master
  1//===-- tsan_fd.cpp -------------------------------------------------------===//
  2//
  3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4// See https://llvm.org/LICENSE.txt for license information.
  5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6//
  7//===----------------------------------------------------------------------===//
  8//
  9// This file is a part of ThreadSanitizer (TSan), a race detector.
 10//
 11//===----------------------------------------------------------------------===//
 12
 13#include "tsan_fd.h"
 14
 15#include <sanitizer_common/sanitizer_atomic.h>
 16
 17#include "tsan_interceptors.h"
 18#include "tsan_rtl.h"
 19
 20namespace __tsan {
 21
 22const int kTableSizeL1 = 1024;
 23const int kTableSizeL2 = 1024;
 24const int kTableSize = kTableSizeL1 * kTableSizeL2;
 25
 26struct FdSync {
 27  atomic_uint64_t rc;
 28};
 29
 30struct FdDesc {
 31  FdSync *sync;
 32  // This is used to establish write -> epoll_wait synchronization
 33  // where epoll_wait receives notification about the write.
 34  atomic_uintptr_t aux_sync;  // FdSync*
 35  Tid creation_tid;
 36  StackID creation_stack;
 37  bool closed;
 38};
 39
 40struct FdContext {
 41  atomic_uintptr_t tab[kTableSizeL1];
 42  // Addresses used for synchronization.
 43  FdSync globsync;
 44  FdSync filesync;
 45  FdSync socksync;
 46  u64 connectsync;
 47};
 48
 49static FdContext fdctx;
 50
 51static bool bogusfd(int fd) {
 52  // Apparently a bogus fd value.
 53  return fd < 0 || fd >= kTableSize;
 54}
 55
 56static FdSync *allocsync(ThreadState *thr, uptr pc) {
 57  FdSync *s = (FdSync*)user_alloc_internal(thr, pc, sizeof(FdSync),
 58      kDefaultAlignment, false);
 59  atomic_store(&s->rc, 1, memory_order_relaxed);
 60  return s;
 61}
 62
 63static FdSync *ref(FdSync *s) {
 64  if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
 65    atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
 66  return s;
 67}
 68
 69static void unref(ThreadState *thr, uptr pc, FdSync *s) {
 70  if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
 71    if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
 72      CHECK_NE(s, &fdctx.globsync);
 73      CHECK_NE(s, &fdctx.filesync);
 74      CHECK_NE(s, &fdctx.socksync);
 75      user_free(thr, pc, s, false);
 76    }
 77  }
 78}
 79
 80static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
 81  CHECK_GE(fd, 0);
 82  CHECK_LT(fd, kTableSize);
 83  atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
 84  uptr l1 = atomic_load(pl1, memory_order_consume);
 85  if (l1 == 0) {
 86    uptr size = kTableSizeL2 * sizeof(FdDesc);
 87    // We need this to reside in user memory to properly catch races on it.
 88    void *p = user_alloc_internal(thr, pc, size, kDefaultAlignment, false);
 89    internal_memset(p, 0, size);
 90    MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
 91    if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
 92      l1 = (uptr)p;
 93    else
 94      user_free(thr, pc, p, false);
 95  }
 96  FdDesc *fds = reinterpret_cast<FdDesc *>(l1);
 97  return &fds[fd % kTableSizeL2];
 98}
 99
100// pd must be already ref'ed.
101static void init(ThreadState *thr, uptr pc, int fd, FdSync *s,
102    bool write = true) {
103  FdDesc *d = fddesc(thr, pc, fd);
104  // As a matter of fact, we don't intercept all close calls.
105  // See e.g. libc __res_iclose().
106  if (d->sync) {
107    unref(thr, pc, d->sync);
108    d->sync = 0;
109  }
110  unref(thr, pc,
111        reinterpret_cast<FdSync *>(
112            atomic_load(&d->aux_sync, memory_order_relaxed)));
113  atomic_store(&d->aux_sync, 0, memory_order_relaxed);
114  if (flags()->io_sync == 0) {
115    unref(thr, pc, s);
116  } else if (flags()->io_sync == 1) {
117    d->sync = s;
118  } else if (flags()->io_sync == 2) {
119    unref(thr, pc, s);
120    d->sync = &fdctx.globsync;
121  }
122  d->creation_tid = thr->tid;
123  d->creation_stack = CurrentStackId(thr, pc);
124  d->closed = false;
125  // This prevents false positives on fd_close_norace3.cpp test.
