master
  1//===----------------------------------------------------------------------===//
  2//
  3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4// See https://llvm.org/LICENSE.txt for license information.
  5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6//
  7//===----------------------------------------------------------------------===//
  8
  9// Copyright (c) Microsoft Corporation.
 10// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 11
 12// Copyright 2018 Ulf Adams
 13// Copyright (c) Microsoft Corporation. All rights reserved.
 14
 15// Boost Software License - Version 1.0 - August 17th, 2003
 16
 17// Permission is hereby granted, free of charge, to any person or organization
 18// obtaining a copy of the software and accompanying documentation covered by
 19// this license (the "Software") to use, reproduce, display, distribute,
 20// execute, and transmit the Software, and to prepare derivative works of the
 21// Software, and to permit third-parties to whom the Software is furnished to
 22// do so, all subject to the following:
 23
 24// The copyright notices in the Software and this entire statement, including
 25// the above license grant, this restriction and the following disclaimer,
 26// must be included in all copies of the Software, in whole or in part, and
 27// all derivative works of the Software, unless such copies or derivative
 28// works are solely in the form of machine-executable object code generated by
 29// a source language processor.
 30
 31// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 32// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 33// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
 34// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
 35// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
 36// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 37// DEALINGS IN THE SOFTWARE.
 38
 39// Avoid formatting to keep the changes with the original code minimal.
 40// clang-format off
 41
 42#include <__assert>
 43#include <__config>
 44#include <charconv>
 45#include <cstdint>
 46#include <cstddef>
 47
 48#include "include/ryu/common.h"
 49#include "include/ryu/d2fixed.h"
 50#include "include/ryu/d2s_intrinsics.h"
 51#include "include/ryu/digit_table.h"
 52#include "include/ryu/f2s.h"
 53#include "include/ryu/ryu.h"
 54
 55_LIBCPP_BEGIN_NAMESPACE_STD
 56
 57inline constexpr int __FLOAT_MANTISSA_BITS = 23;
 58inline constexpr int __FLOAT_EXPONENT_BITS = 8;
 59inline constexpr int __FLOAT_BIAS = 127;
 60
 61inline constexpr int __FLOAT_POW5_INV_BITCOUNT = 59;
 62inline constexpr uint64_t __FLOAT_POW5_INV_SPLIT[31] = {
 63  576460752303423489u, 461168601842738791u, 368934881474191033u, 295147905179352826u,
 64  472236648286964522u, 377789318629571618u, 302231454903657294u, 483570327845851670u,
 65  386856262276681336u, 309485009821345069u, 495176015714152110u, 396140812571321688u,
 66  316912650057057351u, 507060240091291761u, 405648192073033409u, 324518553658426727u,
 67  519229685853482763u, 415383748682786211u, 332306998946228969u, 531691198313966350u,
 68  425352958651173080u, 340282366920938464u, 544451787073501542u, 435561429658801234u,
 69  348449143727040987u, 557518629963265579u, 446014903970612463u, 356811923176489971u,
 70  570899077082383953u, 456719261665907162u, 365375409332725730u
 71};
 72inline constexpr int __FLOAT_POW5_BITCOUNT = 61;
 73inline constexpr uint64_t __FLOAT_POW5_SPLIT[47] = {
 74  1152921504606846976u, 1441151880758558720u, 1801439850948198400u, 2251799813685248000u,
 75  1407374883553280000u, 1759218604441600000u, 2199023255552000000u, 1374389534720000000u,
 76  1717986918400000000u, 2147483648000000000u, 1342177280000000000u, 1677721600000000000u,
 77  2097152000000000000u, 1310720000000000000u, 1638400000000000000u, 2048000000000000000u,
 78  1280000000000000000u, 1600000000000000000u, 2000000000000000000u, 1250000000000000000u,
 79  1562500000000000000u, 1953125000000000000u, 1220703125000000000u, 1525878906250000000u,
 80  1907348632812500000u, 1192092895507812500u, 1490116119384765625u, 1862645149230957031u,
 81  1164153218269348144u, 1455191522836685180u, 1818989403545856475u, 2273736754432320594u,
 82  1421085471520200371u, 1776356839400250464u, 2220446049250313080u, 1387778780781445675u,
 83  1734723475976807094u, 2168404344971008868u, 1355252715606880542u, 1694065894508600678u,
 84  2117582368135750847u, 1323488980084844279u, 1654361225106055349u, 2067951531382569187u,
 85  1292469707114105741u, 1615587133892632177u, 2019483917365790221u
 86};
 87
 88[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __pow5Factor(uint32_t __value) {
 89  uint32_t __count = 0;
 90  for (;;) {
 91    _LIBCPP_ASSERT_INTERNAL(__value != 0, "");
 92    const uint32_t __q = __value / 5;
 93    const uint32_t __r = __value % 5;
 94    if (__r != 0) {
 95      break;
 96    }
 97    __value = __q;
 98    ++__count;
 99  }
100  return __count;
101}
102
103// Returns true if __value is divisible by 5^__p.
