master
   1//===-- tsan_interceptors_posix.cpp ---------------------------------------===//
   2//
   3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
   4// See https://llvm.org/LICENSE.txt for license information.
   5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
   6//
   7//===----------------------------------------------------------------------===//
   8//
   9// This file is a part of ThreadSanitizer (TSan), a race detector.
  10//
  11// FIXME: move as many interceptors as possible into
  12// sanitizer_common/sanitizer_common_interceptors.inc
  13//===----------------------------------------------------------------------===//
  14
  15#include <stdarg.h>
  16
  17#include "interception/interception.h"
  18#include "sanitizer_common/sanitizer_allocator_dlsym.h"
  19#include "sanitizer_common/sanitizer_atomic.h"
  20#include "sanitizer_common/sanitizer_errno.h"
  21#include "sanitizer_common/sanitizer_glibc_version.h"
  22#include "sanitizer_common/sanitizer_internal_defs.h"
  23#include "sanitizer_common/sanitizer_libc.h"
  24#include "sanitizer_common/sanitizer_linux.h"
  25#include "sanitizer_common/sanitizer_platform_interceptors.h"
  26#include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
  27#include "sanitizer_common/sanitizer_platform_limits_posix.h"
  28#include "sanitizer_common/sanitizer_posix.h"
  29#include "sanitizer_common/sanitizer_stacktrace.h"
  30#include "sanitizer_common/sanitizer_tls_get_addr.h"
  31#include "sanitizer_common/sanitizer_vector.h"
  32#include "tsan_fd.h"
  33#include "tsan_interceptors.h"
  34#include "tsan_interface.h"
  35#include "tsan_mman.h"
  36#include "tsan_platform.h"
  37#include "tsan_rtl.h"
  38#include "tsan_suppressions.h"
  39
  40using namespace __tsan;
  41
  42DECLARE_REAL(void *, memcpy, void *to, const void *from, SIZE_T size)
  43DECLARE_REAL(void *, memset, void *block, int c, SIZE_T size)
  44
  45#if SANITIZER_FREEBSD || SANITIZER_APPLE
  46#define stdout __stdoutp
  47#define stderr __stderrp
  48#endif
  49
  50#if SANITIZER_NETBSD
  51#define dirfd(dirp) (*(int *)(dirp))
  52#define fileno_unlocked(fp)              \
  53  (((__sanitizer_FILE *)fp)->_file == -1 \
  54       ? -1                              \
  55       : (int)(unsigned short)(((__sanitizer_FILE *)fp)->_file))
  56
  57#define stdout ((__sanitizer_FILE*)&__sF[1])
  58#define stderr ((__sanitizer_FILE*)&__sF[2])
  59
  60#define nanosleep __nanosleep50
  61#define vfork __vfork14
  62#endif
  63
  64#ifdef __mips__
  65const int kSigCount = 129;
  66#else
  67const int kSigCount = 65;
  68#endif
  69
  70#ifdef __mips__
  71struct ucontext_t {
  72  u64 opaque[768 / sizeof(u64) + 1];
  73};
  74#else
  75struct ucontext_t {
  76  // The size is determined by looking at sizeof of real ucontext_t on linux.
  77  u64 opaque[936 / sizeof(u64) + 1];
  78};
  79#endif
  80
  81#if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1 || \
  82    defined(__s390x__)
  83#define PTHREAD_ABI_BASE  "GLIBC_2.3.2"
  84#elif defined(__aarch64__) || SANITIZER_PPC64V2
  85#define PTHREAD_ABI_BASE  "GLIBC_2.17"
  86#elif SANITIZER_LOONGARCH64
  87#define PTHREAD_ABI_BASE  "GLIBC_2.36"
  88#elif SANITIZER_RISCV64
  89#  define PTHREAD_ABI_BASE "GLIBC_2.27"
  90#endif
  91
  92extern "C" int pthread_attr_init(void *attr);
  93extern "C" int pthread_attr_destroy(void *attr);
  94DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
  95extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
  96extern "C" int pthread_atfork(void (*prepare)(void), void (*parent)(void),
  97                              void (*child)(void));
  98extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
  99extern "C" int pthread_setspecific(unsigned key, const void *v);
 100DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
 101DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
 102DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, usize size)
 103DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
 104extern "C" int pthread_equal(void *t1, void *t2);
 105extern "C" void *pthread_self();
 106extern "C" void _exit(int status);
 107#if !SANITIZER_NETBSD
 108extern "C" int fileno_unlocked(void *stream);
 109extern "C" int dirfd(void *dirp);
 110#endif
 111#if SANITIZER_NETBSD
 112extern __sanitizer_FILE __sF[];
 113#else
 114extern __sanitizer_FILE *stdout, *stderr;
 115#endif
 116#if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD
 117const int PTHREAD_MUTEX_RECURSIVE = 1;
 118const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
 119#else
 120const int PTHREAD_MUTEX_RECURSIVE = 2;
 121const int PTHREAD_MUTEX_RECURSIVE_NP = 2;
 122#endif
 123#if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD
 124const int EPOLL_CTL_ADD = 1;
 125#endif
 126const int SIGILL = 4;
 127const int SIGTRAP = 5;
 128const int SIGABRT = 6;
 129const int SIGFPE = 8;
 130const int SIGSEGV = 11;
 131const int SIGPIPE = 13;
 132const int SIGTERM = 15;
 133#if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_APPLE || SANITIZER_NETBSD
 134const int SIGBUS = 10;
 135const int SIGSYS = 12;
 136#else
 137const int SIGBUS = 7;
 138const int SIGSYS = 31;
 139#endif
 140#if SANITIZER_HAS_SIGINFO
 141const int SI_TIMER = -2;
 142#endif
 143void *const MAP_FAILED = (void*)-1;
 144#if SANITIZER_NETBSD
 145const int PTHREAD_BARRIER_SERIAL_THREAD = 1234567;
 146#elif !SANITIZER_APPLE
 147const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
 148#endif
 149const int MAP_FIXED = 0x10;
 150typedef long long_t;
 151typedef __sanitizer::u16 mode_t;
 152
 153// From /usr/include/unistd.h
 154# define F_ULOCK 0      /* Unlock a previously locked region.  */
 155# define F_LOCK  1      /* Lock a region for exclusive use.  */
 156# define F_TLOCK 2      /* Test and lock a region for exclusive use.  */
 157# define F_TEST  3      /* Test a region for other processes locks.  */
 158
 159#if SANITIZER_FREEBSD || SANITIZER_APPLE || SANITIZER_NETBSD
 160const int SA_SIGINFO = 0x40;
 161const int SIG_SETMASK = 3;
 162#elif defined(__mips__)
 163const int SA_SIGINFO = 8;
 164const int SIG_SETMASK = 3;
 165#else
 166const int SA_SIGINFO = 4;
 167const int SIG_SETMASK = 2;
 168#endif
 169
 170namespace __tsan {
 171struct SignalDesc {
 172  bool armed;
 173  __sanitizer_siginfo siginfo;
 174  ucontext_t ctx;
 175};
 176
 177struct ThreadSignalContext {
 178  int int_signal_send;
 179  SignalDesc pending_signals[kSigCount];
 180  // emptyset and oldset are too big for stack.
 181  __sanitizer_sigset_t emptyset;
 182  __sanitizer::Vector<__sanitizer_sigset_t> oldset;
 183};
 184
 185void EnterBlockingFunc(ThreadState *thr) {
 186  for (;;) {
 187    // The order is important to not delay a signal infinitely if it's
 188    // delivered right before we set in_blocking_func. Note: we can't call
 189    // ProcessPendingSignals when in_blocking_func is set, or we can handle
 190    // a signal synchronously when we are already handling a signal.
 191    atomic_store(&thr->in_blocking_func, 1, memory_order_relaxed);
 192    if (atomic_load(&thr->pending_signals, memory_order_relaxed) == 0)
 193      break;
 194    atomic_store(&thr->in_blocking_func, 0, memory_order_relaxed);
 195    ProcessPendingSignals(thr);
 196  }
 197}
 198
 199// The sole reason tsan wraps atexit callbacks is to establish synchronization
 200// between callback setup and callback execution.
 201struct AtExitCtx {
 202  void (*f)();
 203  void *arg;
 204  uptr pc;
 205};
 206
 207// InterceptorContext holds all global data required for interceptors.
 208// It's explicitly constructed in InitializeInterceptors with placement new
 209// and is never destroyed. This allows usage of members with non-trivial
 210// constructors and destructors.
 211struct InterceptorContext {
 212  // The object is 64-byte aligned, because we want hot data to be located
 213  // in a single cache line if possible (it's accessed in every interceptor).
 214  alignas(64) LibIgnore libignore;
 215  __sanitizer_sigaction sigactions[kSigCount];
 216#if !SANITIZER_APPLE && !SANITIZER_NETBSD
 217  unsigned finalize_key;
 218#endif
 219
 220  Mutex atexit_mu;
 221  Vector<struct AtExitCtx *> AtExitStack;
 222
 223  InterceptorContext() : libignore(LINKER_INITIALIZED), atexit_mu(MutexTypeAtExit), AtExitStack() {}
 224};
 225
 226alignas(64) static char interceptor_placeholder[sizeof(InterceptorContext)];
 227InterceptorContext *interceptor_ctx() {
 228  return reinterpret_cast<InterceptorContext*>(&interceptor_placeholder[0]);
 229}
 230
 231LibIgnore *libignore() {
 232  return &interceptor_ctx()->libignore;
 233}
 234
 235void InitializeLibIgnore() {
 236  const SuppressionContext &supp = *Suppressions();
 237  const uptr n = supp.SuppressionCount();
 238  for (uptr i = 0; i < n; i++) {
 239    const Suppression *s = supp.SuppressionAt(i);
 240    if (0 == internal_strcmp(s->type, kSuppressionLib))
 241      libignore()->AddIgnoredLibrary(s->templ);
 242  }
 243  if (flags()->ignore_noninstrumented_modules)
 244    libignore()->IgnoreNoninstrumentedModules(true);
 245  libignore()->OnLibraryLoaded(0);
 246}
 247
 248// The following two hooks can be used by for cooperative scheduling when
 249// locking.
 250#ifdef TSAN_EXTERNAL_HOOKS
 251void OnPotentiallyBlockingRegionBegin();
 252void OnPotentiallyBlockingRegionEnd();
 253#else
 254SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionBegin() {}
 255SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionEnd() {}
 256#endif
 257
 258// FIXME: Use for `in_symbolizer()` as well. As-is we can't use
 259// `DlSymAllocator`, because it uses the primary allocator only. Symbolizer
 260// requires support of the secondary allocator for larger blocks.
 261struct DlsymAlloc : public DlSymAllocator<DlsymAlloc> {
 262  static bool UseImpl() { return (ctx && !ctx->initialized); }
 263};
 264
 265}  // namespace __tsan
 266
 267static ThreadSignalContext *SigCtx(ThreadState *thr) {
 268  // This function may be called reentrantly if it is interrupted by a signal
 269  // handler. Use CAS to handle the race.
 270  uptr ctx = atomic_load(&thr->signal_ctx, memory_order_relaxed);
 271  if (ctx == 0 && !thr->is_dead) {
 272    uptr pctx =
 273        (uptr)MmapOrDie(sizeof(ThreadSignalContext), "ThreadSignalContext");
 274    MemoryResetRange(thr, (uptr)&SigCtx, pctx, sizeof(ThreadSignalContext));
 275    if (atomic_compare_exchange_strong(&thr->signal_ctx, &ctx, pctx,
 276                                       memory_order_relaxed)) {
 277      ctx = pctx;
 278    } else {
 279      UnmapOrDie((ThreadSignalContext *)pctx, sizeof(ThreadSignalContext));
 280    }
 281  }
 282  return (ThreadSignalContext *)ctx;
 283}
 284
 285ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
 286                                     uptr pc)
 287    : thr_(thr) {
 288  LazyInitialize(thr);
 289  if (UNLIKELY(atomic_load(&thr->in_blocking_func, memory_order_relaxed))) {
 290    // pthread_join is marked as blocking, but it's also known to call other
 291    // intercepted functions (mmap, free). If we don't reset in_blocking_func
 292    // we can get deadlocks and memory corruptions if we deliver a synchronous
 293    // signal inside of an mmap/free interceptor.
 294    // So reset it and restore it back in the destructor.
 295    // See https://github.com/google/sanitizers/issues/1540
 296    atomic_store(&thr->in_blocking_func, 0, memory_order_relaxed);
 297    in_blocking_func_ = true;
 298  }
 299  if (!thr_->is_inited) return;
 300  if (!thr_->ignore_interceptors) FuncEntry(thr, pc);
 301  DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
 302  ignoring_ =
 303      !thr_->in_ignored_lib && (flags()->ignore_interceptors_accesses ||
 304                                libignore()->IsIgnored(pc, &in_ignored_lib_));
 305  EnableIgnores();
 306}
 307
 308ScopedInterceptor::~ScopedInterceptor() {
 309  if (!thr_->is_inited) return;
 310  DisableIgnores();
 311  if (UNLIKELY(in_blocking_func_))
 312    EnterBlockingFunc(thr_);
 313  if (!thr_->ignore_interceptors) {
 314    ProcessPendingSignals(thr_);
 315    FuncExit(thr_);
 316    CheckedMutex::CheckNoLocks();
 317  }
 318}
 319
 320NOINLINE
 321void ScopedInterceptor::EnableIgnoresImpl() {
 322  ThreadIgnoreBegin(thr_, 0);
 323  if (flags()->ignore_noninstrumented_modules)
 324    thr_->suppress_reports++;
 325  if (in_ignored_lib_) {
 326    DCHECK(!thr_->in_ignored_lib);
 327    thr_->in_ignored_lib = true;
 328  }
 329}
 330
 331NOINLINE
 332void ScopedInterceptor::DisableIgnoresImpl() {
 333  ThreadIgnoreEnd(thr_);
 334  if (flags()->ignore_noninstrumented_modules)
 335    thr_->suppress_reports--;
 336  if (in_ignored_lib_) {
 337    DCHECK(thr_->in_ignored_lib);
 338    thr_->in_ignored_lib = false;
 339  }
 340}
 341
 342#define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
 343#if SANITIZER_FREEBSD || SANITIZER_NETBSD
 344#  define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
 345#else
 346#  define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
 347#endif
 348#if SANITIZER_FREEBSD
 349#  define TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(func) \
 350    INTERCEPT_FUNCTION(_pthread_##func)
 351#else
 352#  define TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(func)
 353#endif
 354#if SANITIZER_NETBSD
 355#  define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \
 356    INTERCEPT_FUNCTION(__libc_##func)
 357#  define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \
 358    INTERCEPT_FUNCTION(__libc_thr_##func)
 359#else
 360#  define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
 361#  define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
 362#endif
 363
 364#define READ_STRING_OF_LEN(thr, pc, s, len, n)                 \
 365  MemoryAccessRange((thr), (pc), (uptr)(s),                         \
 366    common_flags()->strict_string_checks ? (len) + 1 : (n), false)
 367
 368#define READ_STRING(thr, pc, s, n)                             \
 369    READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
 370
 371#define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
 372
 373struct BlockingCall {
 374  explicit BlockingCall(ThreadState *thr)
 375      : thr(thr) {
 376    EnterBlockingFunc(thr);
 377    // When we are in a "blocking call", we process signals asynchronously
 378    // (right when they arrive). In this context we do not expect to be
 379    // executing any user/runtime code. The known interceptor sequence when
 380    // this is not true is: pthread_join -> munmap(stack). It's fine
 381    // to ignore munmap in this case -- we handle stack shadow separately.