126  // The mechanics of the false positive are not completely clear,
127  // but it happens only if global reset is enabled (flush_memory_ms=1)
128  // and may be related to lost writes during asynchronous MADV_DONTNEED.
129  SlotLocker locker(thr);
130  if (write) {
131    // To catch races between fd usage and open.
132    MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
133  } else {
134    // See the dup-related comment in FdClose.
135    MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead | kAccessSlotLocked);
136  }
137}
138
139void FdInit() {
140  atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
141  atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
142  atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
143}
144
145void FdOnFork(ThreadState *thr, uptr pc) {
146  // On fork() we need to reset all fd's, because the child is going
147  // close all them, and that will cause races between previous read/write
148  // and the close.
149  for (int l1 = 0; l1 < kTableSizeL1; l1++) {
150    FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
151    if (tab == 0)
152      break;
153    for (int l2 = 0; l2 < kTableSizeL2; l2++) {
154      FdDesc *d = &tab[l2];
155      MemoryResetRange(thr, pc, (uptr)d, 8);
156    }
157  }
158}
159
160bool FdLocation(uptr addr, int *fd, Tid *tid, StackID *stack, bool *closed) {
161  for (int l1 = 0; l1 < kTableSizeL1; l1++) {
162    FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
163    if (tab == 0)
164      break;
165    if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
166      int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
167      FdDesc *d = &tab[l2];
168      *fd = l1 * kTableSizeL1 + l2;
169      *tid = d->creation_tid;
170      *stack = d->creation_stack;
171      *closed = d->closed;
172      return true;
173    }
174  }
175  return false;
176}
177
178void FdAcquire(ThreadState *thr, uptr pc, int fd) {
179  if (bogusfd(fd))
180    return;
181  FdDesc *d = fddesc(thr, pc, fd);
182  FdSync *s = d->sync;
183  DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
184  MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
185  if (s)
186    Acquire(thr, pc, (uptr)s);
187}
188
189void FdRelease(ThreadState *thr, uptr pc, int fd) {
190  if (bogusfd(fd))
191    return;
192  FdDesc *d = fddesc(thr, pc, fd);
193  FdSync *s = d->sync;
194  DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
195  MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
196  if (s)
197    Release(thr, pc, (uptr)s);
198  if (uptr aux_sync = atomic_load(&d->aux_sync, memory_order_acquire))
199    Release(thr, pc, aux_sync);
200}
201
202void FdAccess(ThreadState *thr, uptr pc, int fd) {
203  DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
204  if (bogusfd(fd))
205    return;
206  FdDesc *d = fddesc(thr, pc, fd);
207  MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
208}
209
210void FdClose(ThreadState *thr, uptr pc, int fd, bool write) {
211  DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
212  if (bogusfd(fd))
213    return;
214  FdDesc *d = fddesc(thr, pc, fd);
215  {
216    // Need to lock the slot to make MemoryAccess and MemoryResetRange atomic
217    // with respect to global reset. See the comment in MemoryRangeFreed.
218    SlotLocker locker(thr);
219    if (!MustIgnoreInterceptor(thr)) {
220      if (write) {
221        // To catch races between fd usage and close.
222        MemoryAccess(thr, pc, (uptr)d, 8,
223                     kAccessWrite | kAccessCheckOnly | kAccessSlotLocked);
224      } else {
225        // This path is used only by dup2/dup3 calls.
226        // We do read instead of write because there is a number of legitimate
227        // cases where write would lead to false positives:
228        // 1. Some software dups a closed pipe in place of a socket before
229        // closing
230        //    the socket (to prevent races actually).
231        // 2. Some daemons dup /dev/null in place of stdin/stdout.
232        // On the other hand we have not seen cases when write here catches real
233        // bugs.
234        MemoryAccess(thr, pc, (uptr)d, 8,
235                     kAccessRead | kAccessCheckOnly | kAccessSlotLocked);
236      }
237    }
238    // We need to clear it, because if we do not intercept any call out there
239    // that creates fd, we will hit false postives.
