master
  1//===----------------------------------------------------------------------===//
  2//
  3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4// See https://llvm.org/LICENSE.txt for license information.
  5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6//
  7//===----------------------------------------------------------------------===//
  8
  9#include <cstddef>
 10#include <memory>
 11#include <memory_resource>
 12
 13#if _LIBCPP_HAS_ATOMIC_HEADER
 14#  include <atomic>
 15#elif _LIBCPP_HAS_THREADS
 16#  include <mutex>
 17#  if defined(__ELF__) && defined(_LIBCPP_LINK_PTHREAD_LIB)
 18#    pragma comment(lib, "pthread")
 19#  endif
 20#endif
 21
 22_LIBCPP_BEGIN_NAMESPACE_STD
 23
 24namespace pmr {
 25
 26// memory_resource
 27
 28memory_resource::~memory_resource() = default;
 29
 30// new_delete_resource()
 31
 32#if !_LIBCPP_HAS_ALIGNED_ALLOCATION
 33static bool is_aligned_to(void* ptr, size_t align) {
 34  void* p2     = ptr;
 35  size_t space = 1;
 36  void* result = std::align(align, 1, p2, space);
 37  return (result == ptr);
 38}
 39#endif
 40
 41class _LIBCPP_HIDDEN __new_delete_memory_resource_imp : public memory_resource {
 42  void* do_allocate(size_t bytes, size_t align) override {
 43#if _LIBCPP_HAS_ALIGNED_ALLOCATION
 44    return std::__libcpp_allocate<std::byte>(__element_count(bytes), align);
 45#else
 46    if (bytes == 0)
 47      bytes = 1;
 48    std::byte* result = std::__libcpp_allocate<std::byte>(__element_count(bytes), align);
 49    if (!is_aligned_to(result, align)) {
 50      std::__libcpp_deallocate<std::byte>(result, __element_count(bytes), align);
 51      std::__throw_bad_alloc();
 52    }
 53    return result;
 54#endif
 55  }
 56
 57  void do_deallocate(void* p, size_t bytes, size_t align) override {
 58    std::__libcpp_deallocate<std::byte>(static_cast<std::byte*>(p), __element_count(bytes), align);
 59  }
 60
 61  bool do_is_equal(const memory_resource& other) const noexcept override { return &other == this; }
 62};
 63
 64// null_memory_resource()
 65
 66class _LIBCPP_HIDDEN __null_memory_resource_imp : public memory_resource {
 67  void* do_allocate(size_t, size_t) override { std::__throw_bad_alloc(); }
 68  void do_deallocate(void*, size_t, size_t) override {}
 69  bool do_is_equal(const memory_resource& other) const noexcept override { return &other == this; }
 70};
 71
 72namespace {
 73
 74union ResourceInitHelper {
 75  struct {
 76    __new_delete_memory_resource_imp new_delete_res;
 77    __null_memory_resource_imp null_res;
 78  } resources;
 79  char dummy;
 80  constexpr ResourceInitHelper() : resources() {}
 81  ~ResourceInitHelper() {}
 82};
 83
 84// Pretend we're inside a system header so the compiler doesn't flag the use of the init_priority
 85// attribute with a value that's reserved for the implementation (we're the implementation).
 86#include "memory_resource_init_helper.h"
 87
 88} // namespace
 89
 90memory_resource* new_delete_resource() noexcept { return &res_init.resources.new_delete_res; }
 91
 92memory_resource* null_memory_resource() noexcept { return &res_init.resources.null_res; }
 93
 94// default_memory_resource()
 95
 96static memory_resource* __default_memory_resource(bool set = false, memory_resource* new_res = nullptr) noexcept {
 97#if _LIBCPP_HAS_ATOMIC_HEADER
 98  static constinit atomic<memory_resource*> __res{&res_init.resources.new_delete_res};
 99  if (set) {
100    new_res = new_res ? new_res : new_delete_resource();
101    // TODO: Can a weaker ordering be used?