 382    thr->ignore_interceptors++;
 383  }
 384
 385  ~BlockingCall() {
 386    thr->ignore_interceptors--;
 387    atomic_store(&thr->in_blocking_func, 0, memory_order_relaxed);
 388  }
 389
 390  ThreadState *thr;
 391};
 392
 393TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
 394  SCOPED_TSAN_INTERCEPTOR(sleep, sec);
 395  unsigned res = BLOCK_REAL(sleep)(sec);
 396  AfterSleep(thr, pc);
 397  return res;
 398}
 399
 400TSAN_INTERCEPTOR(int, usleep, long_t usec) {
 401  SCOPED_TSAN_INTERCEPTOR(usleep, usec);
 402  int res = BLOCK_REAL(usleep)(usec);
 403  AfterSleep(thr, pc);
 404  return res;
 405}
 406
 407TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
 408  SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
 409  int res = BLOCK_REAL(nanosleep)(req, rem);
 410  AfterSleep(thr, pc);
 411  return res;
 412}
 413
 414TSAN_INTERCEPTOR(int, pause, int fake) {
 415  SCOPED_TSAN_INTERCEPTOR(pause, fake);
 416  return BLOCK_REAL(pause)(fake);
 417}
 418
 419// Note: we specifically call the function in such strange way
 420// with "installed_at" because in reports it will appear between
 421// callback frames and the frame that installed the callback.
 422static void at_exit_callback_installed_at() {
 423  AtExitCtx *ctx;
 424  {
 425    // Ensure thread-safety.
 426    Lock l(&interceptor_ctx()->atexit_mu);
 427
 428    // Pop AtExitCtx from the top of the stack of callback functions
 429    uptr element = interceptor_ctx()->AtExitStack.Size() - 1;
 430    ctx = interceptor_ctx()->AtExitStack[element];
 431    interceptor_ctx()->AtExitStack.PopBack();
 432  }
 433
 434  ThreadState *thr = cur_thread();
 435  Acquire(thr, ctx->pc, (uptr)ctx);
 436  FuncEntry(thr, ctx->pc);
 437  ((void(*)())ctx->f)();
 438  FuncExit(thr);
 439  Free(ctx);
 440}
 441
 442static void cxa_at_exit_callback_installed_at(void *arg) {
 443  ThreadState *thr = cur_thread();
 444  AtExitCtx *ctx = (AtExitCtx*)arg;
 445  Acquire(thr, ctx->pc, (uptr)arg);
 446  FuncEntry(thr, ctx->pc);
 447  ((void(*)(void *arg))ctx->f)(ctx->arg);
 448  FuncExit(thr);
 449  Free(ctx);
 450}
 451
 452static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
 453      void *arg, void *dso);
 454
 455#if !SANITIZER_ANDROID
 456TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
 457  if (in_symbolizer())
 458    return 0;
 459  // We want to setup the atexit callback even if we are in ignored lib
 460  // or after fork.
 461  SCOPED_INTERCEPTOR_RAW(atexit, f);
 462  return setup_at_exit_wrapper(thr, GET_CALLER_PC(), (void (*)())f, 0, 0);
 463}
 464#endif
 465
 466TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
 467  if (in_symbolizer())
 468    return 0;
 469  SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
 470  return setup_at_exit_wrapper(thr, GET_CALLER_PC(), (void (*)())f, arg, dso);
 471}
 472
 473static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
 474      void *arg, void *dso) {
 475  auto *ctx = New<AtExitCtx>();
 476  ctx->f = f;
 477  ctx->arg = arg;
 478  ctx->pc = pc;
 479  Release(thr, pc, (uptr)ctx);
 480  // Memory allocation in __cxa_atexit will race with free during exit,
 481  // because we do not see synchronization around atexit callback list.
 482  ThreadIgnoreBegin(thr, pc);
 483  int res;
 484  if (!dso) {
 485    // NetBSD does not preserve the 2nd argument if dso is equal to 0
 486    // Store ctx in a local stack-like structure
 487
 488    // Ensure thread-safety.
 489    Lock l(&interceptor_ctx()->atexit_mu);
 490    // __cxa_atexit calls calloc. If we don't ignore interceptors, we will fail
 491    // due to atexit_mu held on exit from the calloc interceptor.
 492    ScopedIgnoreInterceptors ignore;
 493
 494    res = REAL(__cxa_atexit)((void (*)(void *a))at_exit_callback_installed_at,
 495                             0, 0);
 496    // Push AtExitCtx on the top of the stack of callback functions
 497    if (!res) {
 498      interceptor_ctx()->AtExitStack.PushBack(ctx);
 499    }
 500  } else {
 501    res = REAL(__cxa_atexit)(cxa_at_exit_callback_installed_at, ctx, dso);
 502  }
 503  ThreadIgnoreEnd(thr);
 504  return res;
 505}
 506
 507#if !SANITIZER_APPLE && !SANITIZER_NETBSD
 508static void on_exit_callback_installed_at(int status, void *arg) {
 509  ThreadState *thr = cur_thread();
 510  AtExitCtx *ctx = (AtExitCtx*)arg;
 511  Acquire(thr, ctx->pc, (uptr)arg);
 512  FuncEntry(thr, ctx->pc);
 513  ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
 514  FuncExit(thr);
 515  Free(ctx);
 516}
 517
 518TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
 519  if (in_symbolizer())
 520    return 0;
 521  SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
 522  auto *ctx = New<AtExitCtx>();
 523  ctx->f = (void(*)())f;
 524  ctx->arg = arg;
 525  ctx->pc = GET_CALLER_PC();
 526  Release(thr, pc, (uptr)ctx);
 527  // Memory allocation in __cxa_atexit will race with free during exit,
 528  // because we do not see synchronization around atexit callback list.
 529  ThreadIgnoreBegin(thr, pc);
 530  int res = REAL(on_exit)(on_exit_callback_installed_at, ctx);
 531  ThreadIgnoreEnd(thr);
 532  return res;
 533}
 534#define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit)
 535#else
 536#define TSAN_MAYBE_INTERCEPT_ON_EXIT
 537#endif
 538
 539// Cleanup old bufs.
 540static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
 541  for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
 542    JmpBuf *buf = &thr->jmp_bufs[i];
 543    if (buf->sp <= sp) {
 544      uptr sz = thr->jmp_bufs.Size();
 545      internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf));
 546      thr->jmp_bufs.PopBack();
 547      i--;
 548    }
 549  }
 550}
 551
 552static void SetJmp(ThreadState *thr, uptr sp) {
 553  if (!thr->is_inited)  // called from libc guts during bootstrap
 554    return;
 555  // Cleanup old bufs.
 556  JmpBufGarbageCollect(thr, sp);
 557  // Remember the buf.
 558  JmpBuf *buf = thr->jmp_bufs.PushBack();
 559  buf->sp = sp;
 560  buf->shadow_stack_pos = thr->shadow_stack_pos;
 561  ThreadSignalContext *sctx = SigCtx(thr);
 562  buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
 563  buf->oldset_stack_size = sctx ? sctx->oldset.Size() : 0;
 564  buf->in_blocking_func = atomic_load(&thr->in_blocking_func, memory_order_relaxed);
 565  buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
 566      memory_order_relaxed);
 567}
 568
 569static void LongJmp(ThreadState *thr, uptr *env) {
 570  uptr sp = ExtractLongJmpSp(env);
 571  // Find the saved buf with matching sp.
 572  for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
 573    JmpBuf *buf = &thr->jmp_bufs[i];
 574    if (buf->sp == sp) {
 575      CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
 576      // Unwind the stack.
 577      while (thr->shadow_stack_pos > buf->shadow_stack_pos)
 578        FuncExit(thr);
 579      ThreadSignalContext *sctx = SigCtx(thr);
 580      if (sctx) {
 581        sctx->int_signal_send = buf->int_signal_send;
 582        while (sctx->oldset.Size() > buf->oldset_stack_size)
 583          sctx->oldset.PopBack();
 584      }
 585      atomic_store(&thr->in_blocking_func, buf->in_blocking_func,
 586          memory_order_relaxed);
 587      atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
 588          memory_order_relaxed);
 589      JmpBufGarbageCollect(thr, buf->sp - 1);  // do not collect buf->sp
 590      return;
 591    }
 592  }
 593  Printf("ThreadSanitizer: can't find longjmp buf\n");
 594  CHECK(0);
 595}
 596
 597// FIXME: put everything below into a common extern "C" block?
 598extern "C" void __tsan_setjmp(uptr sp) { SetJmp(cur_thread_init(), sp); }
 599
 600#if SANITIZER_APPLE
 601TSAN_INTERCEPTOR(int, setjmp, void *env);
 602TSAN_INTERCEPTOR(int, _setjmp, void *env);
 603TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
 604#else  // SANITIZER_APPLE
 605
 606#if SANITIZER_NETBSD
 607#define setjmp_symname __setjmp14
 608#define sigsetjmp_symname __sigsetjmp14
 609#else
 610#define setjmp_symname setjmp
 611#define sigsetjmp_symname sigsetjmp
 612#endif
 613
 614DEFINE_REAL(int, setjmp_symname, void *env)
 615DEFINE_REAL(int, _setjmp, void *env)
 616DEFINE_REAL(int, sigsetjmp_symname, void *env)
 617#if !SANITIZER_NETBSD
 618DEFINE_REAL(int, __sigsetjmp, void *env)
 619#endif
 620
 621// The real interceptor for setjmp is special, and implemented in pure asm. We
 622// just need to initialize the REAL functions so that they can be used in asm.
 623static void InitializeSetjmpInterceptors() {
 624  // We can not use TSAN_INTERCEPT to get setjmp addr, because it does &setjmp and
 625  // setjmp is not present in some versions of libc.
 626  using __interception::InterceptFunction;
 627  InterceptFunction(SANITIZER_STRINGIFY(setjmp_symname), (uptr*)&REAL(setjmp_symname), 0, 0);
 628  InterceptFunction("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
 629  InterceptFunction(SANITIZER_STRINGIFY(sigsetjmp_symname), (uptr*)&REAL(sigsetjmp_symname), 0,
 630                    0);
 631#if !SANITIZER_NETBSD
 632  InterceptFunction("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
 633#endif
 634}
 635#endif  // SANITIZER_APPLE
 636
 637#if SANITIZER_NETBSD
 638#define longjmp_symname __longjmp14
 639#define siglongjmp_symname __siglongjmp14
 640#else
 641#define longjmp_symname longjmp
 642#define siglongjmp_symname siglongjmp
 643#endif
 644
 645TSAN_INTERCEPTOR(void, longjmp_symname, uptr *env, int val) {
 646  // Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
 647  // bad things will happen. We will jump over ScopedInterceptor dtor and can
 648  // leave thr->in_ignored_lib set.
 649  {
 650    SCOPED_INTERCEPTOR_RAW(longjmp_symname, env, val);
 651  }
 652  LongJmp(cur_thread(), env);
 653  REAL(longjmp_symname)(env, val);
 654}
 655
 656TSAN_INTERCEPTOR(void, siglongjmp_symname, uptr *env, int val) {
 657  {
 658    SCOPED_INTERCEPTOR_RAW(siglongjmp_symname, env, val);
 659  }
 660  LongJmp(cur_thread(), env);
 661  REAL(siglongjmp_symname)(env, val);
 662}
 663
 664#if SANITIZER_NETBSD
 665TSAN_INTERCEPTOR(void, _longjmp, uptr *env, int val) {
 666  {
 667    SCOPED_INTERCEPTOR_RAW(_longjmp, env, val);
 668  }
 669  LongJmp(cur_thread(), env);
 670  REAL(_longjmp)(env, val);
 671}
 672#endif
 673
 674#if !SANITIZER_APPLE
 675TSAN_INTERCEPTOR(void*, malloc, uptr size) {
 676  if (in_symbolizer())
 677    return InternalAlloc(size);
 678  if (DlsymAlloc::Use())
 679    return DlsymAlloc::Allocate(size);
 680  void *p = 0;
 681  {
 682    SCOPED_INTERCEPTOR_RAW(malloc, size);
 683    p = user_alloc(thr, pc, size);
 684  }
 685  invoke_malloc_hook(p, size);
 686  return p;
 687}
 688
 689// In glibc<2.25, dynamic TLS blocks are allocated by __libc_memalign. Intercept
 690// __libc_memalign so that (1) we can detect races (2) free will not be called
 691// on libc internally allocated blocks.
 692TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
 693  SCOPED_INTERCEPTOR_RAW(__libc_memalign, align, sz);
 694  return user_memalign(thr, pc, align, sz);
 695}
 696
 697TSAN_INTERCEPTOR(void *, calloc, uptr n, uptr size) {
 698  if (in_symbolizer())
 699    return InternalCalloc(n, size);
 700  if (DlsymAlloc::Use())
 701    return DlsymAlloc::Callocate(n, size);
 702  void *p = 0;
 703  {
 704    SCOPED_INTERCEPTOR_RAW(calloc, n, size);
 705    p = user_calloc(thr, pc, size, n);
 706  }
 707  invoke_malloc_hook(p, n * size);
 708  return p;
 709}
 710
 711TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
 712  if (in_symbolizer())
 713    return InternalRealloc(p, size);
 714  if (DlsymAlloc::Use() || DlsymAlloc::PointerIsMine(p))
 715    return DlsymAlloc::Realloc(p, size);
 716  if (p)
 717    invoke_free_hook(p);
 718  {
 719    SCOPED_INTERCEPTOR_RAW(realloc, p, size);
 720    p = user_realloc(thr, pc, p, size);
 721  }
 722  invoke_malloc_hook(p, size);
 723  return p;
 724}
 725
 726TSAN_INTERCEPTOR(void *, reallocarray, void *p, uptr n, uptr size) {
 727  if (in_symbolizer())
 728    return InternalReallocArray(p, n, size);
 729  if (p)
 730    invoke_free_hook(p);
 731  {
 732    SCOPED_INTERCEPTOR_RAW(reallocarray, p, n, size);
 733    p = user_reallocarray(thr, pc, p, size, n);
 734  }
 735  invoke_malloc_hook(p, size);
 736  return p;
 737}
 738
 739TSAN_INTERCEPTOR(void, free, void *p) {
 740  if (UNLIKELY(!p))
 741    return;
 742  if (in_symbolizer())
 743    return InternalFree(p);
 744  if (DlsymAlloc::PointerIsMine(p))
 745    return DlsymAlloc::Free(p);
 746  invoke_free_hook(p);
 747  SCOPED_INTERCEPTOR_RAW(free, p);
 748  user_free(thr, pc, p);
 749}
 750
 751#  if SANITIZER_INTERCEPT_FREE_SIZED
 752TSAN_INTERCEPTOR(void, free_sized, void *p, uptr size) {
 753  if (UNLIKELY(!p))
 754    return;
 755  if (in_symbolizer())
 756    return InternalFree(p);
 757  if (DlsymAlloc::PointerIsMine(p))
 758    return DlsymAlloc::Free(p);
 759  invoke_free_hook(p);
 760  SCOPED_INTERCEPTOR_RAW(free_sized, p, size);
 761  user_free(thr, pc, p);
 762}
 763#    define TSAN_MAYBE_INTERCEPT_FREE_SIZED INTERCEPT_FUNCTION(free_sized)
 764#  else
 765#    define TSAN_MAYBE_INTERCEPT_FREE_SIZED
 766#  endif
 767
 768#  if SANITIZER_INTERCEPT_FREE_ALIGNED_SIZED
 769TSAN_INTERCEPTOR(void, free_aligned_sized, void *p, uptr alignment, uptr size) {
 770  if (UNLIKELY(!p))
 771    return;
 772  if (in_symbolizer())
 773    return InternalFree(p);
 774  if (DlsymAlloc::PointerIsMine(p))
 775    return DlsymAlloc::Free(p);
 776  invoke_free_hook(p);
 777  SCOPED_INTERCEPTOR_RAW(free_aligned_sized, p, alignment, size);
 778  user_free(thr, pc, p);
 779}
 780#    define TSAN_MAYBE_INTERCEPT_FREE_ALIGNED_SIZED \
 781      INTERCEPT_FUNCTION(free_aligned_sized)
 782#  else
 783#    define TSAN_MAYBE_INTERCEPT_FREE_ALIGNED_SIZED
 784#  endif
 785
 786TSAN_INTERCEPTOR(void, cfree, void *p) {
 787  if (UNLIKELY(!p))
 788    return;
 789  if (in_symbolizer())
 790    return InternalFree(p);
 791  if (DlsymAlloc::PointerIsMine(p))
 792    return DlsymAlloc::Free(p);
 793  invoke_free_hook(p);
 794  SCOPED_INTERCEPTOR_RAW(cfree, p);
 795  user_free(thr, pc, p);
 796}
 797
 798TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
 799  SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
 800  return user_alloc_usable_size(p);
 801}
 802#else
 803#  define TSAN_MAYBE_INTERCEPT_FREE_SIZED
 804#  define TSAN_MAYBE_INTERCEPT_FREE_ALIGNED_SIZED
 805#endif
 806
 807TSAN_INTERCEPTOR(char *, strcpy, char *dst, const char *src) {
 808  SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src);
 809  uptr srclen = internal_strlen(src);
 810  MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
 811  MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
 812  return REAL(strcpy)(dst, src);
 813}
 814
 815TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, usize n) {
 816  SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
 817  uptr srclen = internal_strnlen(src, n);
 818  MemoryAccessRange(thr, pc, (uptr)dst, n, true);
 819  MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
 820  return REAL(strncpy)(dst, src, n);
 821}
 822
 823TSAN_INTERCEPTOR(char*, strdup, const char *str) {
 824  SCOPED_TSAN_INTERCEPTOR(strdup, str);
 825  // strdup will call malloc, so no instrumentation is required here.
