master
  1//===----------------------------------------------------------------------===//
  2//
  3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4// See https://llvm.org/LICENSE.txt for license information.
  5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6//
  7//===----------------------------------------------------------------------===//
  8
  9#include "fallback_malloc.h"
 10#include "abort_message.h"
 11
 12#include <__thread/support.h>
 13#ifndef _LIBCXXABI_HAS_NO_THREADS
 14#if defined(__ELF__) && defined(_LIBCXXABI_LINK_PTHREAD_LIB)
 15#pragma comment(lib, "pthread")
 16#endif
 17#endif
 18
 19#include <__memory/aligned_alloc.h>
 20#include <__assert>
 21#include <stdlib.h> // for malloc, calloc, free
 22#include <string.h> // for memset
 23
 24//  A small, simple heap manager based (loosely) on
 25//  the startup heap manager from FreeBSD, optimized for space.
 26//
 27//  Manages a fixed-size memory pool, supports malloc and free only.
 28//  No support for realloc.
 29//
 30//  Allocates chunks in multiples of four bytes, with a four byte header
 31//  for each chunk. The overhead of each chunk is kept low by keeping pointers
 32//  as two byte offsets within the heap, rather than (4 or 8 byte) pointers.
 33
 34namespace {
 35
 36// When POSIX threads are not available, make the mutex operations a nop
 37#ifndef _LIBCXXABI_HAS_NO_THREADS
 38static _LIBCPP_CONSTINIT std::__libcpp_mutex_t heap_mutex = _LIBCPP_MUTEX_INITIALIZER;
 39#else
 40static _LIBCPP_CONSTINIT void* heap_mutex = 0;
 41#endif
 42
 43class mutexor {
 44public:
 45#ifndef _LIBCXXABI_HAS_NO_THREADS
 46  mutexor(std::__libcpp_mutex_t* m) : mtx_(m) {
 47    std::__libcpp_mutex_lock(mtx_);
 48  }
 49  ~mutexor() { std::__libcpp_mutex_unlock(mtx_); }
 50#else
 51  mutexor(void*) {}
 52  ~mutexor() {}
 53#endif
 54private:
 55  mutexor(const mutexor& rhs);
 56  mutexor& operator=(const mutexor& rhs);
 57#ifndef _LIBCXXABI_HAS_NO_THREADS
 58  std::__libcpp_mutex_t* mtx_;
 59#endif
 60};
 61
 62static const size_t HEAP_SIZE = 512;
 63char heap[HEAP_SIZE] __attribute__((aligned));
 64
 65typedef unsigned short heap_offset;
 66typedef unsigned short heap_size;
 67
 68// On both 64 and 32 bit targets heap_node should have the following properties
 69// Size: 4
 70// Alignment: 2
 71struct heap_node {
 72  heap_offset next_node; // offset into heap
 73  heap_size len;         // size in units of "sizeof(heap_node)"
 74};
 75
 76// All pointers returned by fallback_malloc must be at least aligned
 77// as RequiredAligned. Note that RequiredAlignment can be greater than
 78// alignof(std::max_align_t) on 64 bit systems compiling 32 bit code.
 79struct FallbackMaxAlignType {
 80} __attribute__((aligned));
 81const size_t RequiredAlignment = alignof(FallbackMaxAlignType);
 82
 83static_assert(alignof(FallbackMaxAlignType) % sizeof(heap_node) == 0,
 84              "The required alignment must be evenly divisible by the sizeof(heap_node)");
 85
 86// The number of heap_node's that can fit in a chunk of memory with the size
 87// of the RequiredAlignment. On 64 bit targets NodesPerAlignment should be 4.
 88const size_t NodesPerAlignment = alignof(FallbackMaxAlignType) / sizeof(heap_node);
 89
 90static const heap_node* list_end =
 91    (heap_node*)(&heap[HEAP_SIZE]); // one past the end of the heap
 92static heap_node* freelist = NULL;
 93
 94heap_node* node_from_offset(const heap_offset offset) {
 95  return (heap_node*)(heap + (offset * sizeof(heap_node)));
 96}
 97
 98heap_offset offset_from_node(const heap_node* ptr) {
 99  return static_cast<heap_offset>(
100      static_cast<size_t>(reinterpret_cast<const char*>(ptr) - heap) /
101      sizeof(heap_node));
102}
103
104// Return a pointer to the first address, 'A', in `heap` that can actually be
105// used to represent a heap_node. 'A' must be aligned so that
106// '(A + sizeof(heap_node)) % RequiredAlignment == 0'. On 64 bit systems this
107// address should be 12 bytes after the first 16 byte boundary.