104[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf5(const uint32_t __value, const uint32_t __p) {
105  return __pow5Factor(__value) >= __p;
106}
107
108// Returns true if __value is divisible by 2^__p.
109[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf2(const uint32_t __value, const uint32_t __p) {
110  _LIBCPP_ASSERT_INTERNAL(__value != 0, "");
111  _LIBCPP_ASSERT_INTERNAL(__p < 32, "");
112  // __builtin_ctz doesn't appear to be faster here.
113  return (__value & ((1u << __p) - 1)) == 0;
114}
115
116[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulShift(const uint32_t __m, const uint64_t __factor, const int32_t __shift) {
117  _LIBCPP_ASSERT_INTERNAL(__shift > 32, "");
118
119  // The casts here help MSVC to avoid calls to the __allmul library
120  // function.
121  const uint32_t __factorLo = static_cast<uint32_t>(__factor);
122  const uint32_t __factorHi = static_cast<uint32_t>(__factor >> 32);
123  const uint64_t __bits0 = static_cast<uint64_t>(__m) * __factorLo;
124  const uint64_t __bits1 = static_cast<uint64_t>(__m) * __factorHi;
125
126#ifndef _LIBCPP_64_BIT
127  // On 32-bit platforms we can avoid a 64-bit shift-right since we only
128  // need the upper 32 bits of the result and the shift value is > 32.
129  const uint32_t __bits0Hi = static_cast<uint32_t>(__bits0 >> 32);
130  uint32_t __bits1Lo = static_cast<uint32_t>(__bits1);
131  uint32_t __bits1Hi = static_cast<uint32_t>(__bits1 >> 32);
132  __bits1Lo += __bits0Hi;
133  __bits1Hi += (__bits1Lo < __bits0Hi);
134  const int32_t __s = __shift - 32;
135  return (__bits1Hi << (32 - __s)) | (__bits1Lo >> __s);
136#else // ^^^ 32-bit ^^^ / vvv 64-bit vvv
137  const uint64_t __sum = (__bits0 >> 32) + __bits1;
138  const uint64_t __shiftedSum = __sum >> (__shift - 32);
139  _LIBCPP_ASSERT_INTERNAL(__shiftedSum <= UINT32_MAX, "");
140  return static_cast<uint32_t>(__shiftedSum);
141#endif // ^^^ 64-bit ^^^
142}
143
144[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulPow5InvDivPow2(const uint32_t __m, const uint32_t __q, const int32_t __j) {
145  return __mulShift(__m, __FLOAT_POW5_INV_SPLIT[__q], __j);
146}
147
148[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulPow5divPow2(const uint32_t __m, const uint32_t __i, const int32_t __j) {
149  return __mulShift(__m, __FLOAT_POW5_SPLIT[__i], __j);
150}
151
152// A floating decimal representing m * 10^e.
153struct __floating_decimal_32 {
154  uint32_t __mantissa;
155  int32_t __exponent;
156};
157
158[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline __floating_decimal_32 __f2d(const uint32_t __ieeeMantissa, const uint32_t __ieeeExponent) {
159  int32_t __e2;
160  uint32_t __m2;
161  if (__ieeeExponent == 0) {
162    // We subtract 2 so that the bounds computation has 2 additional bits.
163    __e2 = 1 - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS - 2;
164    __m2 = __ieeeMantissa;
165  } else {
166    __e2 = static_cast<int32_t>(__ieeeExponent) - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS - 2;
167    __m2 = (1u << __FLOAT_MANTISSA_BITS) | __ieeeMantissa;
168  }
169  const bool __even = (__m2 & 1) == 0;
170  const bool __acceptBounds = __even;
171
172  // Step 2: Determine the interval of valid decimal representations.
173  const uint32_t __mv = 4 * __m2;
174  const uint32_t __mp = 4 * __m2 + 2;
175  // Implicit bool -> int conversion. True is 1, false is 0.