 826  return REAL(strdup)(str);
 827}
 828
 829// Zero out addr if it points into shadow memory and was provided as a hint
 830// only, i.e., MAP_FIXED is not set.
 831static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
 832  if (*addr) {
 833    if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
 834      if (flags & MAP_FIXED) {
 835        errno = errno_EINVAL;
 836        return false;
 837      } else {
 838        *addr = 0;
 839      }
 840    }
 841  }
 842  return true;
 843}
 844
 845template <class Mmap>
 846static void *mmap_interceptor(ThreadState *thr, uptr pc, Mmap real_mmap,
 847                              void *addr, SIZE_T sz, int prot, int flags,
 848                              int fd, OFF64_T off) {
 849  if (!fix_mmap_addr(&addr, sz, flags)) return MAP_FAILED;
 850  void *res = real_mmap(addr, sz, prot, flags, fd, off);
 851  if (res != MAP_FAILED) {
 852    if (!IsAppMem((uptr)res) || !IsAppMem((uptr)res + sz - 1)) {
 853      Report("ThreadSanitizer: mmap at bad address: addr=%p size=%p res=%p\n",
 854             addr, (void*)sz, res);
 855      Die();
 856    }
 857    if (fd > 0) FdAccess(thr, pc, fd);
 858    MemoryRangeImitateWriteOrResetRange(thr, pc, (uptr)res, sz);
 859  }
 860  return res;
 861}
 862
 863template <class Munmap>
 864static int munmap_interceptor(ThreadState *thr, uptr pc, Munmap real_munmap,
 865                                void *addr, SIZE_T sz) {
 866  UnmapShadow(thr, (uptr)addr, sz);
 867  int res = real_munmap(addr, sz);
 868  return res;
 869}
 870
 871#if SANITIZER_LINUX
 872TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
 873  SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
 874  return user_memalign(thr, pc, align, sz);
 875}
 876#define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
 877#else
 878#define TSAN_MAYBE_INTERCEPT_MEMALIGN
 879#endif
 880
 881#if !SANITIZER_APPLE
 882TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
 883  if (in_symbolizer())
 884    return InternalAlloc(sz, nullptr, align);
 885  SCOPED_INTERCEPTOR_RAW(aligned_alloc, align, sz);
 886  return user_aligned_alloc(thr, pc, align, sz);
 887}
 888
 889TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
 890  if (in_symbolizer())
 891    return InternalAlloc(sz, nullptr, GetPageSizeCached());
 892  SCOPED_INTERCEPTOR_RAW(valloc, sz);
 893  return user_valloc(thr, pc, sz);
 894}
 895#endif
 896
 897#if SANITIZER_LINUX
 898TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
 899  if (in_symbolizer()) {
 900    uptr PageSize = GetPageSizeCached();
 901    sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
 902    return InternalAlloc(sz, nullptr, PageSize);
 903  }
 904  SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
 905  return user_pvalloc(thr, pc, sz);
 906}
 907#define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
 908#else
 909#define TSAN_MAYBE_INTERCEPT_PVALLOC
 910#endif
 911
 912#if !SANITIZER_APPLE
 913TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
 914  if (in_symbolizer()) {
 915    void *p = InternalAlloc(sz, nullptr, align);
 916    if (!p)
 917      return errno_ENOMEM;
 918    *memptr = p;
 919    return 0;
 920  }
 921  SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
 922  return user_posix_memalign(thr, pc, memptr, align, sz);
 923}
 924#endif
 925
 926// Both __cxa_guard_acquire and pthread_once 0-initialize
 927// the object initially. pthread_once does not have any
 928// other ABI requirements. __cxa_guard_acquire assumes
 929// that any non-0 value in the first byte means that
 930// initialization is completed. Contents of the remaining
 931// bytes are up to us.
 932constexpr u32 kGuardInit = 0;
 933constexpr u32 kGuardDone = 1;
 934constexpr u32 kGuardRunning = 1 << 16;
 935constexpr u32 kGuardWaiter = 1 << 17;
 936
 937static int guard_acquire(ThreadState *thr, uptr pc, atomic_uint32_t *g,
 938                         bool blocking_hooks = true) {
 939  bool in_potentially_blocking_region = false;
 940  auto on_exit = at_scope_exit([&] {
 941    if (in_potentially_blocking_region)
 942      OnPotentiallyBlockingRegionEnd();
 943  });
 944
 945  for (;;) {
 946    u32 cmp = atomic_load(g, memory_order_acquire);
 947    if (cmp == kGuardInit) {
 948      if (atomic_compare_exchange_strong(g, &cmp, kGuardRunning,
 949                                         memory_order_relaxed))
 950        return 1;
 951    } else if (cmp == kGuardDone) {
 952      if (!thr->in_ignored_lib)
 953        Acquire(thr, pc, (uptr)g);
 954      return 0;
 955    } else {
 956      if ((cmp & kGuardWaiter) ||
 957          atomic_compare_exchange_strong(g, &cmp, cmp | kGuardWaiter,
 958                                         memory_order_relaxed)) {
 959        if (blocking_hooks && !in_potentially_blocking_region) {
 960          in_potentially_blocking_region = true;
 961          OnPotentiallyBlockingRegionBegin();
 962        }
 963        FutexWait(g, cmp | kGuardWaiter);
 964      }
 965    }
 966  }
 967}
 968
 969static void guard_release(ThreadState *thr, uptr pc, atomic_uint32_t *g,
 970                          u32 v) {
 971  if (!thr->in_ignored_lib)
 972    Release(thr, pc, (uptr)g);
 973  u32 old = atomic_exchange(g, v, memory_order_release);
 974  if (old & kGuardWaiter)
 975    FutexWake(g, 1 << 30);
 976}
 977
 978// __cxa_guard_acquire and friends need to be intercepted in a special way -
 979// regular interceptors will break statically-linked libstdc++. Linux
 980// interceptors are especially defined as weak functions (so that they don't
 981// cause link errors when user defines them as well). So they silently
 982// auto-disable themselves when such symbol is already present in the binary. If
 983// we link libstdc++ statically, it will bring own __cxa_guard_acquire which
 984// will silently replace our interceptor.  That's why on Linux we simply export
 985// these interceptors with INTERFACE_ATTRIBUTE.
 986// On OS X, we don't support statically linking, so we just use a regular
 987// interceptor.
 988#if SANITIZER_APPLE
 989#define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
 990#else
 991#define STDCXX_INTERCEPTOR(rettype, name, ...) \
 992  extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
 993#endif
 994
 995// Used in thread-safe function static initialization.
 996STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
 997  SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
 998  return guard_acquire(thr, pc, g);
 999}
1000
1001STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
1002  SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
1003  guard_release(thr, pc, g, kGuardDone);
1004}
1005
1006STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
1007  SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
1008  guard_release(thr, pc, g, kGuardInit);
1009}
1010
1011namespace __tsan {
1012void DestroyThreadState() {
1013  ThreadState *thr = cur_thread();
1014  Processor *proc = thr->proc();
1015  ThreadFinish(thr);
1016  ProcUnwire(proc, thr);
1017  ProcDestroy(proc);
1018  DTLS_Destroy();
1019  cur_thread_finalize();
1020}
1021
1022void PlatformCleanUpThreadState(ThreadState *thr) {
1023  ThreadSignalContext *sctx = (ThreadSignalContext *)atomic_load(
1024      &thr->signal_ctx, memory_order_relaxed);
1025  if (sctx) {
1026    atomic_store(&thr->signal_ctx, 0, memory_order_relaxed);
1027    sctx->oldset.Reset();
1028    UnmapOrDie(sctx, sizeof(*sctx));
1029  }
1030}
1031}  // namespace __tsan
1032
1033#if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
1034static void thread_finalize(void *v) {
1035  uptr iter = (uptr)v;
1036  if (iter > 1) {
1037    if (pthread_setspecific(interceptor_ctx()->finalize_key,
1038        (void*)(iter - 1))) {
1039      Printf("ThreadSanitizer: failed to set thread key\n");
1040      Die();
1041    }
1042    return;
1043  }
1044  DestroyThreadState();
1045}
1046#endif
1047
1048
1049struct ThreadParam {
1050  void* (*callback)(void *arg);
1051  void *param;
1052  Tid tid;
1053  Semaphore created;
1054  Semaphore started;
1055};
1056
1057extern "C" void *__tsan_thread_start_func(void *arg) {
1058  ThreadParam *p = (ThreadParam*)arg;
1059  void* (*callback)(void *arg) = p->callback;
1060  void *param = p->param;
1061  {
1062    ThreadState *thr = cur_thread_init();
1063    // Thread-local state is not initialized yet.
1064    ScopedIgnoreInterceptors ignore;
1065#if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
1066    ThreadIgnoreBegin(thr, 0);
1067    if (pthread_setspecific(interceptor_ctx()->finalize_key,
1068                            (void *)GetPthreadDestructorIterations())) {
1069      Printf("ThreadSanitizer: failed to set thread key\n");
1070      Die();
1071    }
1072    ThreadIgnoreEnd(thr);
1073#endif
1074    p->created.Wait();
1075    Processor *proc = ProcCreate();
1076    ProcWire(proc, thr);
1077    ThreadStart(thr, p->tid, GetTid(), ThreadType::Regular);
1078    p->started.Post();
1079  }
1080  void *res = callback(param);
1081  // Prevent the callback from being tail called,
1082  // it mixes up stack traces.
1083  volatile int foo = 42;
1084  foo++;
1085  return res;
1086}
1087
1088TSAN_INTERCEPTOR(int, pthread_create,
1089    void *th, void *attr, void *(*callback)(void*), void * param) {
1090  SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
1091
1092  MaybeSpawnBackgroundThread();
1093
1094  if (ctx->after_multithreaded_fork) {
1095    if (flags()->die_after_fork) {
1096      Report("ThreadSanitizer: starting new threads after multi-threaded "
1097          "fork is not supported. Dying (set die_after_fork=0 to override)\n");
1098      Die();
1099    } else {
1100      VPrintf(1,
1101              "ThreadSanitizer: starting new threads after multi-threaded "
1102              "fork is not supported (pid %lu). Continuing because of "
1103              "die_after_fork=0, but you are on your own\n",
1104              internal_getpid());
1105    }
1106  }
1107  __sanitizer_pthread_attr_t myattr;
1108  if (attr == 0) {
1109    pthread_attr_init(&myattr);
1110    attr = &myattr;
1111  }
1112  int detached = 0;
1113  REAL(pthread_attr_getdetachstate)(attr, &detached);
1114  AdjustStackSize(attr);
1115
1116  ThreadParam p;
1117  p.callback = callback;
1118  p.param = param;
1119  p.tid = kMainTid;
1120  int res = -1;
1121  {
1122    // Otherwise we see false positives in pthread stack manipulation.
1123    ScopedIgnoreInterceptors ignore;
1124    ThreadIgnoreBegin(thr, pc);
1125    res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
1126    ThreadIgnoreEnd(thr);
1127  }
1128  if (res == 0) {
1129    p.tid = ThreadCreate(thr, pc, *(uptr *)th, IsStateDetached(detached));
1130    CHECK_NE(p.tid, kMainTid);
1131    // Synchronization on p.tid serves two purposes:
1132    // 1. ThreadCreate must finish before the new thread starts.
1133    //    Otherwise the new thread can call pthread_detach, but the pthread_t
1134    //    identifier is not yet registered in ThreadRegistry by ThreadCreate.
1135    // 2. ThreadStart must finish before this thread continues.
1136    //    Otherwise, this thread can call pthread_detach and reset thr->sync
1137    //    before the new thread got a chance to acquire from it in ThreadStart.
