master
  1//===-- tsan_interceptors_mac.cpp -----------------------------------------===//
  2//
  3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4// See https://llvm.org/LICENSE.txt for license information.
  5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6//
  7//===----------------------------------------------------------------------===//
  8//
  9// This file is a part of ThreadSanitizer (TSan), a race detector.
 10//
 11// Mac-specific interceptors.
 12//===----------------------------------------------------------------------===//
 13
 14#include "sanitizer_common/sanitizer_platform.h"
 15#if SANITIZER_APPLE
 16
 17#  include <errno.h>
 18#  include <libkern/OSAtomic.h>
 19#  include <objc/objc-sync.h>
 20#  include <os/lock.h>
 21#  include <sys/ucontext.h>
 22
 23#  include "interception/interception.h"
 24#  include "sanitizer_common/sanitizer_addrhashmap.h"
 25#  include "tsan_interceptors.h"
 26#  include "tsan_interface.h"
 27#  include "tsan_interface_ann.h"
 28
 29#  if defined(__has_include) && __has_include(<xpc/xpc.h>)
 30#    include <xpc/xpc.h>
 31#  endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
 32
 33typedef long long_t;
 34
 35extern "C" {
 36int getcontext(ucontext_t *ucp) __attribute__((returns_twice));
 37int setcontext(const ucontext_t *ucp);
 38}
 39
 40namespace __tsan {
 41
 42// The non-barrier versions of OSAtomic* functions are semantically mo_relaxed,
 43// but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are
 44// actually aliases of each other, and we cannot have different interceptors for
 45// them, because they're actually the same function.  Thus, we have to stay
 46// conservative and treat the non-barrier versions as mo_acq_rel.
 47static constexpr morder kMacOrderBarrier = mo_acq_rel;
 48static constexpr morder kMacOrderNonBarrier = mo_acq_rel;
 49static constexpr morder kMacFailureOrder = mo_relaxed;
 50
 51#  define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
 52    TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                 \
 53      SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                 \
 54      return tsan_atomic_f((volatile tsan_t *)ptr, x, mo);                \
 55    }
 56
 57#  define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, \
 58                                      mo)                                    \
 59    TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                    \
 60      SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                    \
 61      return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x;               \
 62    }
 63
 64#  define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
 65                                      mo)                                    \
 66    TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                         \
 67      SCOPED_TSAN_INTERCEPTOR(f, ptr);                                       \
 68      return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1;               \
 69    }
 70
 71#  define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
 72                                       mo)                                    \
 73    TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                          \
 74      SCOPED_TSAN_INTERCEPTOR(f, ptr);                                        \
 75      return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1;                \
 76    }
 77
 78#  define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m)              \
 79    m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,         \
 80      kMacOrderNonBarrier)                                                   \
 81        m(int32_t, int32_t, a32, f##32##Barrier,                             \
 82          __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)                 \
 83            m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f, \
 84              kMacOrderNonBarrier)                                           \
 85                m(int64_t, int64_t, a64, f##64##Barrier,                     \
 86                  __tsan_atomic64_##tsan_atomic_f, kMacOrderBarrier)
 87
 88#  define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig)     \
 89    m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,    \
 90      kMacOrderNonBarrier)                                               \
 91        m(int32_t, uint32_t, a32, f##32##Barrier,                        \
 92          __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)             \
 93            m_orig(int32_t, uint32_t, a32, f##32##Orig,                  \
 94                   __tsan_atomic32_##tsan_atomic_f, kMacOrderNonBarrier) \
 95                m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier,       \
 96                       __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)
 97
 98#  pragma clang diagnostic push  // OSAtomic* deprecation
 99#  pragma clang diagnostic ignored "-Wdeprecated-declarations"
100OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd, fetch_add,
101                                 OSATOMIC_INTERCEPTOR_PLUS_X)
102OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement, fetch_add,
103                                 OSATOMIC_INTERCEPTOR_PLUS_1)
104OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement, fetch_sub,
105                                 OSATOMIC_INTERCEPTOR_MINUS_1)
106OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr, fetch_or, OSATOMIC_INTERCEPTOR_PLUS_X,
107                              OSATOMIC_INTERCEPTOR)
108OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd, fetch_and,
109                              OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
110OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor, fetch_xor,
111                              OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
112#  pragma clang diagnostic pop  // OSAtomic* deprecation
113
114#  define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t)           \
115    TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) { \
116      SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr);               \
117      return tsan_atomic_f##_compare_exchange_strong(                      \
118          (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value, \
119          kMacOrderNonBarrier, kMacFailureOrder);                          \
120    }                                                                      \
121                                                                           \
122    TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value,           \
123                     t volatile *ptr) {                                    \
124      SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr);      \
125      return tsan_atomic_f##_compare_exchange_strong(                      \
126          (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value, \
127          kMacOrderBarrier, kMacFailureOrder);                             \
128    }
129
130#  pragma clang diagnostic push  // OSAtomicCompareAndSwap* deprecation
131#  pragma clang diagnostic ignored "-Wdeprecated-declarations"
132OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt, __tsan_atomic32, a32, int)
133OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong, __tsan_atomic64, a64,
134                          long_t)
135OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr, __tsan_atomic64, a64,
136                          void *)
137OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32, __tsan_atomic32, a32,
138                          int32_t)
139OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64, __tsan_atomic64, a64,
140                          int64_t)
141#  pragma clang diagnostic pop  // OSAtomicCompareAndSwap* deprecation
142
143#  define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo)             \
144    TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) {    \
145      SCOPED_TSAN_INTERCEPTOR(f, n, ptr);                          \
146      volatile char *byte_ptr = ((volatile char *)ptr) + (n >> 3); \
147      char bit = 0x80u >> (n & 7);                                 \
148      char mask = clear ? ~bit : bit;                              \
149      char orig_byte = op((volatile a8 *)byte_ptr, mask, mo);      \
150      return orig_byte & bit;                                      \
151    }
152
153#  define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear)               \
154    OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \
155    OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier)
156
157#  pragma clang diagnostic push  // OSAtomicTestAnd* deprecation
158#  pragma clang diagnostic ignored "-Wdeprecated-declarations"
159OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet, __tsan_atomic8_fetch_or, false)
160OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear, __tsan_atomic8_fetch_and,
161                            true)
162#  pragma clang diagnostic pop  // OSAtomicTestAnd* deprecation
163
164TSAN_INTERCEPTOR(void, OSAtomicEnqueue, OSQueueHead *list, void *item,
165                 size_t offset) {
166  SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue, list, item, offset);
167  __tsan_release(item);
168  REAL(OSAtomicEnqueue)(list, item, offset);
169}
170
171TSAN_INTERCEPTOR(void *, OSAtomicDequeue, OSQueueHead *list, size_t offset) {
172  SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue, list, offset);
173  void *item = REAL(OSAtomicDequeue)(list, offset);
174  if (item)
175    __tsan_acquire(item);
176  return item;
177}
178
179// OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X.
180#  if !SANITIZER_IOS
181
182TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue, OSFifoQueueHead *list, void *item,
183                 size_t offset) {
184  SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue, list, item, offset);
185  __tsan_release(item);
186  REAL(OSAtomicFifoEnqueue)(list, item, offset);
187}
188
189TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue, OSFifoQueueHead *list,
190                 size_t offset) {
191  SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue, list, offset);
192  void *item = REAL(OSAtomicFifoDequeue)(list, offset);
193  if (item)
194    __tsan_acquire(item);
195  return item;
196}
197
198#  endif
199
200// If `OSSPINLOCK_USE_INLINED=1` is set, then SDK headers don't declare these
201// as functions, but macros that call non-deprecated APIs.  Undefine these
202// macros so they don't interfere with the interceptor machinery.