176  const uint32_t __mmShift = __ieeeMantissa != 0 || __ieeeExponent <= 1;
177  const uint32_t __mm = 4 * __m2 - 1 - __mmShift;
178
179  // Step 3: Convert to a decimal power base using 64-bit arithmetic.
180  uint32_t __vr, __vp, __vm;
181  int32_t __e10;
182  bool __vmIsTrailingZeros = false;
183  bool __vrIsTrailingZeros = false;
184  uint8_t __lastRemovedDigit = 0;
185  if (__e2 >= 0) {
186    const uint32_t __q = __log10Pow2(__e2);
187    __e10 = static_cast<int32_t>(__q);
188    const int32_t __k = __FLOAT_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q)) - 1;
189    const int32_t __i = -__e2 + static_cast<int32_t>(__q) + __k;
190    __vr = __mulPow5InvDivPow2(__mv, __q, __i);
191    __vp = __mulPow5InvDivPow2(__mp, __q, __i);
192    __vm = __mulPow5InvDivPow2(__mm, __q, __i);
193    if (__q != 0 && (__vp - 1) / 10 <= __vm / 10) {
194      // We need to know one removed digit even if we are not going to loop below. We could use
195      // __q = X - 1 above, except that would require 33 bits for the result, and we've found that
196      // 32-bit arithmetic is faster even on 64-bit machines.
197      const int32_t __l = __FLOAT_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q - 1)) - 1;
198      __lastRemovedDigit = static_cast<uint8_t>(__mulPow5InvDivPow2(__mv, __q - 1,
199        -__e2 + static_cast<int32_t>(__q) - 1 + __l) % 10);
200    }
201    if (__q <= 9) {
202      // The largest power of 5 that fits in 24 bits is 5^10, but __q <= 9 seems to be safe as well.
203      // Only one of __mp, __mv, and __mm can be a multiple of 5, if any.
204      if (__mv % 5 == 0) {
205        __vrIsTrailingZeros = __multipleOfPowerOf5(__mv, __q);
206      } else if (__acceptBounds) {
207        __vmIsTrailingZeros = __multipleOfPowerOf5(__mm, __q);
208      } else {
209        __vp -= __multipleOfPowerOf5(__mp, __q);
210      }
211    }
212  } else {
213    const uint32_t __q = __log10Pow5(-__e2);
214    __e10 = static_cast<int32_t>(__q) + __e2;
215    const int32_t __i = -__e2 - static_cast<int32_t>(__q);
216    const int32_t __k = __pow5bits(__i) - __FLOAT_POW5_BITCOUNT;
217    int32_t __j = static_cast<int32_t>(__q) - __k;
218    __vr = __mulPow5divPow2(__mv, static_cast<uint32_t>(__i), __j);
219    __vp = __mulPow5divPow2(__mp, static_cast<uint32_t>(__i), __j);
220    __vm = __mulPow5divPow2(__mm, static_cast<uint32_t>(__i), __j);
221    if (__q != 0 && (__vp - 1) / 10 <= __vm / 10) {
222      __j = static_cast<int32_t>(__q) - 1 - (__pow5bits(__i + 1) - __FLOAT_POW5_BITCOUNT);
223      __lastRemovedDigit = static_cast<uint8_t>(__mulPow5divPow2(__mv, static_cast<uint32_t>(__i + 1), __j) % 10);
224    }
225    if (__q <= 1) {
226      // {__vr,__vp,__vm} is trailing zeros if {__mv,__mp,__mm} has at least __q trailing 0 bits.
227      // __mv = 4 * __m2, so it always has at least two trailing 0 bits.
228      __vrIsTrailingZeros = true;
229      if (__acceptBounds) {
230        // __mm = __mv - 1 - __mmShift, so it has 1 trailing 0 bit iff __mmShift == 1.
231        __vmIsTrailingZeros = __mmShift == 1;
232      } else {
233        // __mp = __mv + 2, so it always has at least one trailing 0 bit.
234        --__vp;
235      }
236    } else if (__q < 31) { // TRANSITION(ulfjack): Use a tighter bound here.
237      __vrIsTrailingZeros = __multipleOfPowerOf2(__mv, __q - 1);
238    }
239  }
240
241  // Step 4: Find the shortest decimal representation in the interval of valid representations.
242  int32_t __removed = 0;
243  uint32_t _Output;
244  if (__vmIsTrailingZeros || __vrIsTrailingZeros) {
245    // General case, which happens rarely (~4.0%).