1138    p.created.Post();
1139    p.started.Wait();
1140  }
1141  if (attr == &myattr)
1142    pthread_attr_destroy(&myattr);
1143  return res;
1144}
1145
1146TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
1147  SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
1148  Tid tid = ThreadConsumeTid(thr, pc, (uptr)th);
1149  ThreadIgnoreBegin(thr, pc);
1150  int res = BLOCK_REAL(pthread_join)(th, ret);
1151  ThreadIgnoreEnd(thr);
1152  if (res == 0) {
1153    ThreadJoin(thr, pc, tid);
1154  }
1155  return res;
1156}
1157
1158// DEFINE_INTERNAL_PTHREAD_FUNCTIONS
1159namespace __sanitizer {
1160int internal_pthread_create(void *th, void *attr, void *(*callback)(void *),
1161                            void *param) {
1162  ScopedIgnoreInterceptors ignore;
1163  return REAL(pthread_create)(th, attr, callback, param);
1164}
1165int internal_pthread_join(void *th, void **ret) {
1166  ScopedIgnoreInterceptors ignore;
1167  return REAL(pthread_join)(th, ret);
1168}
1169}  // namespace __sanitizer
1170
1171TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
1172  SCOPED_INTERCEPTOR_RAW(pthread_detach, th);
1173  Tid tid = ThreadConsumeTid(thr, pc, (uptr)th);
1174  int res = REAL(pthread_detach)(th);
1175  if (res == 0) {
1176    ThreadDetach(thr, pc, tid);
1177  }
1178  return res;
1179}
1180
1181TSAN_INTERCEPTOR(void, pthread_exit, void *retval) {
1182  {
1183    SCOPED_INTERCEPTOR_RAW(pthread_exit, retval);
1184#if !SANITIZER_APPLE && !SANITIZER_ANDROID
1185    CHECK_EQ(thr, &cur_thread_placeholder);
1186#endif
1187  }
1188  REAL(pthread_exit)(retval);
1189}
1190
1191#if SANITIZER_LINUX
1192TSAN_INTERCEPTOR(int, pthread_tryjoin_np, void *th, void **ret) {
1193  SCOPED_INTERCEPTOR_RAW(pthread_tryjoin_np, th, ret);
1194  Tid tid = ThreadConsumeTid(thr, pc, (uptr)th);
1195  ThreadIgnoreBegin(thr, pc);
1196  int res = REAL(pthread_tryjoin_np)(th, ret);
1197  ThreadIgnoreEnd(thr);
1198  if (res == 0)
1199    ThreadJoin(thr, pc, tid);
1200  else
1201    ThreadNotJoined(thr, pc, tid, (uptr)th);
1202  return res;
1203}
1204
1205TSAN_INTERCEPTOR(int, pthread_timedjoin_np, void *th, void **ret,
1206                 const struct timespec *abstime) {
1207  SCOPED_INTERCEPTOR_RAW(pthread_timedjoin_np, th, ret, abstime);
1208  Tid tid = ThreadConsumeTid(thr, pc, (uptr)th);
1209  ThreadIgnoreBegin(thr, pc);
1210  int res = BLOCK_REAL(pthread_timedjoin_np)(th, ret, abstime);
1211  ThreadIgnoreEnd(thr);
1212  if (res == 0)
1213    ThreadJoin(thr, pc, tid);
1214  else
1215    ThreadNotJoined(thr, pc, tid, (uptr)th);
1216  return res;
1217}
1218#endif
1219
1220// Problem:
1221// NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
1222// pthread_cond_t has different size in the different versions.
1223// If call new REAL functions for old pthread_cond_t, they will corrupt memory
1224// after pthread_cond_t (old cond is smaller).
1225// If we call old REAL functions for new pthread_cond_t, we will lose  some
1226// functionality (e.g. old functions do not support waiting against
1227// CLOCK_REALTIME).
1228// Proper handling would require to have 2 versions of interceptors as well.
1229// But this is messy, in particular requires linker scripts when sanitizer
1230// runtime is linked into a shared library.
1231// Instead we assume we don't have dynamic libraries built against old
1232// pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
1233// that allows to work with old libraries (but this mode does not support
1234// some features, e.g. pthread_condattr_getpshared).
1235static void *init_cond(void *c, bool force = false) {
1236  // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
1237  // So we allocate additional memory on the side large enough to hold
1238  // any pthread_cond_t object. Always call new REAL functions, but pass
1239  // the aux object to them.
1240  // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
1241  // first word of pthread_cond_t to zero.
1242  // It's all relevant only for linux.
1243  if (!common_flags()->legacy_pthread_cond)
1244    return c;
1245  atomic_uintptr_t *p = (atomic_uintptr_t*)c;
1246  uptr cond = atomic_load(p, memory_order_acquire);
1247  if (!force && cond != 0)
1248    return (void*)cond;
1249  void *newcond = WRAP(malloc)(pthread_cond_t_sz);
1250  internal_memset(newcond, 0, pthread_cond_t_sz);
1251  if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
1252      memory_order_acq_rel))
1253    return newcond;
1254  WRAP(free)(newcond);
1255  return (void*)cond;
1256}
1257
1258namespace {
1259
1260template <class Fn>
1261struct CondMutexUnlockCtx {
1262  ScopedInterceptor *si;
1263  ThreadState *thr;
1264  uptr pc;
1265  void *m;
1266  void *c;
1267  const Fn &fn;
1268
1269  int Cancel() const { return fn(); }
1270  void Unlock() const;
1271};
1272
1273template <class Fn>
1274void CondMutexUnlockCtx<Fn>::Unlock() const {
1275  // pthread_cond_wait interceptor has enabled async signal delivery
1276  // (see BlockingCall below). Disable async signals since we are running
1277  // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
1278  // since the thread is cancelled, so we have to manually execute them
1279  // (the thread still can run some user code due to pthread_cleanup_push).
1280  CHECK_EQ(atomic_load(&thr->in_blocking_func, memory_order_relaxed), 1);
1281  atomic_store(&thr->in_blocking_func, 0, memory_order_relaxed);
1282  MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock);
1283  // Undo BlockingCall ctor effects.
1284  thr->ignore_interceptors--;
1285  si->~ScopedInterceptor();
1286}
1287}  // namespace
1288
1289INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
1290  void *cond = init_cond(c, true);
1291  SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
1292  MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1293  return REAL(pthread_cond_init)(cond, a);
1294}
1295
1296template <class Fn>
1297int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si, const Fn &fn,
1298              void *c, void *m) {
1299  MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1300  MutexUnlock(thr, pc, (uptr)m);
1301  int res = 0;
1302  // This ensures that we handle mutex lock even in case of pthread_cancel.
1303  // See test/tsan/cond_cancel.cpp.
1304  {
1305    // Enable signal delivery while the thread is blocked.
1306    BlockingCall bc(thr);
1307    CondMutexUnlockCtx<Fn> arg = {si, thr, pc, m, c, fn};
1308    res = call_pthread_cancel_with_cleanup(
1309        [](void *arg) -> int {
1310          return ((const CondMutexUnlockCtx<Fn> *)arg)->Cancel();
1311        },
1312        [](void *arg) { ((const CondMutexUnlockCtx<Fn> *)arg)->Unlock(); },
1313        &arg);
1314  }
1315  if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, (uptr)m);
1316  MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock);
1317  return res;
1318}
1319
1320INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
1321  void *cond = init_cond(c);
1322  SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
1323  return cond_wait(
1324      thr, pc, &si, [=]() { return REAL(pthread_cond_wait)(cond, m); }, cond,
1325      m);
1326}
1327
1328INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
1329  void *cond = init_cond(c);
1330  SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
1331  return cond_wait(
1332      thr, pc, &si,
1333      [=]() { return REAL(pthread_cond_timedwait)(cond, m, abstime); }, cond,
1334      m);
1335}
1336
1337#if SANITIZER_LINUX
1338INTERCEPTOR(int, pthread_cond_clockwait, void *c, void *m,
1339            __sanitizer_clockid_t clock, void *abstime) {
1340  void *cond = init_cond(c);
1341  SCOPED_TSAN_INTERCEPTOR(pthread_cond_clockwait, cond, m, clock, abstime);
1342  return cond_wait(
1343      thr, pc, &si,
1344      [=]() { return REAL(pthread_cond_clockwait)(cond, m, clock, abstime); },
1345      cond, m);
1346}
1347#define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT TSAN_INTERCEPT(pthread_cond_clockwait)
1348#else
1349#define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT
1350#endif
1351
1352#if SANITIZER_APPLE
1353INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m,
1354            void *reltime) {
1355  void *cond = init_cond(c);
1356  SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime);
1357  return cond_wait(
1358      thr, pc, &si,
1359      [=]() {
1360        return REAL(pthread_cond_timedwait_relative_np)(cond, m, reltime);
1361      },
1362      cond, m);
1363}
1364#endif
1365
1366INTERCEPTOR(int, pthread_cond_signal, void *c) {
1367  void *cond = init_cond(c);
1368  SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
1369  MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1370  return REAL(pthread_cond_signal)(cond);
1371}
1372
1373INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
1374  void *cond = init_cond(c);
1375  SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
1376  MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1377  return REAL(pthread_cond_broadcast)(cond);
1378}
1379
1380INTERCEPTOR(int, pthread_cond_destroy, void *c) {
1381  void *cond = init_cond(c);
1382  SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
1383  MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1384  int res = REAL(pthread_cond_destroy)(cond);
1385  if (common_flags()->legacy_pthread_cond) {
1386    // Free our aux cond and zero the pointer to not leave dangling pointers.
1387    WRAP(free)(cond);
1388    atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
1389  }
1390  return res;
1391}
1392
1393TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
1394  SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
1395  int res = REAL(pthread_mutex_init)(m, a);
1396  if (res == 0) {
1397    u32 flagz = 0;
1398    if (a) {
1399      int type = 0;
1400      if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
1401        if (type == PTHREAD_MUTEX_RECURSIVE ||
1402            type == PTHREAD_MUTEX_RECURSIVE_NP)
1403          flagz |= MutexFlagWriteReentrant;
1404    }
1405    MutexCreate(thr, pc, (uptr)m, flagz);
1406  }
1407  return res;
1408}
1409
1410TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
1411  SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
1412  int res = REAL(pthread_mutex_destroy)(m);
1413  if (res == 0 || res == errno_EBUSY) {
1414    MutexDestroy(thr, pc, (uptr)m);
1415  }
1416  return res;
1417}
1418
1419TSAN_INTERCEPTOR(int, pthread_mutex_lock, void *m) {
1420  SCOPED_TSAN_INTERCEPTOR(pthread_mutex_lock, m);
1421  MutexPreLock(thr, pc, (uptr)m);
1422  int res = BLOCK_REAL(pthread_mutex_lock)(m);
1423  if (res == errno_EOWNERDEAD)
1424    MutexRepair(thr, pc, (uptr)m);
1425  if (res == 0 || res == errno_EOWNERDEAD)
1426    MutexPostLock(thr, pc, (uptr)m);
1427  if (res == errno_EINVAL)
1428    MutexInvalidAccess(thr, pc, (uptr)m);
1429  return res;
1430}
1431
1432TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
1433  SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
1434  int res = REAL(pthread_mutex_trylock)(m);
1435  if (res == errno_EOWNERDEAD)
1436    MutexRepair(thr, pc, (uptr)m);
1437  if (res == 0 || res == errno_EOWNERDEAD)
1438    MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1439  return res;
1440}
1441
1442#if !SANITIZER_APPLE
1443TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
1444  SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
1445  int res = REAL(pthread_mutex_timedlock)(m, abstime);
1446  if (res == 0) {
1447    MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1448  }
1449  return res;
1450}
1451#endif
1452
1453TSAN_INTERCEPTOR(int, pthread_mutex_unlock, void *m) {
1454  SCOPED_TSAN_INTERCEPTOR(pthread_mutex_unlock, m);
1455  MutexUnlock(thr, pc, (uptr)m);
1456  int res = REAL(pthread_mutex_unlock)(m);
1457  if (res == errno_EINVAL)
1458    MutexInvalidAccess(thr, pc, (uptr)m);
1459  return res;
1460}
1461
1462#if SANITIZER_LINUX
1463TSAN_INTERCEPTOR(int, pthread_mutex_clocklock, void *m,
1464                 __sanitizer_clockid_t clock, void *abstime) {
1465  SCOPED_TSAN_INTERCEPTOR(pthread_mutex_clocklock, m, clock, abstime);
1466  MutexPreLock(thr, pc, (uptr)m);
1467  int res = BLOCK_REAL(pthread_mutex_clocklock)(m, clock, abstime);
1468  if (res == errno_EOWNERDEAD)
1469    MutexRepair(thr, pc, (uptr)m);
1470  if (res == 0 || res == errno_EOWNERDEAD)
1471    MutexPostLock(thr, pc, (uptr)m);
1472  if (res == errno_EINVAL)
1473    MutexInvalidAccess(thr, pc, (uptr)m);
1474  return res;
1475}
1476#endif
1477
1478#if SANITIZER_GLIBC
1479#  if !__GLIBC_PREREQ(2, 34)
1480// glibc 2.34 applies a non-default version for the two functions. They are no
1481// longer expected to be intercepted by programs.
1482TSAN_INTERCEPTOR(int, __pthread_mutex_lock, void *m) {
1483  SCOPED_TSAN_INTERCEPTOR(__pthread_mutex_lock, m);
1484  MutexPreLock(thr, pc, (uptr)m);
1485  int res = BLOCK_REAL(__pthread_mutex_lock)(m);
1486  if (res == errno_EOWNERDEAD)
1487    MutexRepair(thr, pc, (uptr)m);
1488  if (res == 0 || res == errno_EOWNERDEAD)
1489    MutexPostLock(thr, pc, (uptr)m);
1490  if (res == errno_EINVAL)
1491    MutexInvalidAccess(thr, pc, (uptr)m);
1492  return res;
1493}
1494
1495TSAN_INTERCEPTOR(int, __pthread_mutex_unlock, void *m) {
1496  SCOPED_TSAN_INTERCEPTOR(__pthread_mutex_unlock, m);
1497  MutexUnlock(thr, pc, (uptr)m);
1498  int res = REAL(__pthread_mutex_unlock)(m);
1499  if (res == errno_EINVAL)
1500    MutexInvalidAccess(thr, pc, (uptr)m);
1501  return res;
1502}
1503#  endif
1504#endif
1505
1506#if !SANITIZER_APPLE
1507TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
1508  SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
1509  int res = REAL(pthread_spin_init)(m, pshared);
1510  if (res == 0) {
1511    MutexCreate(thr, pc, (uptr)m);
1512  }
1513  return res;
1514}
1515
1516TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
1517  SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
1518  int res = REAL(pthread_spin_destroy)(m);
1519  if (res == 0) {
1520    MutexDestroy(thr, pc, (uptr)m);
1521  }
1522  return res;
1523}
1524
1525TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
1526  SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
1527  MutexPreLock(thr, pc, (uptr)m);
1528  int res = BLOCK_REAL(pthread_spin_lock)(m);
1529  if (res == 0) {
1530    MutexPostLock(thr, pc, (uptr)m);
1531  }
1532  return res;
1533}
1534
1535TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
1536  SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
1537  int res = REAL(pthread_spin_trylock)(m);
1538  if (res == 0) {
1539    MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1540  }
1541  return res;
1542}
1543
1544TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
1545  SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
1546  MutexUnlock(thr, pc, (uptr)m);
1547  int res = REAL(pthread_spin_unlock)(m);
1548  return res;
1549}
1550#endif
1551
1552TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
1553  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
1554  int res = REAL(pthread_rwlock_init)(m, a);
1555  if (res == 0) {
1556    MutexCreate(thr, pc, (uptr)m);
1557  }
1558  return res;
1559}
1560
1561TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
1562  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
1563  int res = REAL(pthread_rwlock_destroy)(m);
1564  if (res == 0) {
1565    MutexDestroy(thr, pc, (uptr)m);
1566  }
1567  return res;
1568}
1569
1570TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
1571  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
1572  MutexPreReadLock(thr, pc, (uptr)m);
1573  int res = REAL(pthread_rwlock_rdlock)(m);
1574  if (res == 0) {
1575    MutexPostReadLock(thr, pc, (uptr)m);
1576  }
1577  return res;
1578}
1579
1580TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
1581  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
1582  int res = REAL(pthread_rwlock_tryrdlock)(m);
1583  if (res == 0) {
1584    MutexPostReadLock(thr, pc, (uptr)m, MutexFlagTryLock);
1585  }
1586  return res;
1587}
1588
1589#if !SANITIZER_APPLE
1590TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
1591  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
1592  int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
1593  if (res == 0) {
1594    MutexPostReadLock(thr, pc, (uptr)m);
1595  }
1596  return res;
1597}
1598#endif
1599
1600TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
1601  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
1602  MutexPreLock(thr, pc, (uptr)m);
1603  int res = BLOCK_REAL(pthread_rwlock_wrlock)(m);
1604  if (res == 0) {
1605    MutexPostLock(thr, pc, (uptr)m);
1606  }
1607  return res;
1608}
1609
1610TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
1611  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
1612  int res = REAL(pthread_rwlock_trywrlock)(m);
1613  if (res == 0) {
1614    MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1615  }
1616  return res;
1617}
1618
1619#if !SANITIZER_APPLE
1620TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
1621  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
1622  int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
1623  if (res == 0) {
1624    MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1625  }
1626  return res;
1627}
1628#endif
1629
1630TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
1631  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
1632  MutexReadOrWriteUnlock(thr, pc, (uptr)m);
1633  int res = REAL(pthread_rwlock_unlock)(m);
1634  return res;
1635}
1636
1637#if !SANITIZER_APPLE
1638TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
1639  SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
1640  MemoryAccess(thr, pc, (uptr)b, 1, kAccessWrite);
1641  int res = REAL(pthread_barrier_init)(b, a, count);
1642  return res;
1643}
1644
1645TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
1646  SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
1647  MemoryAccess(thr, pc, (uptr)b, 1, kAccessWrite);
1648  int res = REAL(pthread_barrier_destroy)(b);
1649  return res;
1650}
1651
1652TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
1653  SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
1654  Release(thr, pc, (uptr)b);
1655  MemoryAccess(thr, pc, (uptr)b, 1, kAccessRead);
1656  int res = REAL(pthread_barrier_wait)(b);
1657  MemoryAccess(thr, pc, (uptr)b, 1, kAccessRead);
1658  if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
1659    Acquire(thr, pc, (uptr)b);
1660  }
1661  return res;
1662}
1663#endif
1664
1665TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
1666  SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
1667  if (o == 0 || f == 0)
1668    return errno_EINVAL;
1669  atomic_uint32_t *a;
1670
1671  if (SANITIZER_APPLE)
1672    a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
1673  else if (SANITIZER_NETBSD)
1674    a = static_cast<atomic_uint32_t*>
1675          ((void *)((char *)o + __sanitizer::pthread_mutex_t_sz));
1676  else
1677    a = static_cast<atomic_uint32_t*>(o);
1678
1679  // Mac OS X appears to use pthread_once() where calling BlockingRegion hooks
1680  // result in crashes due to too little stack space.
