22#include "tsan_interface.h"
 23#include "tsan_report.h"
 24#include "tsan_rtl.h"
 25
 26namespace __tsan {
 27
 28struct MapUnmapCallback {
 29  void OnMap(uptr p, uptr size) const { }
 30  void OnMapSecondary(uptr p, uptr size, uptr user_begin,
 31                      uptr user_size) const {};
 32  void OnUnmap(uptr p, uptr size) const {
 33    // We are about to unmap a chunk of user memory.
 34    // Mark the corresponding shadow memory as not needed.
 35    DontNeedShadowFor(p, size);
 36    // Mark the corresponding meta shadow memory as not needed.
 37    // Note the block does not contain any meta info at this point
 38    // (this happens after free).
 39    const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize;
 40    const uptr kPageSize = GetPageSizeCached() * kMetaRatio;
 41    // Block came from LargeMmapAllocator, so must be large.
 42    // We rely on this in the calculations below.
 43    CHECK_GE(size, 2 * kPageSize);
 44    uptr diff = RoundUp(p, kPageSize) - p;
 45    if (diff != 0) {
 46      p += diff;
 47      size -= diff;
 48    }
 49    diff = p + size - RoundDown(p + size, kPageSize);
 50    if (diff != 0)
 51      size -= diff;
 52    uptr p_meta = (uptr)MemToMeta(p);
 53    ReleaseMemoryPagesToOS(p_meta, p_meta + size / kMetaRatio);
 54  }
 55};
 56
 57alignas(64) static char allocator_placeholder[sizeof(Allocator)];
 58Allocator *allocator() {
 59  return reinterpret_cast<Allocator*>(&allocator_placeholder);
 60}
 61
 62struct GlobalProc {
 63  Mutex mtx;
 64  Processor *proc;
 65  // This mutex represents the internal allocator combined for
 66  // the purposes of deadlock detection. The internal allocator
 67  // uses multiple mutexes, moreover they are locked only occasionally
 68  // and they are spin mutexes which don't support deadlock detection.
 69  // So we use this fake mutex to serve as a substitute for these mutexes.
 70  CheckedMutex internal_alloc_mtx;
 71
 72  GlobalProc()
 73      : mtx(MutexTypeGlobalProc),
 74        proc(ProcCreate()),
 75        internal_alloc_mtx(MutexTypeInternalAlloc) {}
 76};
 77
 78alignas(64) static char global_proc_placeholder[sizeof(GlobalProc)];
 79GlobalProc *global_proc() {
 80  return reinterpret_cast<GlobalProc*>(&global_proc_placeholder);
 81}
 82
 83static void InternalAllocAccess() {
 84  global_proc()->internal_alloc_mtx.Lock();
 85  global_proc()->internal_alloc_mtx.Unlock();
 86}
 87
 88ScopedGlobalProcessor::ScopedGlobalProcessor() {
 89  GlobalProc *gp = global_proc();
 90  ThreadState *thr = cur_thread();
 91  if (thr->proc())
 92    return;
 93  // If we don't have a proc, use the global one.
 94  // There are currently only two known case where this path is triggered:
 95  //   __interceptor_free
 96  //   __nptl_deallocate_tsd
 97  //   start_thread
 98  //   clone
 99  // and:
100  //   ResetRange
101  //   __interceptor_munmap
102  //   __deallocate_stack
103  //   start_thread
104  //   clone
105  // Ideally, we destroy thread state (and unwire proc) when a thread actually
106  // exits (i.e. when we join/wait it). Then we would not need the global proc
107  gp->mtx.Lock();
108  ProcWire(gp->proc, thr);
109}
110
111ScopedGlobalProcessor::~ScopedGlobalProcessor() {
112  GlobalProc *gp = global_proc();
113  ThreadState *thr = cur_thread();
114  if (thr->proc() != gp->proc)
115    return;
116  ProcUnwire(gp->proc, thr);
117  gp->mtx.Unlock();
118}
119
120void AllocatorLockBeforeFork() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
121  global_proc()->internal_alloc_mtx.Lock();
122  InternalAllocatorLock();
123#if !SANITIZER_APPLE
124  // OS X allocates from hooks, see 6a3958247a.