246    while (__vp / 10 > __vm / 10) {
247#ifdef __clang__ // TRANSITION, LLVM-23106
248      __vmIsTrailingZeros &= __vm - (__vm / 10) * 10 == 0;
249#else
250      __vmIsTrailingZeros &= __vm % 10 == 0;
251#endif
252      __vrIsTrailingZeros &= __lastRemovedDigit == 0;
253      __lastRemovedDigit = static_cast<uint8_t>(__vr % 10);
254      __vr /= 10;
255      __vp /= 10;
256      __vm /= 10;
257      ++__removed;
258    }
259    if (__vmIsTrailingZeros) {
260      while (__vm % 10 == 0) {
261        __vrIsTrailingZeros &= __lastRemovedDigit == 0;
262        __lastRemovedDigit = static_cast<uint8_t>(__vr % 10);
263        __vr /= 10;
264        __vp /= 10;
265        __vm /= 10;
266        ++__removed;
267      }
268    }
269    if (__vrIsTrailingZeros && __lastRemovedDigit == 5 && __vr % 2 == 0) {
270      // Round even if the exact number is .....50..0.
271      __lastRemovedDigit = 4;
272    }
273    // We need to take __vr + 1 if __vr is outside bounds or we need to round up.
274    _Output = __vr + ((__vr == __vm && (!__acceptBounds || !__vmIsTrailingZeros)) || __lastRemovedDigit >= 5);
275  } else {
276    // Specialized for the common case (~96.0%). Percentages below are relative to this.
277    // Loop iterations below (approximately):
278    // 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
279    while (__vp / 10 > __vm / 10) {
280      __lastRemovedDigit = static_cast<uint8_t>(__vr % 10);
281      __vr /= 10;
282      __vp /= 10;
283      __vm /= 10;
284      ++__removed;
285    }
286    // We need to take __vr + 1 if __vr is outside bounds or we need to round up.
287    _Output = __vr + (__vr == __vm || __lastRemovedDigit >= 5);
288  }
289  const int32_t __exp = __e10 + __removed;
290
291  __floating_decimal_32 __fd;
292  __fd.__exponent = __exp;
293  __fd.__mantissa = _Output;
294  return __fd;
295}
296
297[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result _Large_integer_to_chars(char* const _First, char* const _Last,
298  const uint32_t _Mantissa2, const int32_t _Exponent2) {
299
300  // Print the integer _Mantissa2 * 2^_Exponent2 exactly.
301
302  // For nonzero integers, _Exponent2 >= -23. (The minimum value occurs when _Mantissa2 * 2^_Exponent2 is 1.
303  // In that case, _Mantissa2 is the implicit 1 bit followed by 23 zeros, so _Exponent2 is -23 to shift away
304  // the zeros.) The dense range of exactly representable integers has negative or zero exponents
305  // (as positive exponents make the range non-dense). For that dense range, Ryu will always be used:
306  // every digit is necessary to uniquely identify the value, so Ryu must print them all.
307
308  // Positive exponents are the non-dense range of exactly representable integers.
309  // This contains all of the values for which Ryu can't be used (and a few Ryu-friendly values).
310
311  // Performance note: Long division appears to be faster than losslessly widening float to double and calling
312  // __d2fixed_buffered_n(). If __f2fixed_buffered_n() is implemented, it might be faster than long division.
313
314  _LIBCPP_ASSERT_INTERNAL(_Exponent2 > 0, "");
315  _LIBCPP_ASSERT_INTERNAL(_Exponent2 <= 104, ""); // because __ieeeExponent <= 254
316
317  // Manually represent _Mantissa2 * 2^_Exponent2 as a large integer. _Mantissa2 is always 24 bits
318  // (due to the implicit bit), while _Exponent2 indicates a shift of at most 104 bits.
319  // 24 + 104 equals 128 equals 4 * 32, so we need exactly 4 32-bit elements.
320  // We use a little-endian representation, visualized like this:
321
322  // << left shift <<
323  // most significant
324  // _Data[3] _Data[2] _Data[1] _Data[0]
325  //                   least significant
326  //                   >> right shift >>
327
328  constexpr uint32_t _Data_size = 4;
329  uint32_t _Data[_Data_size]{};
330
331  // _Maxidx is the index of the most significant nonzero element.