1681  if (guard_acquire(thr, pc, a, !SANITIZER_APPLE)) {
1682    (*f)();
1683    guard_release(thr, pc, a, kGuardDone);
1684  }
1685  return 0;
1686}
1687
1688#if SANITIZER_GLIBC
1689TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
1690  SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
1691  if (fd > 0)
1692    FdAccess(thr, pc, fd);
1693  return REAL(__fxstat)(version, fd, buf);
1694}
1695
1696TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
1697  SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
1698  if (fd > 0)
1699    FdAccess(thr, pc, fd);
1700  return REAL(__fxstat64)(version, fd, buf);
1701}
1702#define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat); TSAN_INTERCEPT(__fxstat64)
1703#else
1704#define TSAN_MAYBE_INTERCEPT___FXSTAT
1705#endif
1706
1707#if !SANITIZER_GLIBC || __GLIBC_PREREQ(2, 33)
1708TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
1709  SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
1710  if (fd > 0)
1711    FdAccess(thr, pc, fd);
1712  return REAL(fstat)(fd, buf);
1713}
1714#  define TSAN_MAYBE_INTERCEPT_FSTAT TSAN_INTERCEPT(fstat)
1715#else
1716#  define TSAN_MAYBE_INTERCEPT_FSTAT
1717#endif
1718
1719#if __GLIBC_PREREQ(2, 33)
1720TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
1721  SCOPED_TSAN_INTERCEPTOR(fstat64, fd, buf);
1722  if (fd > 0)
1723    FdAccess(thr, pc, fd);
1724  return REAL(fstat64)(fd, buf);
1725}
1726#  define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
1727#else
1728#  define TSAN_MAYBE_INTERCEPT_FSTAT64
1729#endif
1730
1731TSAN_INTERCEPTOR(int, open, const char *name, int oflag, ...) {
1732  mode_t mode = 0;
1733  if (OpenReadsVaArgs(oflag)) {
1734    va_list ap;
1735    va_start(ap, oflag);
1736    mode = va_arg(ap, int);
1737    va_end(ap);
1738  }
1739
1740  SCOPED_TSAN_INTERCEPTOR(open, name, oflag, mode);
1741  READ_STRING(thr, pc, name, 0);
1742
1743  int fd;
1744  if (OpenReadsVaArgs(oflag))
1745    fd = REAL(open)(name, oflag, mode);
1746  else
1747    fd = REAL(open)(name, oflag);
1748
1749  if (fd >= 0)
1750    FdFileCreate(thr, pc, fd);
1751  return fd;
1752}
1753
1754#if SANITIZER_LINUX
1755TSAN_INTERCEPTOR(int, open64, const char *name, int oflag, ...) {
1756  va_list ap;
1757  va_start(ap, oflag);
1758  mode_t mode = va_arg(ap, int);
1759  va_end(ap);
1760  SCOPED_TSAN_INTERCEPTOR(open64, name, oflag, mode);
1761  READ_STRING(thr, pc, name, 0);
1762  int fd = REAL(open64)(name, oflag, mode);
1763  if (fd >= 0)
1764    FdFileCreate(thr, pc, fd);
1765  return fd;
1766}
1767#define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
1768#else
1769#define TSAN_MAYBE_INTERCEPT_OPEN64
1770#endif
1771
1772TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
1773  SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
1774  READ_STRING(thr, pc, name, 0);
1775  int fd = REAL(creat)(name, mode);
1776  if (fd >= 0)
1777    FdFileCreate(thr, pc, fd);
1778  return fd;
1779}
1780
1781#if SANITIZER_LINUX
1782TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
1783  SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
1784  READ_STRING(thr, pc, name, 0);
1785  int fd = REAL(creat64)(name, mode);
1786  if (fd >= 0)
1787    FdFileCreate(thr, pc, fd);
1788  return fd;
1789}
1790#define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
1791#else
1792#define TSAN_MAYBE_INTERCEPT_CREAT64
1793#endif
1794
1795TSAN_INTERCEPTOR(int, dup, int oldfd) {
1796  SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
1797  int newfd = REAL(dup)(oldfd);
1798  if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
1799    FdDup(thr, pc, oldfd, newfd, true);
1800  return newfd;
1801}
1802
1803TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
1804  SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
1805  int newfd2 = REAL(dup2)(oldfd, newfd);
1806  if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1807    FdDup(thr, pc, oldfd, newfd2, false);
1808  return newfd2;
1809}
1810
1811#if !SANITIZER_APPLE
1812TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
1813  SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
1814  int newfd2 = REAL(dup3)(oldfd, newfd, flags);
1815  if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1816    FdDup(thr, pc, oldfd, newfd2, false);
1817  return newfd2;
1818}
1819#endif
1820
1821#if SANITIZER_LINUX
1822TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
1823  SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
1824  int fd = REAL(eventfd)(initval, flags);
1825  if (fd >= 0)
1826    FdEventCreate(thr, pc, fd);
1827  return fd;
1828}
1829#define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
1830#else
1831#define TSAN_MAYBE_INTERCEPT_EVENTFD
1832#endif
1833
1834#if SANITIZER_LINUX
1835TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
1836  SCOPED_INTERCEPTOR_RAW(signalfd, fd, mask, flags);
1837  FdClose(thr, pc, fd);
1838  fd = REAL(signalfd)(fd, mask, flags);
1839  if (!MustIgnoreInterceptor(thr))
1840    FdSignalCreate(thr, pc, fd);
1841  return fd;
1842}
1843#define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
1844#else
1845#define TSAN_MAYBE_INTERCEPT_SIGNALFD
1846#endif
1847
1848#if SANITIZER_LINUX
1849TSAN_INTERCEPTOR(int, inotify_init, int fake) {
1850  SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
1851  int fd = REAL(inotify_init)(fake);
1852  if (fd >= 0)
1853    FdInotifyCreate(thr, pc, fd);
1854  return fd;
1855}
1856#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
1857#else
1858#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
1859#endif
1860
1861#if SANITIZER_LINUX
1862TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
1863  SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
1864  int fd = REAL(inotify_init1)(flags);
1865  if (fd >= 0)
1866    FdInotifyCreate(thr, pc, fd);
1867  return fd;
1868}
1869#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
1870#else
1871#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
1872#endif
1873
1874TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
1875  SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
1876  int fd = REAL(socket)(domain, type, protocol);
1877  if (fd >= 0)
1878    FdSocketCreate(thr, pc, fd);
1879  return fd;
1880}
1881
1882TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
1883  SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
1884  int res = REAL(socketpair)(domain, type, protocol, fd);
1885  if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
1886    FdPipeCreate(thr, pc, fd[0], fd[1]);
1887  return res;
1888}
1889
1890TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
1891  SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
1892  FdSocketConnecting(thr, pc, fd);
1893  int res = REAL(connect)(fd, addr, addrlen);
1894  if (res == 0 && fd >= 0)
1895    FdSocketConnect(thr, pc, fd);
1896  return res;
1897}
1898
1899TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
1900  SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
1901  int res = REAL(bind)(fd, addr, addrlen);
1902  if (fd > 0 && res == 0)
1903    FdAccess(thr, pc, fd);
1904  return res;
1905}
1906
1907TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
1908  SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
1909  int res = REAL(listen)(fd, backlog);
1910  if (fd > 0 && res == 0)
1911    FdAccess(thr, pc, fd);
1912  return res;
1913}
1914
1915TSAN_INTERCEPTOR(int, close, int fd) {
1916  SCOPED_INTERCEPTOR_RAW(close, fd);
1917  if (!in_symbolizer())
1918    FdClose(thr, pc, fd);
1919  return REAL(close)(fd);
1920}
1921
1922#if SANITIZER_LINUX
1923TSAN_INTERCEPTOR(int, __close, int fd) {
1924  SCOPED_INTERCEPTOR_RAW(__close, fd);
1925  FdClose(thr, pc, fd);
1926  return REAL(__close)(fd);
1927}
1928#define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
1929#else
1930#define TSAN_MAYBE_INTERCEPT___CLOSE
1931#endif
1932
1933// glibc guts
1934#if SANITIZER_LINUX && !SANITIZER_ANDROID
1935TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
1936  SCOPED_INTERCEPTOR_RAW(__res_iclose, state, free_addr);
1937  int fds[64];
1938  int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
1939  for (int i = 0; i < cnt; i++) FdClose(thr, pc, fds[i]);
1940  REAL(__res_iclose)(state, free_addr);
1941}
1942#define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
1943#else
1944#define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
1945#endif
1946
1947TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
1948  SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
1949  int res = REAL(pipe)(pipefd);
1950  if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1951    FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1952  return res;
1953}
1954
1955#if !SANITIZER_APPLE
1956TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
1957  SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
1958  int res = REAL(pipe2)(pipefd, flags);
1959  if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1960    FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1961  return res;
1962}
1963#endif
1964
1965TSAN_INTERCEPTOR(int, unlink, char *path) {
1966  SCOPED_TSAN_INTERCEPTOR(unlink, path);
1967  Release(thr, pc, File2addr(path));
1968  int res = REAL(unlink)(path);
1969  return res;
1970}
1971
1972TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
1973  SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
1974  void *res = REAL(tmpfile)(fake);
1975  if (res) {
1976    int fd = fileno_unlocked(res);
1977    if (fd >= 0)
1978      FdFileCreate(thr, pc, fd);
1979  }
1980  return res;
1981}
1982
1983#if SANITIZER_LINUX
1984TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
1985  SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
1986  void *res = REAL(tmpfile64)(fake);
1987  if (res) {
1988    int fd = fileno_unlocked(res);
1989    if (fd >= 0)
1990      FdFileCreate(thr, pc, fd);
1991  }
1992  return res;
1993}
1994#define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
1995#else
1996#define TSAN_MAYBE_INTERCEPT_TMPFILE64
1997#endif
1998
1999static void FlushStreams() {
2000  // Flushing all the streams here may freeze the process if a child thread is
2001  // performing file stream operations at the same time.
2002  REAL(fflush)(stdout);
2003  REAL(fflush)(stderr);
2004}
2005
2006TSAN_INTERCEPTOR(void, abort, int fake) {
2007  SCOPED_TSAN_INTERCEPTOR(abort, fake);
2008  FlushStreams();
2009  REAL(abort)(fake);
2010}
2011
2012TSAN_INTERCEPTOR(int, rmdir, char *path) {
2013  SCOPED_TSAN_INTERCEPTOR(rmdir, path);
2014  Release(thr, pc, Dir2addr(path));
2015  int res = REAL(rmdir)(path);
2016  return res;
2017}
2018
2019TSAN_INTERCEPTOR(int, closedir, void *dirp) {
2020  SCOPED_INTERCEPTOR_RAW(closedir, dirp);
2021  if (dirp) {
2022    int fd = dirfd(dirp);
2023    FdClose(thr, pc, fd);
2024  }
2025  return REAL(closedir)(dirp);
2026}
2027
2028#if SANITIZER_LINUX
2029TSAN_INTERCEPTOR(int, epoll_create, int size) {
2030  SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
2031  int fd = REAL(epoll_create)(size);
2032  if (fd >= 0)
2033    FdPollCreate(thr, pc, fd);
2034  return fd;
2035}
2036
2037TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
2038  SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
2039  int fd = REAL(epoll_create1)(flags);
2040  if (fd >= 0)
2041    FdPollCreate(thr, pc, fd);
2042  return fd;
2043}
2044
2045TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
2046  SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
2047  if (epfd >= 0)
2048    FdAccess(thr, pc, epfd);
2049  if (epfd >= 0 && fd >= 0)
2050    FdAccess(thr, pc, fd);
2051  if (op == EPOLL_CTL_ADD && epfd >= 0) {
2052    FdPollAdd(thr, pc, epfd, fd);
2053    FdRelease(thr, pc, epfd);
2054  }
2055  int res = REAL(epoll_ctl)(epfd, op, fd, ev);
2056  return res;
2057}
2058
2059TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
2060  SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
2061  if (epfd >= 0)
2062    FdAccess(thr, pc, epfd);
2063  int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
2064  if (res > 0 && epfd >= 0)
2065    FdAcquire(thr, pc, epfd);
2066  return res;
2067}
2068
2069TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout,
2070                 void *sigmask) {
2071  SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask);
2072  if (epfd >= 0)
2073    FdAccess(thr, pc, epfd);
2074  int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask);
2075  if (res > 0 && epfd >= 0)
2076    FdAcquire(thr, pc, epfd);
2077  return res;
2078}
2079
2080TSAN_INTERCEPTOR(int, epoll_pwait2, int epfd, void *ev, int cnt, void *timeout,
2081                 void *sigmask) {
2082  SCOPED_INTERCEPTOR_RAW(epoll_pwait2, epfd, ev, cnt, timeout, sigmask);
2083  // This function is new and may not be present in libc and/or kernel.