125  allocator()->ForceLock();
126  StackDepotLockBeforeFork();
127#endif
128}
129
130void AllocatorUnlockAfterFork(bool child) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
131#if !SANITIZER_APPLE
132  StackDepotUnlockAfterFork(child);
133  allocator()->ForceUnlock();
134#endif
135  InternalAllocatorUnlock();
136  global_proc()->internal_alloc_mtx.Unlock();
137}
138
139void GlobalProcessorLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
140  global_proc()->mtx.Lock();
141}
142
143void GlobalProcessorUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
144  global_proc()->mtx.Unlock();
145}
146
147static constexpr uptr kMaxAllowedMallocSize = 1ull << 40;
148static uptr max_user_defined_malloc_size;
149
150void InitializeAllocator() {
151  SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
152  allocator()->Init(common_flags()->allocator_release_to_os_interval_ms);
153  max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
154                                     ? common_flags()->max_allocation_size_mb
155                                           << 20
156                                     : kMaxAllowedMallocSize;
157}
158
159void InitializeAllocatorLate() {
160  new(global_proc()) GlobalProc();
161}
162
163void AllocatorProcStart(Processor *proc) {
164  allocator()->InitCache(&proc->alloc_cache);
165  internal_allocator()->InitCache(&proc->internal_alloc_cache);
166}
167
168void AllocatorProcFinish(Processor *proc) {
169  allocator()->DestroyCache(&proc->alloc_cache);
170  internal_allocator()->DestroyCache(&proc->internal_alloc_cache);
171}
172
173void AllocatorPrintStats() {
174  allocator()->PrintStats();
175}
176
177static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
178  if (atomic_load_relaxed(&thr->in_signal_handler) == 0 ||
179      !ShouldReport(thr, ReportTypeSignalUnsafe))
180    return;
181  VarSizeStackTrace stack;
182  ObtainCurrentStack(thr, pc, &stack);
183  if (IsFiredSuppression(ctx, ReportTypeSignalUnsafe, stack))
184    return;
185  ThreadRegistryLock l(&ctx->thread_registry);
186  ScopedReport rep(ReportTypeSignalUnsafe);
187  rep.AddStack(stack, true);
188  OutputReport(thr, rep);
189}
190
191
192void *user_alloc_internal(ThreadState *thr, uptr pc, uptr sz, uptr align,
193                          bool signal) {
194  if (sz >= kMaxAllowedMallocSize || align >= kMaxAllowedMallocSize ||
195      sz > max_user_defined_malloc_size) {
196    if (AllocatorMayReturnNull())
197      return nullptr;
198    uptr malloc_limit =
199        Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
200    GET_STACK_TRACE_FATAL(thr, pc);
201    ReportAllocationSizeTooBig(sz, malloc_limit, &stack);
202  }
203  if (UNLIKELY(IsRssLimitExceeded())) {
204    if (AllocatorMayReturnNull())
205      return nullptr;
206    GET_STACK_TRACE_FATAL(thr, pc);
207    ReportRssLimitExceeded(&stack);
208  }
209  void *p = allocator()->Allocate(&thr->proc()->alloc_cache, sz, align);
210  if (UNLIKELY(!p)) {
211    SetAllocatorOutOfMemory();
212    if (AllocatorMayReturnNull())
213      return nullptr;
214    GET_STACK_TRACE_FATAL(thr, pc);
215    ReportOutOfMemory(sz, &stack);
216  }
217  if (ctx && ctx->initialized)
218    OnUserAlloc(thr, pc, (uptr)p, sz, true);
219  if (signal)
220    SignalUnsafeCall(thr, pc);
221  return p;
222}
223
224void user_free(ThreadState *thr, uptr pc, void *p, bool signal) {
225  ScopedGlobalProcessor sgp;
226  if (ctx && ctx->initialized)
227    OnUserFree(thr, pc, (uptr)p, true);
228  allocator()->Deallocate(&thr->proc()->alloc_cache, p);
229  if (signal)
230    SignalUnsafeCall(thr, pc);
231}
232
233void *user_alloc(ThreadState *thr, uptr pc, uptr sz) {
234  return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, kDefaultAlignment));
235}
236
237void *user_calloc(ThreadState *thr, uptr pc, uptr size, uptr n) {
238  if (UNLIKELY(CheckForCallocOverflow(size, n))) {
239    if (AllocatorMayReturnNull())
240      return SetErrnoOnNull(nullptr);
241    GET_STACK_TRACE_FATAL(thr, pc);
242    ReportCallocOverflow(n, size, &stack);
243  }
244  void *p = user_alloc_internal(thr, pc, n * size);
245  if (p)
246    internal_memset(p, 0, n * size);
247  return SetErrnoOnNull(p);
248}
249
250void *user_reallocarray(ThreadState *thr, uptr pc, void *p, uptr size, uptr n) {
251  if (UNLIKELY(CheckForCallocOverflow(size, n))) {
252    if (AllocatorMayReturnNull())
253      return SetErrnoOnNull(nullptr);
254    GET_STACK_TRACE_FATAL(thr, pc);
255    ReportReallocArrayOverflow(n, size, &stack);
256  }
257  return user_realloc(thr, pc, p, size * n);
258}
259
260void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) {
261  DPrintf("#%d: alloc(%zu) = 0x%zx\n", thr->tid, sz, p);
262  // Note: this can run before thread initialization/after finalization.