203#  undef OSSpinLockLock
204#  undef OSSpinLockTry
205#  undef OSSpinLockUnlock
206
207#  pragma clang diagnostic push  // OSSpinLock* deprecation
208#  pragma clang diagnostic ignored "-Wdeprecated-declarations"
209
210TSAN_INTERCEPTOR(void, OSSpinLockLock, volatile OSSpinLock *lock) {
211  CHECK(!cur_thread()->is_dead);
212  if (!cur_thread()->is_inited) {
213    return REAL(OSSpinLockLock)(lock);
214  }
215  SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock, lock);
216  REAL(OSSpinLockLock)(lock);
217  Acquire(thr, pc, (uptr)lock);
218}
219
220TSAN_INTERCEPTOR(bool, OSSpinLockTry, volatile OSSpinLock *lock) {
221  CHECK(!cur_thread()->is_dead);
222  if (!cur_thread()->is_inited) {
223    return REAL(OSSpinLockTry)(lock);
224  }
225  SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry, lock);
226  bool result = REAL(OSSpinLockTry)(lock);
227  if (result)
228    Acquire(thr, pc, (uptr)lock);
229  return result;
230}
231
232TSAN_INTERCEPTOR(void, OSSpinLockUnlock, volatile OSSpinLock *lock) {
233  CHECK(!cur_thread()->is_dead);
234  if (!cur_thread()->is_inited) {
235    return REAL(OSSpinLockUnlock)(lock);
236  }
237  SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock, lock);
238  Release(thr, pc, (uptr)lock);
239  REAL(OSSpinLockUnlock)(lock);
240}
241#  pragma clang diagnostic pop  // OSSpinLock* deprecation
242
243TSAN_INTERCEPTOR(void, os_lock_lock, void *lock) {
244  CHECK(!cur_thread()->is_dead);
245  if (!cur_thread()->is_inited) {
246    return REAL(os_lock_lock)(lock);
247  }
248  SCOPED_TSAN_INTERCEPTOR(os_lock_lock, lock);
249  REAL(os_lock_lock)(lock);
250  Acquire(thr, pc, (uptr)lock);
251}
252
253TSAN_INTERCEPTOR(bool, os_lock_trylock, void *lock) {
254  CHECK(!cur_thread()->is_dead);
255  if (!cur_thread()->is_inited) {
256    return REAL(os_lock_trylock)(lock);
257  }
258  SCOPED_TSAN_INTERCEPTOR(os_lock_trylock, lock);
259  bool result = REAL(os_lock_trylock)(lock);
260  if (result)
261    Acquire(thr, pc, (uptr)lock);
262  return result;
263}
264
265TSAN_INTERCEPTOR(void, os_lock_unlock, void *lock) {
266  CHECK(!cur_thread()->is_dead);
267  if (!cur_thread()->is_inited) {
268    return REAL(os_lock_unlock)(lock);
269  }
270  SCOPED_TSAN_INTERCEPTOR(os_lock_unlock, lock);
271  Release(thr, pc, (uptr)lock);
272  REAL(os_lock_unlock)(lock);
273}
274
275TSAN_INTERCEPTOR(void, os_unfair_lock_lock, os_unfair_lock_t lock) {
276  if (!cur_thread()->is_inited || cur_thread()->is_dead) {
277    return REAL(os_unfair_lock_lock)(lock);
278  }
279  SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock, lock);
280  REAL(os_unfair_lock_lock)(lock);
281  Acquire(thr, pc, (uptr)lock);
282}
283
284TSAN_INTERCEPTOR(void, os_unfair_lock_lock_with_options, os_unfair_lock_t lock,
285                 u32 options) {
286  if (!cur_thread()->is_inited || cur_thread()->is_dead) {
287    return REAL(os_unfair_lock_lock_with_options)(lock, options);
288  }
289  SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock_with_options, lock, options);
290  REAL(os_unfair_lock_lock_with_options)(lock, options);
291  Acquire(thr, pc, (uptr)lock);
292}
293
294TSAN_INTERCEPTOR(bool, os_unfair_lock_trylock, os_unfair_lock_t lock) {
295  if (!cur_thread()->is_inited || cur_thread()->is_dead) {
296    return REAL(os_unfair_lock_trylock)(lock);
297  }
298  SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_trylock, lock);
299  bool result = REAL(os_unfair_lock_trylock)(lock);
300  if (result)
301    Acquire(thr, pc, (uptr)lock);
302  return result;
303}
304
305TSAN_INTERCEPTOR(void, os_unfair_lock_unlock, os_unfair_lock_t lock) {
306  if (!cur_thread()->is_inited || cur_thread()->is_dead) {
307    return REAL(os_unfair_lock_unlock)(lock);
308  }
309  SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_unlock, lock);
310  Release(thr, pc, (uptr)lock);
311  REAL(os_unfair_lock_unlock)(lock);
312}
313
314#  if defined(__has_include) && __has_include(<xpc/xpc.h>)
315
316TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler,
317                 xpc_connection_t connection, xpc_handler_t handler) {
318  SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler, connection,
319                          handler);
320  Release(thr, pc, (uptr)connection);
321  xpc_handler_t new_handler = ^(xpc_object_t object) {
322    {
323      SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler);
324      Acquire(thr, pc, (uptr)connection);
325    }
326    handler(object);
327  };
328  REAL(xpc_connection_set_event_handler)(connection, new_handler);
329}
330
331TSAN_INTERCEPTOR(void, xpc_connection_send_barrier, xpc_connection_t connection,
332                 dispatch_block_t barrier) {
333  SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier, connection, barrier);