332  uint32_t _Maxidx = ((24 + static_cast<uint32_t>(_Exponent2) + 31) / 32) - 1;
333  _LIBCPP_ASSERT_INTERNAL(_Maxidx < _Data_size, "");
334
335  const uint32_t _Bit_shift = static_cast<uint32_t>(_Exponent2) % 32;
336  if (_Bit_shift <= 8) { // _Mantissa2's 24 bits don't cross an element boundary
337    _Data[_Maxidx] = _Mantissa2 << _Bit_shift;
338  } else { // _Mantissa2's 24 bits cross an element boundary
339    _Data[_Maxidx - 1] = _Mantissa2 << _Bit_shift;
340    _Data[_Maxidx] = _Mantissa2 >> (32 - _Bit_shift);
341  }
342
343  // If Ryu hasn't determined the total output length, we need to buffer the digits generated from right to left
344  // by long division. The largest possible float is: 340'282346638'528859811'704183484'516925440
345  uint32_t _Blocks[4];
346  int32_t _Filled_blocks = 0;
347  // From left to right, we're going to print:
348  // _Data[0] will be [1, 10] digits.
349  // Then if _Filled_blocks > 0:
350  // _Blocks[_Filled_blocks - 1], ..., _Blocks[0] will be 0-filled 9-digit blocks.
351
352  if (_Maxidx != 0) { // If the integer is actually large, perform long division.
353                      // Otherwise, skip to printing _Data[0].
354    for (;;) {
355      // Loop invariant: _Maxidx != 0 (i.e. the integer is actually large)
356
357      const uint32_t _Most_significant_elem = _Data[_Maxidx];
358      const uint32_t _Initial_remainder = _Most_significant_elem % 1000000000;
359      const uint32_t _Initial_quotient = _Most_significant_elem / 1000000000;
360      _Data[_Maxidx] = _Initial_quotient;
361      uint64_t _Remainder = _Initial_remainder;
362
363      // Process less significant elements.
364      uint32_t _Idx = _Maxidx;
365      do {
366        --_Idx; // Initially, _Remainder is at most 10^9 - 1.
367
368        // Now, _Remainder is at most (10^9 - 1) * 2^32 + 2^32 - 1, simplified to 10^9 * 2^32 - 1.
369        _Remainder = (_Remainder << 32) | _Data[_Idx];
370
371        // floor((10^9 * 2^32 - 1) / 10^9) == 2^32 - 1, so uint32_t _Quotient is lossless.
372        const uint32_t _Quotient = static_cast<uint32_t>(__div1e9(_Remainder));
373
374        // _Remainder is at most 10^9 - 1 again.
375        // For uint32_t truncation, see the __mod1e9() comment in d2s_intrinsics.h.
376        _Remainder = static_cast<uint32_t>(_Remainder) - 1000000000u * _Quotient;
377
378        _Data[_Idx] = _Quotient;
379      } while (_Idx != 0);
380
381      // Store a 0-filled 9-digit block.
382      _Blocks[_Filled_blocks++] = static_cast<uint32_t>(_Remainder);
383
384      if (_Initial_quotient == 0) { // Is the large integer shrinking?
385        --_Maxidx; // log2(10^9) is 29.9, so we can't shrink by more than one element.
386        if (_Maxidx == 0) {
387          break; // We've finished long division. Now we need to print _Data[0].
388        }
389      }
390    }
391  }
392
393  _LIBCPP_ASSERT_INTERNAL(_Data[0] != 0, "");
394  for (uint32_t _Idx = 1; _Idx < _Data_size; ++_Idx) {
395    _LIBCPP_ASSERT_INTERNAL(_Data[_Idx] == 0, "");
396  }
397
398  const uint32_t _Data_olength = _Data[0] >= 1000000000 ? 10 : __decimalLength9(_Data[0]);
399  const uint32_t _Total_fixed_length = _Data_olength + 9 * _Filled_blocks;
400
401  if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) {
402    return { _Last, errc::value_too_large };
403  }
404
405  char* _Result = _First;
406
407  // Print _Data[0]. While it's up to 10 digits,
408  // which is more than Ryu generates, the code below can handle this.
409  __append_n_digits(_Data_olength, _Data[0], _Result);
410  _Result += _Data_olength;
411
412  // Print 0-filled 9-digit blocks.
413  for (int32_t _Idx = _Filled_blocks - 1; _Idx >= 0; --_Idx) {
414    __append_nine_digits(_Blocks[_Idx], _Result);
415    _Result += 9;
416  }
417
418  return { _Result, errc{} };
419}
420
421[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result __to_chars(char* const _First, char* const _Last, const __floating_decimal_32 __v,
422  chars_format _Fmt, const uint32_t __ieeeMantissa, const uint32_t __ieeeExponent) {
423  // Step 5: Print the decimal representation.