263  // As a result this is not necessarily synchronized with DoReset,
264  // which iterates over and resets all sync objects,
265  // but it is fine to create new MBlocks in this context.
266  ctx->metamap.AllocBlock(thr, pc, p, sz);
267  // If this runs before thread initialization/after finalization
268  // and we don't have trace initialized, we can't imitate writes.
269  // In such case just reset the shadow range, it is fine since
270  // it affects only a small fraction of special objects.
271  if (write && thr->ignore_reads_and_writes == 0 &&
272      atomic_load_relaxed(&thr->trace_pos))
273    MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
274  else
275    MemoryResetRange(thr, pc, (uptr)p, sz);
276}
277
278void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) {
279  CHECK_NE(p, (void*)0);
280  if (!thr->slot) {
281    // Very early/late in thread lifetime, or during fork.
282    UNUSED uptr sz = ctx->metamap.FreeBlock(thr->proc(), p, false);
283    DPrintf("#%d: free(0x%zx, %zu) (no slot)\n", thr->tid, p, sz);
284    return;
285  }
286  SlotLocker locker(thr);
287  uptr sz = ctx->metamap.FreeBlock(thr->proc(), p, true);
288  DPrintf("#%d: free(0x%zx, %zu)\n", thr->tid, p, sz);
289  if (write && thr->ignore_reads_and_writes == 0)
290    MemoryRangeFreed(thr, pc, (uptr)p, sz);
291}
292
293void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
294  // FIXME: Handle "shrinking" more efficiently,
295  // it seems that some software actually does this.
296  if (!p)
297    return SetErrnoOnNull(user_alloc_internal(thr, pc, sz));
298  if (!sz) {
299    user_free(thr, pc, p);
300    return nullptr;
301  }
302  void *new_p = user_alloc_internal(thr, pc, sz);
303  if (new_p) {
304    uptr old_sz = user_alloc_usable_size(p);
305    internal_memcpy(new_p, p, min(old_sz, sz));
306    user_free(thr, pc, p);
307  }
308  return SetErrnoOnNull(new_p);
309}
310
311void *user_memalign(ThreadState *thr, uptr pc, uptr align, uptr sz) {
312  if (UNLIKELY(!IsPowerOfTwo(align))) {
313    errno = errno_EINVAL;
314    if (AllocatorMayReturnNull())
315      return nullptr;
316    GET_STACK_TRACE_FATAL(thr, pc);
317    ReportInvalidAllocationAlignment(align, &stack);
318  }
319  return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
320}
321
322int user_posix_memalign(ThreadState *thr, uptr pc, void **memptr, uptr align,
323                        uptr sz) {
324  if (UNLIKELY(!CheckPosixMemalignAlignment(align))) {
325    if (AllocatorMayReturnNull())
326      return errno_EINVAL;
327    GET_STACK_TRACE_FATAL(thr, pc);
328    ReportInvalidPosixMemalignAlignment(align, &stack);
329  }
330  void *ptr = user_alloc_internal(thr, pc, sz, align);
331  if (UNLIKELY(!ptr))
332    // OOM error is already taken care of by user_alloc_internal.
333    return errno_ENOMEM;
334  CHECK(IsAligned((uptr)ptr, align));
335  *memptr = ptr;
336  return 0;
337}
338
339void *user_aligned_alloc(ThreadState *thr, uptr pc, uptr align, uptr sz) {
340  if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(align, sz))) {
341    errno = errno_EINVAL;
342    if (AllocatorMayReturnNull())
343      return nullptr;
344    GET_STACK_TRACE_FATAL(thr, pc);
345    ReportInvalidAlignedAllocAlignment(sz, align, &stack);
346  }
347  return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
348}
349
350void *user_valloc(ThreadState *thr, uptr pc, uptr sz) {
351  return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, GetPageSizeCached()));
352}
353
354void *user_pvalloc(ThreadState *thr, uptr pc, uptr sz) {
355  uptr PageSize = GetPageSizeCached();
356  if (UNLIKELY(CheckForPvallocOverflow(sz, PageSize))) {
357    errno = errno_ENOMEM;
358    if (AllocatorMayReturnNull())
359      return nullptr;
360    GET_STACK_TRACE_FATAL(thr, pc);
361    ReportPvallocOverflow(sz, &stack);
362  }
363  // pvalloc(0) should allocate one page.