334  Release(thr, pc, (uptr)connection);
335  dispatch_block_t new_barrier = ^() {
336    {
337      SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier);
338      Acquire(thr, pc, (uptr)connection);
339    }
340    barrier();
341  };
342  REAL(xpc_connection_send_barrier)(connection, new_barrier);
343}
344
345TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply,
346                 xpc_connection_t connection, xpc_object_t message,
347                 dispatch_queue_t replyq, xpc_handler_t handler) {
348  SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply, connection,
349                          message, replyq, handler);
350  Release(thr, pc, (uptr)connection);
351  xpc_handler_t new_handler = ^(xpc_object_t object) {
352    {
353      SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply);
354      Acquire(thr, pc, (uptr)connection);
355    }
356    handler(object);
357  };
358  REAL(xpc_connection_send_message_with_reply)
359  (connection, message, replyq, new_handler);
360}
361
362TSAN_INTERCEPTOR(void, xpc_connection_cancel, xpc_connection_t connection) {
363  SCOPED_TSAN_INTERCEPTOR(xpc_connection_cancel, connection);
364  Release(thr, pc, (uptr)connection);
365  REAL(xpc_connection_cancel)(connection);
366}
367
368#  endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
369
370// Determines whether the Obj-C object pointer is a tagged pointer. Tagged
371// pointers encode the object data directly in their pointer bits and do not
372// have an associated memory allocation. The Obj-C runtime uses tagged pointers
373// to transparently optimize small objects.
374static bool IsTaggedObjCPointer(id obj) {
375  const uptr kPossibleTaggedBits = 0x8000000000000001ull;
376  return ((uptr)obj & kPossibleTaggedBits) != 0;
377}
378
379// Returns an address which can be used to inform TSan about synchronization
380// points (MutexLock/Unlock). The TSan infrastructure expects this to be a valid
381// address in the process space. We do a small allocation here to obtain a
382// stable address (the array backing the hash map can change). The memory is
383// never free'd (leaked) and allocation and locking are slow, but this code only
384// runs for @synchronized with tagged pointers, which is very rare.
385static uptr GetOrCreateSyncAddress(uptr addr, ThreadState *thr, uptr pc) {
386  typedef AddrHashMap<uptr, 5> Map;
387  static Map Addresses;
388  Map::Handle h(&Addresses, addr);
389  if (h.created()) {
390    ThreadIgnoreBegin(thr, pc);
391    *h = (uptr)user_alloc(thr, pc, /*size=*/1);
392    ThreadIgnoreEnd(thr);
393  }
394  return *h;
395}
396
397// Returns an address on which we can synchronize given an Obj-C object pointer.
398// For normal object pointers, this is just the address of the object in memory.
399// Tagged pointers are not backed by an actual memory allocation, so we need to
400// synthesize a valid address.
401static uptr SyncAddressForObjCObject(id obj, ThreadState *thr, uptr pc) {
402  if (IsTaggedObjCPointer(obj))
403    return GetOrCreateSyncAddress((uptr)obj, thr, pc);
404  return (uptr)obj;
405}
406
407TSAN_INTERCEPTOR(int, objc_sync_enter, id obj) {
408  SCOPED_TSAN_INTERCEPTOR(objc_sync_enter, obj);
409  if (!obj)
410    return REAL(objc_sync_enter)(obj);
411  uptr addr = SyncAddressForObjCObject(obj, thr, pc);
412  MutexPreLock(thr, pc, addr, MutexFlagWriteReentrant);
413  int result = REAL(objc_sync_enter)(obj);
414  CHECK_EQ(result, OBJC_SYNC_SUCCESS);
415  MutexPostLock(thr, pc, addr, MutexFlagWriteReentrant);
416  return result;
417}
418
419TSAN_INTERCEPTOR(int, objc_sync_exit, id obj) {
420  SCOPED_TSAN_INTERCEPTOR(objc_sync_exit, obj);
421  if (!obj)
422    return REAL(objc_sync_exit)(obj);
423  uptr addr = SyncAddressForObjCObject(obj, thr, pc);
424  MutexUnlock(thr, pc, addr);
425  int result = REAL(objc_sync_exit)(obj);
426  if (result != OBJC_SYNC_SUCCESS)
427    MutexInvalidAccess(thr, pc, addr);
428  return result;
429}
430
431TSAN_INTERCEPTOR(int, swapcontext, ucontext_t *oucp, const ucontext_t *ucp) {
432  {
433    SCOPED_INTERCEPTOR_RAW(swapcontext, oucp, ucp);
434  }
435  // Because of swapcontext() semantics we have no option but to copy its
436  // implementation here
437  if (!oucp || !ucp) {
438    errno = EINVAL;
439    return -1;
440  }
441  ThreadState *thr = cur_thread();
442  const int UCF_SWAPPED = 0x80000000;
443  oucp->uc_onstack &= ~UCF_SWAPPED;
444  thr->ignore_interceptors++;
445  int ret = getcontext(oucp);
446  if (!(oucp->uc_onstack & UCF_SWAPPED)) {
447    thr->ignore_interceptors--;
448    if (!ret) {
449      oucp->uc_onstack |= UCF_SWAPPED;
450      ret = setcontext(ucp);
451    }
452  }
453  return ret;
454}
455
456// On macOS, libc++ is always linked dynamically, so intercepting works the
457// usual way.