240    MemoryResetRange(thr, pc, (uptr)d, 8);
241  }
242  unref(thr, pc, d->sync);
243  d->sync = 0;
244  unref(thr, pc,
245        reinterpret_cast<FdSync *>(
246            atomic_load(&d->aux_sync, memory_order_relaxed)));
247  atomic_store(&d->aux_sync, 0, memory_order_relaxed);
248  d->closed = true;
249  d->creation_tid = thr->tid;
250  d->creation_stack = CurrentStackId(thr, pc);
251}
252
253void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
254  DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
255  if (bogusfd(fd))
256    return;
257  init(thr, pc, fd, &fdctx.filesync);
258}
259
260void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd, bool write) {
261  DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
262  if (bogusfd(oldfd) || bogusfd(newfd))
263    return;
264  // Ignore the case when user dups not yet connected socket.
265  FdDesc *od = fddesc(thr, pc, oldfd);
266  MemoryAccess(thr, pc, (uptr)od, 8, kAccessRead);
267  FdClose(thr, pc, newfd, write);
268  init(thr, pc, newfd, ref(od->sync), write);
269}
270
271void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
272  DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
273  FdSync *s = allocsync(thr, pc);
274  init(thr, pc, rfd, ref(s));
275  init(thr, pc, wfd, ref(s));
276  unref(thr, pc, s);
277}
278
279void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
280  DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
281  if (bogusfd(fd))
282    return;
283  init(thr, pc, fd, allocsync(thr, pc));
284}
285
286void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
287  DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
288  if (bogusfd(fd))
289    return;
290  init(thr, pc, fd, 0);
291}
292
293void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
294  DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
295  if (bogusfd(fd))
296    return;
297  init(thr, pc, fd, 0);
298}
299
300void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
301  DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
302  if (bogusfd(fd))
303    return;
304  init(thr, pc, fd, allocsync(thr, pc));
305}
306
307void FdPollAdd(ThreadState *thr, uptr pc, int epfd, int fd) {
308  DPrintf("#%d: FdPollAdd(%d, %d)\n", thr->tid, epfd, fd);
309  if (bogusfd(epfd) || bogusfd(fd))
310    return;
311  FdDesc *d = fddesc(thr, pc, fd);
312  // Associate fd with epoll fd only once.
313  // While an fd can be associated with multiple epolls at the same time,
314  // or with different epolls during different phases of lifetime,
315  // synchronization semantics (and examples) of this are unclear.
316  // So we don't support this for now.
317  // If we change the association, it will also create lifetime management
318  // problem for FdRelease which accesses the aux_sync.
319  if (atomic_load(&d->aux_sync, memory_order_relaxed))
320    return;
321  FdDesc *epd = fddesc(thr, pc, epfd);
322  FdSync *s = epd->sync;
323  if (!s)
324    return;
325  uptr cmp = 0;
326  if (atomic_compare_exchange_strong(
327          &d->aux_sync, &cmp, reinterpret_cast<uptr>(s), memory_order_release))
328    ref(s);
329}
330
331void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
332  DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
333  if (bogusfd(fd))
334    return;
335  // It can be a UDP socket.
336  init(thr, pc, fd, &fdctx.socksync);
337}
338
339void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
340  DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
341  if (bogusfd(fd))
342    return;
343  // Synchronize connect->accept.
344  Acquire(thr, pc, (uptr)&fdctx.connectsync);
345  init(thr, pc, newfd, &fdctx.socksync);
346}
347
348void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
349  DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
350  if (bogusfd(fd))
351    return;
352  // Synchronize connect->accept.
353  Release(thr, pc, (uptr)&fdctx.connectsync);
354}
355
356void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
357  DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
358  if (bogusfd(fd))
359    return;
360  init(thr, pc, fd, &fdctx.socksync);
361}
362
363uptr File2addr(const char *path) {
364  (void)path;
365  static u64 addr;
366  return (uptr)&addr;
367}
368
369uptr Dir2addr(const char *path) {
370  (void)path;
371  static u64 addr;
372  return (uptr)&addr;
373}
374
375}  //  namespace __tsan