2084  // Since we effectively add it to libc (as will be probed by the program
2085  // using dlsym or a weak function pointer) we need to handle the case
2086  // when it's not present in the actual libc.
2087  if (!REAL(epoll_pwait2)) {
2088    errno = errno_ENOSYS;
2089    return -1;
2090  }
2091  if (MustIgnoreInterceptor(thr))
2092    REAL(epoll_pwait2)(epfd, ev, cnt, timeout, sigmask);
2093  if (epfd >= 0)
2094    FdAccess(thr, pc, epfd);
2095  int res = BLOCK_REAL(epoll_pwait2)(epfd, ev, cnt, timeout, sigmask);
2096  if (res > 0 && epfd >= 0)
2097    FdAcquire(thr, pc, epfd);
2098  return res;
2099}
2100
2101#  define TSAN_MAYBE_INTERCEPT_EPOLL \
2102    TSAN_INTERCEPT(epoll_create);    \
2103    TSAN_INTERCEPT(epoll_create1);   \
2104    TSAN_INTERCEPT(epoll_ctl);       \
2105    TSAN_INTERCEPT(epoll_wait);      \
2106    TSAN_INTERCEPT(epoll_pwait);     \
2107    TSAN_INTERCEPT(epoll_pwait2)
2108#else
2109#define TSAN_MAYBE_INTERCEPT_EPOLL
2110#endif
2111
2112// The following functions are intercepted merely to process pending signals.
2113// If program blocks signal X, we must deliver the signal before the function
2114// returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
2115// it's better to deliver the signal straight away.
2116TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
2117  SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
2118  return REAL(sigsuspend)(mask);
2119}
2120
2121TSAN_INTERCEPTOR(int, sigblock, int mask) {
2122  SCOPED_TSAN_INTERCEPTOR(sigblock, mask);
2123  return REAL(sigblock)(mask);
2124}
2125
2126TSAN_INTERCEPTOR(int, sigsetmask, int mask) {
2127  SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask);
2128  return REAL(sigsetmask)(mask);
2129}
2130
2131TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set,
2132    __sanitizer_sigset_t *oldset) {
2133  SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset);
2134  return REAL(pthread_sigmask)(how, set, oldset);
2135}
2136
2137namespace __tsan {
2138
2139static void ReportErrnoSpoiling(ThreadState *thr, uptr pc, int sig) {
2140  VarSizeStackTrace stack;
2141  // StackTrace::GetNestInstructionPc(pc) is used because return address is
2142  // expected, OutputReport() will undo this.
2143  ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
2144  ThreadRegistryLock l(&ctx->thread_registry);
2145  ScopedReport rep(ReportTypeErrnoInSignal);
2146  rep.SetSigNum(sig);
2147  if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) {
2148    rep.AddStack(stack, true);
2149    OutputReport(thr, rep);
2150  }
2151}
2152
2153static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
2154                                  int sig, __sanitizer_siginfo *info,
2155                                  void *uctx) {
2156  CHECK(thr->slot);
2157  __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
2158  if (acquire)
2159    Acquire(thr, 0, (uptr)&sigactions[sig]);
2160  // Signals are generally asynchronous, so if we receive a signals when
2161  // ignores are enabled we should disable ignores. This is critical for sync
2162  // and interceptors, because otherwise we can miss synchronization and report
2163  // false races.
2164  int ignore_reads_and_writes = thr->ignore_reads_and_writes;
2165  int ignore_interceptors = thr->ignore_interceptors;
2166  int ignore_sync = thr->ignore_sync;
2167  // For symbolizer we only process SIGSEGVs synchronously
2168  // (bug in symbolizer or in tsan). But we want to reset
2169  // in_symbolizer to fail gracefully. Symbolizer and user code
2170  // use different memory allocators, so if we don't reset
2171  // in_symbolizer we can get memory allocated with one being
2172  // feed with another, which can cause more crashes.
2173  int in_symbolizer = thr->in_symbolizer;
2174  if (!ctx->after_multithreaded_fork) {
2175    thr->ignore_reads_and_writes = 0;
2176    thr->fast_state.ClearIgnoreBit();
2177    thr->ignore_interceptors = 0;
2178    thr->ignore_sync = 0;
2179    thr->in_symbolizer = 0;
2180  }
2181  // Ensure that the handler does not spoil errno.
2182  const int saved_errno = errno;
2183  errno = 99;
2184  // This code races with sigaction. Be careful to not read sa_sigaction twice.
2185  // Also need to remember pc for reporting before the call,
2186  // because the handler can reset it.
2187  volatile uptr pc = (sigactions[sig].sa_flags & SA_SIGINFO)
2188                         ? (uptr)sigactions[sig].sigaction
2189                         : (uptr)sigactions[sig].handler;
2190  if (pc != sig_dfl && pc != sig_ign) {
2191    // The callback can be either sa_handler or sa_sigaction.
2192    // They have different signatures, but we assume that passing
2193    // additional arguments to sa_handler works and is harmless.
2194    ((__sanitizer_sigactionhandler_ptr)pc)(sig, info, uctx);
2195  }
2196  if (!ctx->after_multithreaded_fork) {
2197    thr->ignore_reads_and_writes = ignore_reads_and_writes;
2198    if (ignore_reads_and_writes)
2199      thr->fast_state.SetIgnoreBit();
2200    thr->ignore_interceptors = ignore_interceptors;
2201    thr->ignore_sync = ignore_sync;
2202    thr->in_symbolizer = in_symbolizer;
2203  }
2204  // We do not detect errno spoiling for SIGTERM,
2205  // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
2206  // tsan reports false positive in such case.
2207  // It's difficult to properly detect this situation (reraise),
2208  // because in async signal processing case (when handler is called directly
2209  // from rtl_generic_sighandler) we have not yet received the reraised
2210  // signal; and it looks too fragile to intercept all ways to reraise a signal.
2211  if (ShouldReport(thr, ReportTypeErrnoInSignal) && !sync && sig != SIGTERM &&
2212      errno != 99)
2213    ReportErrnoSpoiling(thr, pc, sig);
2214  errno = saved_errno;
2215}
2216
2217void ProcessPendingSignalsImpl(ThreadState *thr) {
2218  atomic_store(&thr->pending_signals, 0, memory_order_relaxed);
2219  ThreadSignalContext *sctx = SigCtx(thr);
2220  if (sctx == 0)
2221    return;
2222  atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
2223  internal_sigfillset(&sctx->emptyset);
2224  __sanitizer_sigset_t *oldset = sctx->oldset.PushBack();
2225  int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, oldset);
2226  CHECK_EQ(res, 0);
2227  for (int sig = 0; sig < kSigCount; sig++) {
2228    SignalDesc *signal = &sctx->pending_signals[sig];
2229    if (signal->armed) {
2230      signal->armed = false;
2231      CallUserSignalHandler(thr, false, true, sig, &signal->siginfo,
2232                            &signal->ctx);
2233    }
2234  }
2235  res = REAL(pthread_sigmask)(SIG_SETMASK, oldset, 0);
2236  CHECK_EQ(res, 0);
2237  sctx->oldset.PopBack();
2238  atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
2239}
2240
2241}  // namespace __tsan
2242
2243static bool is_sync_signal(ThreadSignalContext *sctx, int sig,
2244                           __sanitizer_siginfo *info) {
2245  // If we are sending signal to ourselves, we must process it now.
2246  if (sctx && sig == sctx->int_signal_send)
2247    return true;
2248#if SANITIZER_HAS_SIGINFO
2249  // POSIX timers can be configured to send any kind of signal; however, it
2250  // doesn't make any sense to consider a timer signal as synchronous!
2251  if (info->si_code == SI_TIMER)
2252    return false;
2253#endif
2254  return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL || sig == SIGTRAP ||
2255         sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS;
2256}
2257
2258void sighandler(int sig, __sanitizer_siginfo *info, void *ctx) {
2259  ThreadState *thr = cur_thread_init();
2260  ThreadSignalContext *sctx = SigCtx(thr);
2261  if (sig < 0 || sig >= kSigCount) {
2262    VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
2263    return;
2264  }
2265  // Don't mess with synchronous signals.
2266  const bool sync = is_sync_signal(sctx, sig, info);
2267  if (sync ||
2268      // If we are in blocking function, we can safely process it now
2269      // (but check if we are in a recursive interceptor,
2270      // i.e. pthread_join()->munmap()).
2271      atomic_load(&thr->in_blocking_func, memory_order_relaxed)) {
2272    atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
2273    if (atomic_load(&thr->in_blocking_func, memory_order_relaxed)) {
2274      atomic_store(&thr->in_blocking_func, 0, memory_order_relaxed);
2275      CallUserSignalHandler(thr, sync, true, sig, info, ctx);
2276      atomic_store(&thr->in_blocking_func, 1, memory_order_relaxed);
2277    } else {
2278      // Be very conservative with when we do acquire in this case.
2279      // It's unsafe to do acquire in async handlers, because ThreadState
2280      // can be in inconsistent state.
2281      // SIGSYS looks relatively safe -- it's synchronous and can actually
2282      // need some global state.
2283      bool acq = (sig == SIGSYS);
2284      CallUserSignalHandler(thr, sync, acq, sig, info, ctx);
2285    }
2286    atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
2287    return;
2288  }
2289
2290  if (sctx == 0)
2291    return;
2292  SignalDesc *signal = &sctx->pending_signals[sig];
2293  if (signal->armed == false) {
2294    signal->armed = true;
2295    internal_memcpy(&signal->siginfo, info, sizeof(*info));
2296    internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
2297    atomic_store(&thr->pending_signals, 1, memory_order_relaxed);
2298  }
2299}
2300
2301TSAN_INTERCEPTOR(int, raise, int sig) {
2302  SCOPED_TSAN_INTERCEPTOR(raise, sig);
2303  ThreadSignalContext *sctx = SigCtx(thr);
2304  CHECK_NE(sctx, 0);
2305  int prev = sctx->int_signal_send;
2306  sctx->int_signal_send = sig;
2307  int res = REAL(raise)(sig);
2308  CHECK_EQ(sctx->int_signal_send, sig);
2309  sctx->int_signal_send = prev;
2310  return res;
2311}
2312
2313TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
2314  SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
2315  ThreadSignalContext *sctx = SigCtx(thr);
2316  CHECK_NE(sctx, 0);
2317  int prev = sctx->int_signal_send;
2318  if (pid == (int)internal_getpid()) {
2319    sctx->int_signal_send = sig;
2320  }
2321  int res = REAL(kill)(pid, sig);
2322  if (pid == (int)internal_getpid()) {
2323    CHECK_EQ(sctx->int_signal_send, sig);
2324    sctx->int_signal_send = prev;
2325  }
2326  return res;
2327}
2328
2329TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
2330  SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
2331  ThreadSignalContext *sctx = SigCtx(thr);
2332  CHECK_NE(sctx, 0);
2333  int prev = sctx->int_signal_send;
2334  bool self = pthread_equal(tid, pthread_self());
2335  if (self)
2336    sctx->int_signal_send = sig;
2337  int res = REAL(pthread_kill)(tid, sig);
2338  if (self) {
2339    CHECK_EQ(sctx->int_signal_send, sig);
2340    sctx->int_signal_send = prev;
2341  }
2342  return res;
2343}
2344
2345TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
2346  SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
2347  // It's intercepted merely to process pending signals.
2348  return REAL(gettimeofday)(tv, tz);
2349}
2350
2351TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
2352    void *hints, void *rv) {
2353  SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
2354  // We miss atomic synchronization in getaddrinfo,
2355  // and can report false race between malloc and free
2356  // inside of getaddrinfo. So ignore memory accesses.
2357  ThreadIgnoreBegin(thr, pc);
2358  int res = REAL(getaddrinfo)(node, service, hints, rv);
2359  ThreadIgnoreEnd(thr);
2360  return res;
2361}
2362
2363TSAN_INTERCEPTOR(int, fork, int fake) {
2364  if (in_symbolizer())
2365    return REAL(fork)(fake);
2366  SCOPED_INTERCEPTOR_RAW(fork, fake);
2367  return REAL(fork)(fake);
2368}
2369
2370void atfork_prepare() {
2371  if (in_symbolizer())
2372    return;
2373  ThreadState *thr = cur_thread();
2374  const uptr pc = StackTrace::GetCurrentPc();
2375  ForkBefore(thr, pc);
2376}
2377
2378void atfork_parent() {
2379  if (in_symbolizer())
2380    return;
2381  ThreadState *thr = cur_thread();
2382  const uptr pc = StackTrace::GetCurrentPc();
2383  ForkParentAfter(thr, pc);
2384}
2385
2386void atfork_child() {
2387  if (in_symbolizer())
2388    return;
2389  ThreadState *thr = cur_thread();
2390  const uptr pc = StackTrace::GetCurrentPc();
2391  ForkChildAfter(thr, pc, true);
2392  FdOnFork(thr, pc);
2393}
2394
2395#if !SANITIZER_IOS
2396TSAN_INTERCEPTOR(int, vfork, int fake) {
2397  // Some programs (e.g. openjdk) call close for all file descriptors
2398  // in the child process. Under tsan it leads to false positives, because
2399  // address space is shared, so the parent process also thinks that
2400  // the descriptors are closed (while they are actually not).
2401  // This leads to false positives due to missed synchronization.
2402  // Strictly saying this is undefined behavior, because vfork child is not
2403  // allowed to call any functions other than exec/exit. But this is what
2404  // openjdk does, so we want to handle it.
2405  // We could disable interceptors in the child process. But it's not possible
2406  // to simply intercept and wrap vfork, because vfork child is not allowed
2407  // to return from the function that calls vfork, and that's exactly what
2408  // we would do. So this would require some assembly trickery as well.
2409  // Instead we simply turn vfork into fork.
2410  return WRAP(fork)(fake);
2411}
2412#endif
2413
2414#if SANITIZER_LINUX
2415TSAN_INTERCEPTOR(int, clone, int (*fn)(void *), void *stack, int flags,
2416                 void *arg, int *parent_tid, void *tls, pid_t *child_tid) {
2417  SCOPED_INTERCEPTOR_RAW(clone, fn, stack, flags, arg, parent_tid, tls,
2418                         child_tid);
2419  struct Arg {
2420    int (*fn)(void *);
2421    void *arg;
2422  };
2423  auto wrapper = +[](void *p) -> int {
2424    auto *thr = cur_thread();
2425    uptr pc = GET_CURRENT_PC();
2426    // Start the background thread for fork, but not for clone.
2427    // For fork we did this always and it's known to work (or user code has
2428    // adopted). But if we do this for the new clone interceptor some code
2429    // (sandbox2) fails. So model we used to do for years and don't start the
2430    // background thread after clone.
2431    ForkChildAfter(thr, pc, false);
2432    FdOnFork(thr, pc);
2433    auto *arg = static_cast<Arg *>(p);
2434    return arg->fn(arg->arg);
2435  };
2436  ForkBefore(thr, pc);
2437  Arg arg_wrapper = {fn, arg};
2438  int pid = REAL(clone)(wrapper, stack, flags, &arg_wrapper, parent_tid, tls,
2439                        child_tid);
2440  ForkParentAfter(thr, pc);
2441  return pid;
2442}
2443#endif
2444
2445#if !SANITIZER_APPLE && !SANITIZER_ANDROID
2446typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
2447                                    void *data);
2448struct dl_iterate_phdr_data {
2449  ThreadState *thr;
2450  uptr pc;
2451  dl_iterate_phdr_cb_t cb;
2452  void *data;
2453};
2454
2455static bool IsAppNotRodata(uptr addr) {
2456  return IsAppMem(addr) && *MemToShadow(addr) != Shadow::kRodata;
2457}
2458
2459static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
2460                              void *data) {
2461  dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
2462  // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
2463  // accessible in dl_iterate_phdr callback. But we don't see synchronization
2464  // inside of dynamic linker, so we "unpoison" it here in order to not
2465  // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
2466  // because some libc functions call __libc_dlopen.