364  sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
365  return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, PageSize));
366}
367
368static const void *user_alloc_begin(const void *p) {
369  if (p == nullptr || !IsAppMem((uptr)p))
370    return nullptr;
371  void *beg = allocator()->GetBlockBegin(p);
372  if (!beg)
373    return nullptr;
374
375  MBlock *b = ctx->metamap.GetBlock((uptr)beg);
376  if (!b)
377    return nullptr;  // Not a valid pointer.
378
379  return (const void *)beg;
380}
381
382uptr user_alloc_usable_size(const void *p) {
383  if (p == 0 || !IsAppMem((uptr)p))
384    return 0;
385  MBlock *b = ctx->metamap.GetBlock((uptr)p);
386  if (!b)
387    return 0;  // Not a valid pointer.
388  if (b->siz == 0)
389    return 1;  // Zero-sized allocations are actually 1 byte.
390  return b->siz;
391}
392
393uptr user_alloc_usable_size_fast(const void *p) {
394  MBlock *b = ctx->metamap.GetBlock((uptr)p);
395  // Static objects may have malloc'd before tsan completes
396  // initialization, and may believe returned ptrs to be valid.
397  if (!b)
398    return 0;  // Not a valid pointer.
399  if (b->siz == 0)
400    return 1;  // Zero-sized allocations are actually 1 byte.
401  return b->siz;
402}
403
404void invoke_malloc_hook(void *ptr, uptr size) {
405  ThreadState *thr = cur_thread();
406  if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
407    return;
408  RunMallocHooks(ptr, size);
409}
410
411void invoke_free_hook(void *ptr) {
412  ThreadState *thr = cur_thread();
413  if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
414    return;
415  RunFreeHooks(ptr);
416}
417
418void *Alloc(uptr sz) {
419  ThreadState *thr = cur_thread();
420  if (thr->nomalloc) {
421    thr->nomalloc = 0;  // CHECK calls internal_malloc().
422    CHECK(0);
423  }
424  InternalAllocAccess();
425  return InternalAlloc(sz, &thr->proc()->internal_alloc_cache);
426}
427
428void FreeImpl(void *p) {
429  ThreadState *thr = cur_thread();
430  if (thr->nomalloc) {
431    thr->nomalloc = 0;  // CHECK calls internal_malloc().
432    CHECK(0);
433  }
434  InternalAllocAccess();
435  InternalFree(p, &thr->proc()->internal_alloc_cache);
436}
437
438}  // namespace __tsan
439
440using namespace __tsan;
441
442extern "C" {
443uptr __sanitizer_get_current_allocated_bytes() {
444  uptr stats[AllocatorStatCount];
445  allocator()->GetStats(stats);
446  return stats[AllocatorStatAllocated];
447}
448
449uptr __sanitizer_get_heap_size() {
450  uptr stats[AllocatorStatCount];
451  allocator()->GetStats(stats);
452  return stats[AllocatorStatMapped];
453}
454
455uptr __sanitizer_get_free_bytes() {
456  return 1;
457}
458
459uptr __sanitizer_get_unmapped_bytes() {
460  return 1;
461}
462
463uptr __sanitizer_get_estimated_allocated_size(uptr size) {
464  return size;
465}
466
467int __sanitizer_get_ownership(const void *p) {
468  return allocator()->GetBlockBegin(p) != 0;
469}
470
471const void *__sanitizer_get_allocated_begin(const void *p) {
472  return user_alloc_begin(p);
473}
474
475uptr __sanitizer_get_allocated_size(const void *p) {
476  return user_alloc_usable_size(p);
477}
478
479uptr __sanitizer_get_allocated_size_fast(const void *p) {
480  DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
481  uptr ret = user_alloc_usable_size_fast(p);
482  DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
483  return ret;
484}
485
486void __sanitizer_purge_allocator() {
487  allocator()->ForceReleaseToOS();
488}
489
490void __tsan_on_thread_idle() {
491  ThreadState *thr = cur_thread();
492  allocator()->SwallowCache(&thr->proc()->alloc_cache);
493  internal_allocator()->SwallowCache(&thr->proc()->internal_alloc_cache);
494  ctx->metamap.OnProcIdle(thr->proc());
495}
496}  // extern "C"