108heap_node* getFirstAlignedNodeInHeap() {
109  heap_node* node = (heap_node*)heap;
110  const size_t alignNBytesAfterBoundary = RequiredAlignment - sizeof(heap_node);
111  size_t boundaryOffset = reinterpret_cast<size_t>(node) % RequiredAlignment;
112  size_t requiredOffset = alignNBytesAfterBoundary - boundaryOffset;
113  size_t NElemOffset = requiredOffset / sizeof(heap_node);
114  return node + NElemOffset;
115}
116
117void init_heap() {
118  freelist = getFirstAlignedNodeInHeap();
119  freelist->next_node = offset_from_node(list_end);
120  freelist->len = static_cast<heap_size>(list_end - freelist);
121}
122
123//  How big a chunk we allocate
124size_t alloc_size(size_t len) {
125  return (len + sizeof(heap_node) - 1) / sizeof(heap_node) + 1;
126}
127
128bool is_fallback_ptr(void* ptr) {
129  return ptr >= heap && ptr < (heap + HEAP_SIZE);
130}
131
132void* fallback_malloc(size_t len) {
133  heap_node *p, *prev;
134  const size_t nelems = alloc_size(len);
135  mutexor mtx(&heap_mutex);
136
137  if (NULL == freelist)
138    init_heap();
139
140  //  Walk the free list, looking for a "big enough" chunk
141  for (p = freelist, prev = 0; p && p != list_end;
142       prev = p, p = node_from_offset(p->next_node)) {
143
144    // Check the invariant that all heap_nodes pointers 'p' are aligned
145    // so that 'p + 1' has an alignment of at least RequiredAlignment
146    _LIBCXXABI_ASSERT(reinterpret_cast<size_t>(p + 1) % RequiredAlignment == 0, "");
147
148    // Calculate the number of extra padding elements needed in order
149    // to split 'p' and create a properly aligned heap_node from the tail
150    // of 'p'. We calculate aligned_nelems such that 'p->len - aligned_nelems'
151    // will be a multiple of NodesPerAlignment.
152    size_t aligned_nelems = nelems;
153    if (p->len > nelems) {
154      heap_size remaining_len = static_cast<heap_size>(p->len - nelems);
155      aligned_nelems += remaining_len % NodesPerAlignment;
156    }
157
158    // chunk is larger and we can create a properly aligned heap_node
159    // from the tail. In this case we shorten 'p' and return the tail.
160    if (p->len > aligned_nelems) {
161      heap_node* q;
162      p->len = static_cast<heap_size>(p->len - aligned_nelems);
163      q = p + p->len;
164      q->next_node = 0;
165      q->len = static_cast<heap_size>(aligned_nelems);
166      void* ptr = q + 1;
167      _LIBCXXABI_ASSERT(reinterpret_cast<size_t>(ptr) % RequiredAlignment == 0, "");
168      return ptr;
169    }
170
171    // The chunk is the exact size or the chunk is larger but not large
172    // enough to split due to alignment constraints.