2467  if (info && IsAppNotRodata((uptr)info->dlpi_name))
2468    MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2469                     internal_strlen(info->dlpi_name));
2470  int res = cbdata->cb(info, size, cbdata->data);
2471  // Perform the check one more time in case info->dlpi_name was overwritten
2472  // by user callback.
2473  if (info && IsAppNotRodata((uptr)info->dlpi_name))
2474    MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2475                     internal_strlen(info->dlpi_name));
2476  return res;
2477}
2478
2479TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
2480  SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
2481  dl_iterate_phdr_data cbdata;
2482  cbdata.thr = thr;
2483  cbdata.pc = pc;
2484  cbdata.cb = cb;
2485  cbdata.data = data;
2486  int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
2487  return res;
2488}
2489#endif
2490
2491static int OnExit(ThreadState *thr) {
2492  int status = Finalize(thr);
2493  FlushStreams();
2494  return status;
2495}
2496
2497#if !SANITIZER_APPLE
2498static void HandleRecvmsg(ThreadState *thr, uptr pc,
2499    __sanitizer_msghdr *msg) {
2500  int fds[64];
2501  int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
2502  for (int i = 0; i < cnt; i++)
2503    FdEventCreate(thr, pc, fds[i]);
2504}
2505#endif
2506
2507#include "sanitizer_common/sanitizer_platform_interceptors.h"
2508// Causes interceptor recursion (getaddrinfo() and fopen())
2509#undef SANITIZER_INTERCEPT_GETADDRINFO
2510// We define our own.
2511#if SANITIZER_INTERCEPT_TLS_GET_ADDR
2512#define NEED_TLS_GET_ADDR
2513#endif
2514#undef SANITIZER_INTERCEPT_TLS_GET_ADDR
2515#define SANITIZER_INTERCEPT_TLS_GET_OFFSET 1
2516#undef SANITIZER_INTERCEPT_PTHREAD_SIGMASK
2517
2518#define COMMON_INTERCEPT_FUNCTION_VER(name, ver)                          \
2519  INTERCEPT_FUNCTION_VER(name, ver)
2520#define COMMON_INTERCEPT_FUNCTION_VER_UNVERSIONED_FALLBACK(name, ver) \
2521  (INTERCEPT_FUNCTION_VER(name, ver) || INTERCEPT_FUNCTION(name))
2522
2523#define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
2524  SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__);              \
2525  TsanInterceptorContext _ctx = {thr, pc};                \
2526  ctx = (void *)&_ctx;                                    \
2527  (void)ctx;
2528
2529#define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
2530  if (path)                                           \
2531    Acquire(thr, pc, File2addr(path));                \
2532  if (file) {                                         \
2533    int fd = fileno_unlocked(file);                   \
2534    if (fd >= 0) FdFileCreate(thr, pc, fd);           \
2535  }
2536
2537#define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
2538  if (file) {                                    \
2539    int fd = fileno_unlocked(file);              \
2540    FdClose(thr, pc, fd);                        \
2541  }
2542
2543#define COMMON_INTERCEPTOR_DLOPEN(filename, flag) \
2544  ({                                              \
2545    CheckNoDeepBind(filename, flag);              \
2546    ThreadIgnoreBegin(thr, 0);                    \
2547    void *res = REAL(dlopen)(filename, flag);     \
2548    ThreadIgnoreEnd(thr);                         \
2549    res;                                          \
2550  })
2551
2552// Ignore interceptors in OnLibraryLoaded()/Unloaded().  These hooks use code
2553// (ListOfModules::init, MemoryMappingLayout::DumpListOfModules) that make
2554// intercepted calls, which can cause deadlockes with ReportRace() which also
2555// uses this code.
2556#define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
2557  ({                                                        \
2558    ScopedIgnoreInterceptors ignore_interceptors;           \
2559    libignore()->OnLibraryLoaded(filename);                 \
2560  })
2561
2562#define COMMON_INTERCEPTOR_LIBRARY_UNLOADED()     \
2563  ({                                              \
2564    ScopedIgnoreInterceptors ignore_interceptors; \
2565    libignore()->OnLibraryUnloaded();             \
2566  })
2567
2568#define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
2569  Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
2570
2571#define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
2572  Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
2573
2574#define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
2575  Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
2576
2577#define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
2578  FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2579
2580#define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
2581  FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2582
2583#define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
2584  FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2585
2586#define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
2587  FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
2588
2589#define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
2590  ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
2591
2592#define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name)         \
2593  if (pthread_equal(pthread_self(), reinterpret_cast<void *>(thread))) \
2594    COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name);                     \
2595  else                                                                 \
2596    __tsan::ctx->thread_registry.SetThreadNameByUserId(thread, name)
2597
2598#define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
2599
2600#define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
2601  OnExit(((TsanInterceptorContext *) ctx)->thr)
2602
2603#define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd,  \
2604                                     off)                                   \
2605  do {                                                                      \
2606    return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \
2607                            off);                                           \
2608  } while (false)
2609
2610#define COMMON_INTERCEPTOR_MUNMAP_IMPL(ctx, addr, sz)           \
2611  do {                                                          \
2612    return munmap_interceptor(thr, pc, REAL(munmap), addr, sz); \
2613  } while (false)
2614
2615#if !SANITIZER_APPLE
2616#define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
2617  HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
2618      ((TsanInterceptorContext *)ctx)->pc, msg)
2619#endif
2620
2621#define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end)                           \
2622  if (TsanThread *t = GetCurrentThread()) {                                    \
2623    *begin = t->tls_begin();                                                   \
2624    *end = t->tls_end();                                                       \
2625  } else {                                                                     \
2626    *begin = *end = 0;                                                         \
2627  }
2628
2629#define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
2630  SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
2631
2632#define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
2633  SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
2634
2635#include "sanitizer_common/sanitizer_common_interceptors.inc"
2636
2637static int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2638                          __sanitizer_sigaction *old);
2639static __sanitizer_sighandler_ptr signal_impl(int sig,
2640                                              __sanitizer_sighandler_ptr h);
2641
2642#define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \
2643  { return sigaction_impl(signo, act, oldact); }
2644
2645#define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \
2646  { return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); }
2647
2648#define SIGNAL_INTERCEPTOR_ENTER() LazyInitialize(cur_thread_init())
2649
2650#include "sanitizer_common/sanitizer_signal_interceptors.inc"
2651
2652int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2653                   __sanitizer_sigaction *old) {
2654  // Note: if we call REAL(sigaction) directly for any reason without proxying
2655  // the signal handler through sighandler, very bad things will happen.
2656  // The handler will run synchronously and corrupt tsan per-thread state.
2657  SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old);
2658  if (sig <= 0 || sig >= kSigCount) {
2659    errno = errno_EINVAL;
2660    return -1;
2661  }
2662  __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
2663  __sanitizer_sigaction old_stored;
2664  if (old) internal_memcpy(&old_stored, &sigactions[sig], sizeof(old_stored));
2665  __sanitizer_sigaction newact;
2666  if (act) {
2667    // Copy act into sigactions[sig].
2668    // Can't use struct copy, because compiler can emit call to memcpy.
2669    // Can't use internal_memcpy, because it copies byte-by-byte,
2670    // and signal handler reads the handler concurrently. It can read
2671    // some bytes from old value and some bytes from new value.
2672    // Use volatile to prevent insertion of memcpy.
2673    sigactions[sig].handler =
2674        *(volatile __sanitizer_sighandler_ptr const *)&act->handler;
2675    sigactions[sig].sa_flags = *(volatile int const *)&act->sa_flags;
2676    internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
2677                    sizeof(sigactions[sig].sa_mask));
2678#if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD
2679    sigactions[sig].sa_restorer = act->sa_restorer;
2680#endif
2681    internal_memcpy(&newact, act, sizeof(newact));
2682    internal_sigfillset(&newact.sa_mask);
2683    if ((act->sa_flags & SA_SIGINFO) ||
2684        ((uptr)act->handler != sig_ign && (uptr)act->handler != sig_dfl)) {
2685      newact.sa_flags |= SA_SIGINFO;
2686      newact.sigaction = sighandler;
2687    }
2688    ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
2689    act = &newact;
2690  }
2691  int res = REAL(sigaction)(sig, act, old);
2692  if (res == 0 && old && old->sigaction == sighandler)
2693    internal_memcpy(old, &old_stored, sizeof(*old));
2694  return res;
2695}
2696
2697static __sanitizer_sighandler_ptr signal_impl(int sig,
2698                                              __sanitizer_sighandler_ptr h) {
2699  __sanitizer_sigaction act;
2700  act.handler = h;
2701  internal_memset(&act.sa_mask, -1, sizeof(act.sa_mask));
2702  act.sa_flags = 0;
2703  __sanitizer_sigaction old;
2704  int res = sigaction_symname(sig, &act, &old);
2705  if (res) return (__sanitizer_sighandler_ptr)sig_err;
2706  return old.handler;
2707}
2708
2709#define TSAN_SYSCALL()             \
2710  ThreadState *thr = cur_thread(); \
2711  if (thr->ignore_interceptors)    \
2712    return;                        \
2713  ScopedSyscall scoped_syscall(thr)
2714
2715struct ScopedSyscall {
2716  ThreadState *thr;
2717
2718  explicit ScopedSyscall(ThreadState *thr) : thr(thr) { LazyInitialize(thr); }
2719
2720  ~ScopedSyscall() {
2721    ProcessPendingSignals(thr);
2722  }
2723};
2724
2725#if !SANITIZER_FREEBSD && !SANITIZER_APPLE
2726static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
2727  TSAN_SYSCALL();
2728  MemoryAccessRange(thr, pc, p, s, write);
2729}
2730
2731static USED void syscall_acquire(uptr pc, uptr addr) {
2732  TSAN_SYSCALL();
2733  Acquire(thr, pc, addr);
2734  DPrintf("syscall_acquire(0x%zx))\n", addr);
2735}
2736
2737static USED void syscall_release(uptr pc, uptr addr) {
2738  TSAN_SYSCALL();
2739  DPrintf("syscall_release(0x%zx)\n", addr);
2740  Release(thr, pc, addr);
2741}
2742
2743static void syscall_fd_close(uptr pc, int fd) {
2744  auto *thr = cur_thread();
2745  FdClose(thr, pc, fd);
2746}
2747
2748static USED void syscall_fd_acquire(uptr pc, int fd) {
2749  TSAN_SYSCALL();
2750  FdAcquire(thr, pc, fd);
2751  DPrintf("syscall_fd_acquire(%d)\n", fd);
2752}
2753
2754static USED void syscall_fd_release(uptr pc, int fd) {
2755  TSAN_SYSCALL();
2756  DPrintf("syscall_fd_release(%d)\n", fd);
2757  FdRelease(thr, pc, fd);
2758}
2759
2760static USED void sycall_blocking_start() {
2761  DPrintf("sycall_blocking_start()\n");
2762  ThreadState *thr = cur_thread();
2763  EnterBlockingFunc(thr);
2764  // When we are in a "blocking call", we process signals asynchronously
2765  // (right when they arrive). In this context we do not expect to be
2766  // executing any user/runtime code. The known interceptor sequence when
2767  // this is not true is: pthread_join -> munmap(stack). It's fine
2768  // to ignore munmap in this case -- we handle stack shadow separately.
2769  thr->ignore_interceptors++;
2770}
2771
2772static USED void sycall_blocking_end() {
2773  DPrintf("sycall_blocking_end()\n");
2774  ThreadState *thr = cur_thread();
2775  thr->ignore_interceptors--;
2776  atomic_store(&thr->in_blocking_func, 0, memory_order_relaxed);
2777}
2778
2779static void syscall_pre_fork(uptr pc) { ForkBefore(cur_thread(), pc); }
2780
2781static void syscall_post_fork(uptr pc, int pid) {
2782  ThreadState *thr = cur_thread();
2783  if (pid == 0) {
2784    // child
2785    ForkChildAfter(thr, pc, true);
2786    FdOnFork(thr, pc);
2787  } else if (pid > 0) {
2788    // parent
2789    ForkParentAfter(thr, pc);
2790  } else {
2791    // error
2792    ForkParentAfter(thr, pc);
2793  }
2794}
2795#endif
2796
2797#define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
2798  syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
2799
2800#define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
2801  syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
2802
2803#define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
2804  do {                                       \
2805    (void)(p);                               \
2806    (void)(s);                               \
2807  } while (false)
2808
2809#define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
2810  do {                                        \
2811    (void)(p);                                \
2812    (void)(s);                                \
2813  } while (false)
2814
2815#define COMMON_SYSCALL_ACQUIRE(addr) \
2816    syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
2817
2818#define COMMON_SYSCALL_RELEASE(addr) \
2819    syscall_release(GET_CALLER_PC(), (uptr)(addr))
2820
2821#define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
2822
2823#define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
2824
2825#define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
2826
2827#define COMMON_SYSCALL_PRE_FORK() \
2828  syscall_pre_fork(GET_CALLER_PC())
2829
2830#define COMMON_SYSCALL_POST_FORK(res) \
2831  syscall_post_fork(GET_CALLER_PC(), res)
2832
2833#define COMMON_SYSCALL_BLOCKING_START() sycall_blocking_start()
2834#define COMMON_SYSCALL_BLOCKING_END() sycall_blocking_end()
2835
2836#include "sanitizer_common/sanitizer_common_syscalls.inc"
2837#include "sanitizer_common/sanitizer_syscalls_netbsd.inc"
2838
2839#ifdef NEED_TLS_GET_ADDR
2840
2841static void handle_tls_addr(void *arg, void *res) {
2842  ThreadState *thr = cur_thread();
2843  if (!thr)
2844    return;
2845  DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, thr->tls_addr,
2846                                        thr->tls_addr + thr->tls_size);
2847  if (!dtv)
2848    return;
2849  // New DTLS block has been allocated.
2850  MemoryResetRange(thr, 0, dtv->beg, dtv->size);
2851}
2852
2853#if !SANITIZER_S390
2854// Define own interceptor instead of sanitizer_common's for three reasons:
2855// 1. It must not process pending signals.
2856//    Signal handlers may contain MOVDQA instruction (see below).
2857// 2. It must be as simple as possible to not contain MOVDQA.
2858// 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
2859//    is empty for tsan (meant only for msan).
2860// Note: __tls_get_addr can be called with mis-aligned stack due to:
2861// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
2862// So the interceptor must work with mis-aligned stack, in particular, does not
2863// execute MOVDQA with stack addresses.