424  uint32_t _Output = __v.__mantissa;
425  int32_t _Ryu_exponent = __v.__exponent;
426  const uint32_t __olength = __decimalLength9(_Output);
427  int32_t _Scientific_exponent = _Ryu_exponent + static_cast<int32_t>(__olength) - 1;
428
429  if (_Fmt == chars_format{}) {
430    int32_t _Lower;
431    int32_t _Upper;
432
433    if (__olength == 1) {
434      // Value | Fixed   | Scientific
435      // 1e-3  | "0.001" | "1e-03"
436      // 1e4   | "10000" | "1e+04"
437      _Lower = -3;
438      _Upper = 4;
439    } else {
440      // Value   | Fixed       | Scientific
441      // 1234e-7 | "0.0001234" | "1.234e-04"
442      // 1234e5  | "123400000" | "1.234e+08"
443      _Lower = -static_cast<int32_t>(__olength + 3);
444      _Upper = 5;
445    }
446
447    if (_Lower <= _Ryu_exponent && _Ryu_exponent <= _Upper) {
448      _Fmt = chars_format::fixed;
449    } else {
450      _Fmt = chars_format::scientific;
451    }
452  } else if (_Fmt == chars_format::general) {
453    // C11 7.21.6.1 "The fprintf function"/8:
454    // "Let P equal [...] 6 if the precision is omitted [...].
455    // Then, if a conversion with style E would have an exponent of X:
456    // - if P > X >= -4, the conversion is with style f [...].
457    // - otherwise, the conversion is with style e [...]."
458    if (-4 <= _Scientific_exponent && _Scientific_exponent < 6) {
459      _Fmt = chars_format::fixed;
460    } else {
461      _Fmt = chars_format::scientific;
462    }
463  }
464
465  if (_Fmt == chars_format::fixed) {
466    // Example: _Output == 1729, __olength == 4
467
468    // _Ryu_exponent | Printed  | _Whole_digits | _Total_fixed_length  | Notes
469    // --------------|----------|---------------|----------------------|---------------------------------------
470    //             2 | 172900   |  6            | _Whole_digits        | Ryu can't be used for printing
471    //             1 | 17290    |  5            | (sometimes adjusted) | when the trimmed digits are nonzero.
472    // --------------|----------|---------------|----------------------|---------------------------------------
473    //             0 | 1729     |  4            | _Whole_digits        | Unified length cases.
474    // --------------|----------|---------------|----------------------|---------------------------------------
475    //            -1 | 172.9    |  3            | __olength + 1        | This case can't happen for
476    //            -2 | 17.29    |  2            |                      | __olength == 1, but no additional
477    //            -3 | 1.729    |  1            |                      | code is needed to avoid it.
478    // --------------|----------|---------------|----------------------|---------------------------------------
479    //            -4 | 0.1729   |  0            | 2 - _Ryu_exponent    | C11 7.21.6.1 "The fprintf function"/8:
480    //            -5 | 0.01729  | -1            |                      | "If a decimal-point character appears,
481    //            -6 | 0.001729 | -2            |                      | at least one digit appears before it."
482
483    const int32_t _Whole_digits = static_cast<int32_t>(__olength) + _Ryu_exponent;
484
485    uint32_t _Total_fixed_length;
486    if (_Ryu_exponent >= 0) { // cases "172900" and "1729"
487      _Total_fixed_length = static_cast<uint32_t>(_Whole_digits);
488      if (_Output == 1) {
489        // Rounding can affect the number of digits.
490        // For example, 1e11f is exactly "99999997952" which is 11 digits instead of 12.
491        // We can use a lookup table to detect this and adjust the total length.
492        static constexpr uint8_t _Adjustment[39] = {
493          0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0,1,0,1,1,0,1,1,1 };
494        _Total_fixed_length -= _Adjustment[_Ryu_exponent];
495        // _Whole_digits doesn't need to be adjusted because these cases won't refer to it later.
496      }
497    } else if (_Whole_digits > 0) { // case "17.29"
498      _Total_fixed_length = __olength + 1;
499    } else { // case "0.001729"
500      _Total_fixed_length = static_cast<uint32_t>(2 - _Ryu_exponent);
501    }
502
503    if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) {
504      return { _Last, errc::value_too_large };
505    }
506
507    char* _Mid;
508    if (_Ryu_exponent > 0) { // case "172900"
509      bool _Can_use_ryu;
510
511      if (_Ryu_exponent > 10) { // 10^10 is the largest power of 10 that's exactly representable as a float.