458#  define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
459
460namespace {
461struct fake_shared_weak_count {
462  volatile a64 shared_owners;
463  volatile a64 shared_weak_owners;
464  virtual void _unused_0x0() = 0;
465  virtual void _unused_0x8() = 0;
466  virtual void on_zero_shared() = 0;
467  virtual void _unused_0x18() = 0;
468  virtual void on_zero_shared_weak() = 0;
469  virtual ~fake_shared_weak_count() = 0;  // suppress -Wnon-virtual-dtor
470};
471}  // namespace
472
473// The following code adds libc++ interceptors for:
474//     void __shared_weak_count::__release_shared() _NOEXCEPT;
475//     bool __shared_count::__release_shared() _NOEXCEPT;
476// Shared and weak pointers in C++ maintain reference counts via atomics in
477// libc++.dylib, which are TSan-invisible, and this leads to false positives in
478// destructor code. These interceptors re-implements the whole functions so that
479// the mo_acq_rel semantics of the atomic decrement are visible.
480//
481// Unfortunately, the interceptors cannot simply Acquire/Release some sync
482// object and call the original function, because it would have a race between
483// the sync and the destruction of the object.  Calling both under a lock will
484// not work because the destructor can invoke this interceptor again (and even
485// in a different thread, so recursive locks don't help).
486
487STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv,
488                   fake_shared_weak_count *o) {
489  if (!flags()->shared_ptr_interceptor)
490    return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv)(o);
491
492  SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv,
493                          o);
494  if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
495    Acquire(thr, pc, (uptr)&o->shared_owners);
496    o->on_zero_shared();
497    if (__tsan_atomic64_fetch_add(&o->shared_weak_owners, -1, mo_release) ==
498        0) {
499      Acquire(thr, pc, (uptr)&o->shared_weak_owners);
500      o->on_zero_shared_weak();
501    }
502  }
503}
504
505STDCXX_INTERCEPTOR(bool, _ZNSt3__114__shared_count16__release_sharedEv,
506                   fake_shared_weak_count *o) {
507  if (!flags()->shared_ptr_interceptor)
508    return REAL(_ZNSt3__114__shared_count16__release_sharedEv)(o);
509
510  SCOPED_TSAN_INTERCEPTOR(_ZNSt3__114__shared_count16__release_sharedEv, o);
511  if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
512    Acquire(thr, pc, (uptr)&o->shared_owners);
513    o->on_zero_shared();
514    return true;
515  }
516  return false;
517}
518
519namespace {
520struct call_once_callback_args {
521  void (*orig_func)(void *arg);
522  void *orig_arg;
523  void *flag;
524};
525
526void call_once_callback_wrapper(void *arg) {
527  call_once_callback_args *new_args = (call_once_callback_args *)arg;
528  new_args->orig_func(new_args->orig_arg);
529  __tsan_release(new_args->flag);
530}
531}  // namespace
532
533// This adds a libc++ interceptor for:
534//     void __call_once(volatile unsigned long&, void*, void(*)(void*));
535// C++11 call_once is implemented via an internal function __call_once which is
536// inside libc++.dylib, and the atomic release store inside it is thus
537// TSan-invisible. To avoid false positives, this interceptor wraps the callback
538// function and performs an explicit Release after the user code has run.
539STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E, void *flag,
540                   void *arg, void (*func)(void *arg)) {
541  call_once_callback_args new_args = {func, arg, flag};
542  REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E)(flag, &new_args,
543                                            call_once_callback_wrapper);
544}
545
546}  // namespace __tsan
547
548#endif  // SANITIZER_APPLE