173    if (p->len >= nelems) {
174      if (prev == 0)
175        freelist = node_from_offset(p->next_node);
176      else
177        prev->next_node = p->next_node;
178      p->next_node = 0;
179      void* ptr = p + 1;
180      _LIBCXXABI_ASSERT(reinterpret_cast<size_t>(ptr) % RequiredAlignment == 0, "");
181      return ptr;
182    }
183  }
184  return NULL; // couldn't find a spot big enough
185}
186
187//  Return the start of the next block
188heap_node* after(struct heap_node* p) { return p + p->len; }
189
190void fallback_free(void* ptr) {
191  struct heap_node* cp = ((struct heap_node*)ptr) - 1; // retrieve the chunk
192  struct heap_node *p, *prev;
193
194  mutexor mtx(&heap_mutex);
195
196#ifdef DEBUG_FALLBACK_MALLOC
197  std::printf("Freeing item at %d of size %d\n", offset_from_node(cp), cp->len);
198#endif
199
200  for (p = freelist, prev = 0; p && p != list_end;
201       prev = p, p = node_from_offset(p->next_node)) {
202#ifdef DEBUG_FALLBACK_MALLOC
203    std::printf("  p=%d, cp=%d, after(p)=%d, after(cp)=%d\n",
204      offset_from_node(p), offset_from_node(cp),
205      offset_from_node(after(p)), offset_from_node(after(cp)));
206#endif
207    if (after(p) == cp) {
208#ifdef DEBUG_FALLBACK_MALLOC
209      std::printf("  Appending onto chunk at %d\n", offset_from_node(p));
210#endif
211      p->len = static_cast<heap_size>(
212          p->len + cp->len); // make the free heap_node larger
213      return;
214    } else if (after(cp) == p) { // there's a free heap_node right after
215#ifdef DEBUG_FALLBACK_MALLOC
216      std::printf("  Appending free chunk at %d\n", offset_from_node(p));
217#endif
218      cp->len = static_cast<heap_size>(cp->len + p->len);
219      if (prev == 0) {
220        freelist = cp;
221        cp->next_node = p->next_node;
222      } else
223        prev->next_node = offset_from_node(cp);
224      return;
225    }
226  }
227//  Nothing to merge with, add it to the start of the free list
228#ifdef DEBUG_FALLBACK_MALLOC
229  std::printf("  Making new free list entry %d\n", offset_from_node(cp));
230#endif
231  cp->next_node = offset_from_node(freelist);
232  freelist = cp;
233}
234
235#ifdef INSTRUMENT_FALLBACK_MALLOC
236size_t print_free_list() {
237  struct heap_node *p, *prev;
238  heap_size total_free = 0;
239  if (NULL == freelist)
240    init_heap();
241
242  for (p = freelist, prev = 0; p && p != list_end;
243       prev = p, p = node_from_offset(p->next_node)) {
244    std::printf("%sOffset: %d\tsize: %d Next: %d\n",
245      (prev == 0 ? "" : "  "), offset_from_node(p), p->len, p->next_node);
246    total_free += p->len;
247  }
248  std::printf("Total Free space: %d\n", total_free);
249  return total_free;
250}
251#endif
252} // end unnamed namespace
253
254namespace __cxxabiv1 {
255
256struct __attribute__((aligned)) __aligned_type {};
257
258void* __aligned_malloc_with_fallback(size_t size) {
259#if defined(_WIN32)
260  if (void* dest = std::__libcpp_aligned_alloc(alignof(__aligned_type), size))
261    return dest;
262#elif !_LIBCPP_HAS_LIBRARY_ALIGNED_ALLOCATION
263  if (void* dest = ::malloc(size))
264    return dest;
265#else
266  if (size == 0)
267    size = 1;
268  if (void* dest = std::__libcpp_aligned_alloc(__alignof(__aligned_type), size))
269    return dest;
270#endif
271  return fallback_malloc(size);
272}
273
274void* __calloc_with_fallback(size_t count, size_t size) {
275  void* ptr = ::calloc(count, size);
276  if (NULL != ptr)
277    return ptr;
278  // if calloc fails, fall back to emergency stash
279  ptr = fallback_malloc(size * count);
280  if (NULL != ptr)
281    ::memset(ptr, 0, size * count);
282  return ptr;
283}
284
285void __aligned_free_with_fallback(void* ptr) {
286  if (is_fallback_ptr(ptr))
287    fallback_free(ptr);
288  else {
289#if !_LIBCPP_HAS_LIBRARY_ALIGNED_ALLOCATION
290    ::free(ptr);
291#else
292    std::__libcpp_aligned_free(ptr);
293#endif
294  }
295}
296
297void __free_with_fallback(void* ptr) {
298  if (is_fallback_ptr(ptr))
299    fallback_free(ptr);
300  else
301    ::free(ptr);
302}
303
304} // namespace __cxxabiv1