512        _Can_use_ryu = false;
513      } else {
514        // Ryu generated X: __v.__mantissa * 10^_Ryu_exponent
515        // __v.__mantissa == 2^_Trailing_zero_bits * (__v.__mantissa >> _Trailing_zero_bits)
516        // 10^_Ryu_exponent == 2^_Ryu_exponent * 5^_Ryu_exponent
517
518        // _Trailing_zero_bits is [0, 29] (aside: because 2^29 is the largest power of 2
519        // with 9 decimal digits, which is float's round-trip limit.)
520        // _Ryu_exponent is [1, 10].
521        // Normalization adds [2, 23] (aside: at least 2 because the pre-normalized mantissa is at least 5).
522        // This adds up to [3, 62], which is well below float's maximum binary exponent 127.
523
524        // Therefore, we just need to consider (__v.__mantissa >> _Trailing_zero_bits) * 5^_Ryu_exponent.
525
526        // If that product would exceed 24 bits, then X can't be exactly represented as a float.
527        // (That's not a problem for round-tripping, because X is close enough to the original float,
528        // but X isn't mathematically equal to the original float.) This requires a high-precision fallback.
529
530        // If the product is 24 bits or smaller, then X can be exactly represented as a float (and we don't
531        // need to re-synthesize it; the original float must have been X, because Ryu wouldn't produce the
532        // same output for two different floats X and Y). This allows Ryu's output to be used (zero-filled).
533
534        // (2^24 - 1) / 5^0 (for indexing), (2^24 - 1) / 5^1, ..., (2^24 - 1) / 5^10
535        static constexpr uint32_t _Max_shifted_mantissa[11] = {
536          16777215, 3355443, 671088, 134217, 26843, 5368, 1073, 214, 42, 8, 1 };
537
538        unsigned long _Trailing_zero_bits;
539        (void) _BitScanForward(&_Trailing_zero_bits, __v.__mantissa); // __v.__mantissa is guaranteed nonzero
540        const uint32_t _Shifted_mantissa = __v.__mantissa >> _Trailing_zero_bits;
541        _Can_use_ryu = _Shifted_mantissa <= _Max_shifted_mantissa[_Ryu_exponent];
542      }
543
544      if (!_Can_use_ryu) {
545        const uint32_t _Mantissa2 = __ieeeMantissa | (1u << __FLOAT_MANTISSA_BITS); // restore implicit bit
546        const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent)
547          - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS; // bias and normalization
548
549        // Performance note: We've already called Ryu, so this will redundantly perform buffering and bounds checking.
550        return _Large_integer_to_chars(_First, _Last, _Mantissa2, _Exponent2);
551      }
552
553      // _Can_use_ryu
554      // Print the decimal digits, left-aligned within [_First, _First + _Total_fixed_length).
555      _Mid = _First + __olength;
556    } else { // cases "1729", "17.29", and "0.001729"
557      // Print the decimal digits, right-aligned within [_First, _First + _Total_fixed_length).
558      _Mid = _First + _Total_fixed_length;
559    }
560
561    while (_Output >= 10000) {
562#ifdef __clang__ // TRANSITION, LLVM-38217
563      const uint32_t __c = _Output - 10000 * (_Output / 10000);
564#else
565      const uint32_t __c = _Output % 10000;
566#endif
567      _Output /= 10000;
568      const uint32_t __c0 = (__c % 100) << 1;
569      const uint32_t __c1 = (__c / 100) << 1;
570      std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2);
571      std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2);
572    }
573    if (_Output >= 100) {
574      const uint32_t __c = (_Output % 100) << 1;
575      _Output /= 100;
576      std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
577    }
578    if (_Output >= 10) {
579      const uint32_t __c = _Output << 1;
580      std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
581    } else {
582      *--_Mid = static_cast<char>('0' + _Output);
583    }
584
585    if (_Ryu_exponent > 0) { // case "172900" with _Can_use_ryu
586      // Performance note: it might be more efficient to do this immediately after setting _Mid.
587      std::memset(_First + __olength, '0', static_cast<size_t>(_Ryu_exponent));
588    } else if (_Ryu_exponent == 0) { // case "1729"
589      // Done!
590    } else if (_Whole_digits > 0) { // case "17.29"
591      // Performance note: moving digits might not be optimal.
592      std::memmove(_First, _First + 1, static_cast<size_t>(_Whole_digits));
593      _First[_Whole_digits] = '.';
594    } else { // case "0.001729"
595      // Performance note: a larger memset() followed by overwriting '.' might be more efficient.