2864TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) {
2865  void *res = REAL(__tls_get_addr)(arg);
2866  handle_tls_addr(arg, res);
2867  return res;
2868}
2869#else // SANITIZER_S390
2870TSAN_INTERCEPTOR(uptr, __tls_get_addr_internal, void *arg) {
2871  uptr res = __tls_get_offset_wrapper(arg, REAL(__tls_get_offset));
2872  char *tp = static_cast<char *>(__builtin_thread_pointer());
2873  handle_tls_addr(arg, res + tp);
2874  return res;
2875}
2876#endif
2877#endif
2878
2879#if SANITIZER_NETBSD
2880TSAN_INTERCEPTOR(void, _lwp_exit) {
2881  SCOPED_TSAN_INTERCEPTOR(_lwp_exit);
2882  DestroyThreadState();
2883  REAL(_lwp_exit)();
2884}
2885#define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit)
2886#else
2887#define TSAN_MAYBE_INTERCEPT__LWP_EXIT
2888#endif
2889
2890#if SANITIZER_FREEBSD
2891TSAN_INTERCEPTOR(void, thr_exit, tid_t *state) {
2892  SCOPED_TSAN_INTERCEPTOR(thr_exit, state);
2893  DestroyThreadState();
2894  REAL(thr_exit(state));
2895}
2896#define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit)
2897#else
2898#define TSAN_MAYBE_INTERCEPT_THR_EXIT
2899#endif
2900
2901TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_init, void *c, void *a)
2902TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_destroy, void *c)
2903TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_signal, void *c)
2904TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_broadcast, void *c)
2905TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_wait, void *c, void *m)
2906TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_init, void *m, void *a)
2907TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_destroy, void *m)
2908TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_lock, void *m)
2909TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_trylock, void *m)
2910TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_unlock, void *m)
2911TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_init, void *l, void *a)
2912TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_destroy, void *l)
2913TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_rdlock, void *l)
2914TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_tryrdlock, void *l)
2915TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_wrlock, void *l)
2916TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_trywrlock, void *l)
2917TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_unlock, void *l)
2918TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, once, void *o, void (*i)())
2919TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, sigmask, int f, void *n, void *o)
2920
2921TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init, void *c, void *a)
2922TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal, void *c)
2923TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast, void *c)
2924TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait, void *c, void *m)
2925TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy, void *c)
2926TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init, void *m, void *a)
2927TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy, void *m)
2928TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_lock, void *m)
2929TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock, void *m)
2930TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_unlock, void *m)
2931TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init, void *m, void *a)
2932TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy, void *m)
2933TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock, void *m)
2934TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock, void *m)
2935TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock, void *m)
2936TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock, void *m)
2937TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock, void *m)
2938TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once, void *o, void (*f)())
2939TSAN_INTERCEPTOR_NETBSD_ALIAS_THR2(int, sigsetmask, sigmask, int a, void *b,
2940  void *c)
2941
2942namespace __tsan {
2943
2944static void finalize(void *arg) {
2945  ThreadState *thr = cur_thread();
2946  int status = Finalize(thr);
2947  // Make sure the output is not lost.
2948  FlushStreams();
2949  if (status)
2950    Die();
2951}
2952
2953#if !SANITIZER_APPLE && !SANITIZER_ANDROID
2954static void unreachable() {
2955  Report("FATAL: ThreadSanitizer: unreachable called\n");
2956  Die();
2957}
2958#endif
2959
2960// Define default implementation since interception of libdispatch  is optional.
2961SANITIZER_WEAK_ATTRIBUTE void InitializeLibdispatchInterceptors() {}
2962
2963void InitializeInterceptors() {
2964#if !SANITIZER_APPLE
2965  // We need to setup it early, because functions like dlsym() can call it.
2966  REAL(memset) = internal_memset;
2967  REAL(memcpy) = internal_memcpy;
2968#endif
2969
2970  __interception::DoesNotSupportStaticLinking();
2971
2972  new(interceptor_ctx()) InterceptorContext();
2973
2974  // Interpose __tls_get_addr before the common interposers. This is needed
2975  // because dlsym() may call malloc on failure which could result in other
2976  // interposed functions being called that could eventually make use of TLS.
2977#ifdef NEED_TLS_GET_ADDR
2978#  if !SANITIZER_S390
2979  TSAN_INTERCEPT(__tls_get_addr);
2980#  else
2981  TSAN_INTERCEPT(__tls_get_addr_internal);
2982  TSAN_INTERCEPT(__tls_get_offset);
2983#  endif
2984#endif
2985  InitializeCommonInterceptors();
2986  InitializeSignalInterceptors();
2987  InitializeLibdispatchInterceptors();
2988
2989#if !SANITIZER_APPLE
2990  InitializeSetjmpInterceptors();
2991#endif
2992
2993  TSAN_INTERCEPT(longjmp_symname);
2994  TSAN_INTERCEPT(siglongjmp_symname);
2995#if SANITIZER_NETBSD
2996  TSAN_INTERCEPT(_longjmp);
2997#endif
2998
2999  TSAN_INTERCEPT(malloc);
3000  TSAN_INTERCEPT(__libc_memalign);
3001  TSAN_INTERCEPT(calloc);
3002  TSAN_INTERCEPT(realloc);
3003  TSAN_INTERCEPT(reallocarray);
3004  TSAN_INTERCEPT(free);
3005  TSAN_MAYBE_INTERCEPT_FREE_SIZED;
3006  TSAN_MAYBE_INTERCEPT_FREE_ALIGNED_SIZED;
3007  TSAN_INTERCEPT(cfree);
3008  TSAN_INTERCEPT(munmap);
3009  TSAN_MAYBE_INTERCEPT_MEMALIGN;
3010  TSAN_INTERCEPT(valloc);
3011  TSAN_MAYBE_INTERCEPT_PVALLOC;
3012  TSAN_INTERCEPT(posix_memalign);
3013
3014  TSAN_INTERCEPT(strcpy);
3015  TSAN_INTERCEPT(strncpy);
3016  TSAN_INTERCEPT(strdup);
3017
3018  TSAN_INTERCEPT(pthread_create);
3019  TSAN_INTERCEPT(pthread_join);
3020  TSAN_INTERCEPT(pthread_detach);
3021  TSAN_INTERCEPT(pthread_exit);
3022  #if SANITIZER_LINUX
3023  TSAN_INTERCEPT(pthread_tryjoin_np);
3024  TSAN_INTERCEPT(pthread_timedjoin_np);
3025  #endif
3026
3027  TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
3028  TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
3029  TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
3030  TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
3031  TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
3032  TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);
3033
3034  TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT;
3035
3036  TSAN_INTERCEPT(pthread_mutex_init);
3037  TSAN_INTERCEPT(pthread_mutex_destroy);
3038  TSAN_INTERCEPT(pthread_mutex_lock);
3039  TSAN_INTERCEPT(pthread_mutex_trylock);
3040  TSAN_INTERCEPT(pthread_mutex_timedlock);
3041  TSAN_INTERCEPT(pthread_mutex_unlock);
3042#if SANITIZER_LINUX
3043  TSAN_INTERCEPT(pthread_mutex_clocklock);
3044#endif
3045#if SANITIZER_GLIBC
3046#  if !__GLIBC_PREREQ(2, 34)
3047  TSAN_INTERCEPT(__pthread_mutex_lock);
3048  TSAN_INTERCEPT(__pthread_mutex_unlock);
3049#  endif
3050#endif
3051
3052  TSAN_INTERCEPT(pthread_spin_init);
3053  TSAN_INTERCEPT(pthread_spin_destroy);
3054  TSAN_INTERCEPT(pthread_spin_lock);
3055  TSAN_INTERCEPT(pthread_spin_trylock);
3056  TSAN_INTERCEPT(pthread_spin_unlock);
3057
3058  TSAN_INTERCEPT(pthread_rwlock_init);
3059  TSAN_INTERCEPT(pthread_rwlock_destroy);
3060  TSAN_INTERCEPT(pthread_rwlock_rdlock);
3061  TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
3062  TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
3063  TSAN_INTERCEPT(pthread_rwlock_wrlock);
3064  TSAN_INTERCEPT(pthread_rwlock_trywrlock);
3065  TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
3066  TSAN_INTERCEPT(pthread_rwlock_unlock);
3067
3068  TSAN_INTERCEPT(pthread_barrier_init);
3069  TSAN_INTERCEPT(pthread_barrier_destroy);
3070  TSAN_INTERCEPT(pthread_barrier_wait);
3071
3072  TSAN_INTERCEPT(pthread_once);
3073
3074  TSAN_MAYBE_INTERCEPT___FXSTAT;
3075  TSAN_MAYBE_INTERCEPT_FSTAT;
3076  TSAN_MAYBE_INTERCEPT_FSTAT64;
3077  TSAN_INTERCEPT(open);
3078  TSAN_MAYBE_INTERCEPT_OPEN64;
3079  TSAN_INTERCEPT(creat);
3080  TSAN_MAYBE_INTERCEPT_CREAT64;
3081  TSAN_INTERCEPT(dup);
3082  TSAN_INTERCEPT(dup2);
3083  TSAN_INTERCEPT(dup3);
3084  TSAN_MAYBE_INTERCEPT_EVENTFD;
3085  TSAN_MAYBE_INTERCEPT_SIGNALFD;
3086  TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
3087  TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
3088  TSAN_INTERCEPT(socket);
3089  TSAN_INTERCEPT(socketpair);
3090  TSAN_INTERCEPT(connect);
3091  TSAN_INTERCEPT(bind);
3092  TSAN_INTERCEPT(listen);
3093  TSAN_MAYBE_INTERCEPT_EPOLL;
3094  TSAN_INTERCEPT(close);
3095  TSAN_MAYBE_INTERCEPT___CLOSE;
3096  TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
3097  TSAN_INTERCEPT(pipe);
3098  TSAN_INTERCEPT(pipe2);
3099
3100  TSAN_INTERCEPT(unlink);
3101  TSAN_INTERCEPT(tmpfile);
3102  TSAN_MAYBE_INTERCEPT_TMPFILE64;
3103  TSAN_INTERCEPT(abort);
3104  TSAN_INTERCEPT(rmdir);
3105  TSAN_INTERCEPT(closedir);
3106
3107  TSAN_INTERCEPT(sigsuspend);
3108  TSAN_INTERCEPT(sigblock);
3109  TSAN_INTERCEPT(sigsetmask);
3110  TSAN_INTERCEPT(pthread_sigmask);
3111  TSAN_INTERCEPT(raise);
3112  TSAN_INTERCEPT(kill);
3113  TSAN_INTERCEPT(pthread_kill);
3114  TSAN_INTERCEPT(sleep);
3115  TSAN_INTERCEPT(usleep);
3116  TSAN_INTERCEPT(nanosleep);
3117  TSAN_INTERCEPT(pause);
3118  TSAN_INTERCEPT(gettimeofday);
3119  TSAN_INTERCEPT(getaddrinfo);
3120
3121  TSAN_INTERCEPT(fork);
3122  TSAN_INTERCEPT(vfork);
3123#if SANITIZER_LINUX
3124  TSAN_INTERCEPT(clone);
3125#endif
3126#if !SANITIZER_ANDROID
3127  TSAN_INTERCEPT(dl_iterate_phdr);
3128#endif
3129
3130  // Symbolization indirectly calls dl_iterate_phdr
3131  ready_to_symbolize = true;
3132
3133  TSAN_MAYBE_INTERCEPT_ON_EXIT;
3134  TSAN_INTERCEPT(__cxa_atexit);
3135  TSAN_INTERCEPT(_exit);
3136
3137  TSAN_MAYBE_INTERCEPT__LWP_EXIT;
3138  TSAN_MAYBE_INTERCEPT_THR_EXIT;
3139
3140#if !SANITIZER_APPLE && !SANITIZER_ANDROID
3141  // Need to setup it, because interceptors check that the function is resolved.
3142  // But atexit is emitted directly into the module, so can't be resolved.
3143  REAL(atexit) = (int(*)(void(*)()))unreachable;
3144#endif
3145
3146  if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
3147    Printf("ThreadSanitizer: failed to setup atexit callback\n");
3148    Die();
3149  }
3150  if (pthread_atfork(atfork_prepare, atfork_parent, atfork_child)) {
3151    Printf("ThreadSanitizer: failed to setup atfork callbacks\n");
3152    Die();
3153  }
3154
3155#if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
3156  if (pthread_key_create(&interceptor_ctx()->finalize_key, &thread_finalize)) {
3157    Printf("ThreadSanitizer: failed to create thread key\n");
3158    Die();
3159  }
3160#endif
3161
3162  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_init);
3163  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_destroy);
3164  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_signal);
3165  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_broadcast);
3166  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_wait);
3167  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_init);
3168  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_destroy);
3169  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_lock);
3170  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_trylock);
3171  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_unlock);
3172  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_init);
3173  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_destroy);
3174  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_rdlock);
3175  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_tryrdlock);
3176  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_wrlock);
3177  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_trywrlock);
3178  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_unlock);
3179  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(once);
3180  TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(sigmask);
3181
3182  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_init);
3183  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_signal);
3184  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_broadcast);
3185  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_wait);
3186  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_destroy);
3187  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_init);
3188  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_destroy);
3189  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_lock);
3190  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_trylock);
3191  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_unlock);
3192  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_init);
3193  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_destroy);
3194  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_rdlock);
3195  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_tryrdlock);
3196  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_wrlock);
3197  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_trywrlock);
3198  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_unlock);
3199  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(once);
3200  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(sigsetmask);
3201
3202  FdInit();
3203}
3204
3205}  // namespace __tsan
3206
3207// Invisible barrier for tests.
3208// There were several unsuccessful iterations for this functionality:
3209// 1. Initially it was implemented in user code using
3210//    REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
3211//    MacOS. Futexes are linux-specific for this matter.
3212// 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
3213//    "as-if synchronized via sleep" messages in reports which failed some
3214//    output tests.
3215// 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
3216//    visible events, which lead to "failed to restore stack trace" failures.
3217// Note that no_sanitize_thread attribute does not turn off atomic interception
3218// so attaching it to the function defined in user code does not help.
3219// That's why we now have what we have.
3220constexpr u32 kBarrierThreadBits = 10;
3221constexpr u32 kBarrierThreads = 1 << kBarrierThreadBits;
3222
3223extern "C" {
3224
3225SANITIZER_INTERFACE_ATTRIBUTE void __tsan_testonly_barrier_init(
3226    atomic_uint32_t *barrier, u32 num_threads) {
3227  if (num_threads >= kBarrierThreads) {
3228    Printf("barrier_init: count is too large (%d)\n", num_threads);
3229    Die();
3230  }
3231  // kBarrierThreadBits lsb is thread count,
3232  // the remaining are count of entered threads.
3233  atomic_store(barrier, num_threads, memory_order_relaxed);
3234}
3235
3236static u32 barrier_epoch(u32 value) {
3237  return (value >> kBarrierThreadBits) / (value & (kBarrierThreads - 1));
3238}
3239
3240SANITIZER_INTERFACE_ATTRIBUTE void __tsan_testonly_barrier_wait(
3241    atomic_uint32_t *barrier) {
3242  u32 old = atomic_fetch_add(barrier, kBarrierThreads, memory_order_relaxed);
3243  u32 old_epoch = barrier_epoch(old);
3244  if (barrier_epoch(old + kBarrierThreads) != old_epoch) {
3245    FutexWake(barrier, (1 << 30));
3246    return;
3247  }
3248  for (;;) {
3249    u32 cur = atomic_load(barrier, memory_order_relaxed);
3250    if (barrier_epoch(cur) != old_epoch)
3251      return;
3252    FutexWait(barrier, cur);
3253  }
3254}
3255
3256}  // extern "C"