596      _First[0] = '0';
597      _First[1] = '.';
598      std::memset(_First + 2, '0', static_cast<size_t>(-_Whole_digits));
599    }
600
601    return { _First + _Total_fixed_length, errc{} };
602  }
603
604  const uint32_t _Total_scientific_length =
605    __olength + (__olength > 1) + 4; // digits + possible decimal point + scientific exponent
606  if (_Last - _First < static_cast<ptrdiff_t>(_Total_scientific_length)) {
607    return { _Last, errc::value_too_large };
608  }
609  char* const __result = _First;
610
611  // Print the decimal digits.
612  uint32_t __i = 0;
613  while (_Output >= 10000) {
614#ifdef __clang__ // TRANSITION, LLVM-38217
615    const uint32_t __c = _Output - 10000 * (_Output / 10000);
616#else
617    const uint32_t __c = _Output % 10000;
618#endif
619    _Output /= 10000;
620    const uint32_t __c0 = (__c % 100) << 1;
621    const uint32_t __c1 = (__c / 100) << 1;
622    std::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2);
623    std::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2);
624    __i += 4;
625  }
626  if (_Output >= 100) {
627    const uint32_t __c = (_Output % 100) << 1;
628    _Output /= 100;
629    std::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c, 2);
630    __i += 2;
631  }
632  if (_Output >= 10) {
633    const uint32_t __c = _Output << 1;
634    // We can't use memcpy here: the decimal dot goes between these two digits.
635    __result[2] = __DIGIT_TABLE[__c + 1];
636    __result[0] = __DIGIT_TABLE[__c];
637  } else {
638    __result[0] = static_cast<char>('0' + _Output);
639  }
640
641  // Print decimal point if needed.
642  uint32_t __index;
643  if (__olength > 1) {
644    __result[1] = '.';
645    __index = __olength + 1;
646  } else {
647    __index = 1;
648  }
649
650  // Print the exponent.
651  __result[__index++] = 'e';
652  if (_Scientific_exponent < 0) {
653    __result[__index++] = '-';
654    _Scientific_exponent = -_Scientific_exponent;
655  } else {
656    __result[__index++] = '+';
657  }
658
659  std::memcpy(__result + __index, __DIGIT_TABLE + 2 * _Scientific_exponent, 2);
660  __index += 2;
661
662  return { _First + _Total_scientific_length, errc{} };
663}
664
665[[nodiscard]] to_chars_result __f2s_buffered_n(char* const _First, char* const _Last, const float __f,
666  const chars_format _Fmt) {
667
668  // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
669  const uint32_t __bits = __float_to_bits(__f);
670
671  // Case distinction; exit early for the easy cases.
672  if (__bits == 0) {
673    if (_Fmt == chars_format::scientific) {
674      if (_Last - _First < 5) {
675        return { _Last, errc::value_too_large };
676      }
677
678      std::memcpy(_First, "0e+00", 5);
679
680      return { _First + 5, errc{} };
681    }
682
683    // Print "0" for chars_format::fixed, chars_format::general, and chars_format{}.
684    if (_First == _Last) {
685      return { _Last, errc::value_too_large };
686    }
687
688    *_First = '0';
689
690    return { _First + 1, errc{} };
691  }
692
693  // Decode __bits into mantissa and exponent.
694  const uint32_t __ieeeMantissa = __bits & ((1u << __FLOAT_MANTISSA_BITS) - 1);
695  const uint32_t __ieeeExponent = __bits >> __FLOAT_MANTISSA_BITS;
696
697  // When _Fmt == chars_format::fixed and the floating-point number is a large integer,
698  // it's faster to skip Ryu and immediately print the integer exactly.
699  if (_Fmt == chars_format::fixed) {
700    const uint32_t _Mantissa2 = __ieeeMantissa | (1u << __FLOAT_MANTISSA_BITS); // restore implicit bit
701    const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent)
702      - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS; // bias and normalization
703
704    // Normal values are equal to _Mantissa2 * 2^_Exponent2.
705    // (Subnormals are different, but they'll be rejected by the _Exponent2 test here, so they can be ignored.)
706
707    if (_Exponent2 > 0) {
708      return _Large_integer_to_chars(_First, _Last, _Mantissa2, _Exponent2);
709    }
710  }
711
712  const __floating_decimal_32 __v = __f2d(__ieeeMantissa, __ieeeExponent);
713  return __to_chars(_First, _Last, __v, _Fmt, __ieeeMantissa, __ieeeExponent);
714}
715
716_LIBCPP_END_NAMESPACE_STD
717
718// clang-format on