102    return std::atomic_exchange_explicit(&__res, new_res, memory_order_acq_rel);
103  } else {
104    return std::atomic_load_explicit(&__res, memory_order_acquire);
105  }
106#elif _LIBCPP_HAS_THREADS
107  static constinit memory_resource* res = &res_init.resources.new_delete_res;
108  static mutex res_lock;
109  if (set) {
110    new_res = new_res ? new_res : new_delete_resource();
111    lock_guard<mutex> guard(res_lock);
112    memory_resource* old_res = res;
113    res                      = new_res;
114    return old_res;
115  } else {
116    lock_guard<mutex> guard(res_lock);
117    return res;
118  }
119#else
120  static constinit memory_resource* res = &res_init.resources.new_delete_res;
121  if (set) {
122    new_res                  = new_res ? new_res : new_delete_resource();
123    memory_resource* old_res = res;
124    res                      = new_res;
125    return old_res;
126  } else {
127    return res;
128  }
129#endif
130}
131
132memory_resource* get_default_resource() noexcept { return __default_memory_resource(); }
133
134memory_resource* set_default_resource(memory_resource* __new_res) noexcept {
135  return __default_memory_resource(true, __new_res);
136}
137
138// 23.12.5, mem.res.pool
139
140static size_t roundup(size_t count, size_t alignment) {
141  size_t mask = alignment - 1;
142  return (count + mask) & ~mask;
143}
144
145struct unsynchronized_pool_resource::__adhoc_pool::__chunk_footer {
146  __chunk_footer* __next_;
147  char* __start_;
148  size_t __align_;
149  size_t __allocation_size() { return (reinterpret_cast<char*>(this) - __start_) + sizeof(*this); }
150};
151
152void unsynchronized_pool_resource::__adhoc_pool::__release_ptr(memory_resource* upstream) {
153  while (__first_ != nullptr) {
154    __chunk_footer* next = __first_->__next_;
155    upstream->deallocate(__first_->__start_, __first_->__allocation_size(), __first_->__align_);
156    __first_ = next;
157  }
158}
159
160void* unsynchronized_pool_resource::__adhoc_pool::__do_allocate(memory_resource* upstream, size_t bytes, size_t align) {
161  const size_t footer_size  = sizeof(__chunk_footer);
162  const size_t footer_align = alignof(__chunk_footer);
163
164  if (align < footer_align)
165    align = footer_align;
166
167  size_t aligned_capacity = roundup(bytes, footer_align) + footer_size;
168
169  void* result = upstream->allocate(aligned_capacity, align);
170
171  __chunk_footer* h = (__chunk_footer*)((char*)result + aligned_capacity - footer_size);
172  h->__next_        = __first_;
173  h->__start_       = (char*)result;
174  h->__align_       = align;
175  __first_          = h;
176  return result;
177}
178
179void unsynchronized_pool_resource::__adhoc_pool::__do_deallocate(
180    memory_resource* upstream, void* p, size_t bytes, size_t align) {
181  _LIBCPP_ASSERT_NON_NULL(__first_ != nullptr, "deallocating a block that was not allocated with this allocator");
182  if (__first_->__start_ == p) {
183    __chunk_footer* next = __first_->__next_;
184    upstream->deallocate(p, __first_->__allocation_size(), __first_->__align_);
185    __first_ = next;
186  } else {
187    for (__chunk_footer* h = __first_; h->__next_ != nullptr; h = h->__next_) {
188      if (h->__next_->__start_ == p) {
189        __chunk_footer* next = h->__next_->__next_;
190        upstream->deallocate(p, h->__next_->__allocation_size(), h->__next_->__align_);
191        h->__next_ = next;
192        return;
193      }
194    }
195    // The request to deallocate memory ends up being a no-op, likely resulting in a memory leak.
196    _LIBCPP_ASSERT_VALID_DEALLOCATION(false, "deallocating a block that was not allocated with this allocator");
197  }
198}
199
200class unsynchronized_pool_resource::__fixed_pool {
201  struct __chunk_footer {
202    __chunk_footer* __next_;
203    char* __start_;
204    size_t __align_;
205    size_t __allocation_size() { return (reinterpret_cast<char*>(this) - __start_) + sizeof(*this); }
206  };
207
208  struct __vacancy_header {
209    __vacancy_header* __next_vacancy_;
210  };
211
212  __chunk_footer* __first_chunk_     = nullptr;
213  __vacancy_header* __first_vacancy_ = nullptr;
214
215public:
216  explicit __fixed_pool() = default;
217
218  void __release_ptr(memory_resource* upstream) {
219    __first_vacancy_ = nullptr;
220    while (__first_chunk_ != nullptr) {
221      __chunk_footer* next = __first_chunk_->__next_;
222      upstream->deallocate(__first_chunk_->__start_, __first_chunk_->__allocation_size(), __first_chunk_->__align_);
223      __first_chunk_ = next;
224    }
225  }
226
227  void* __try_allocate_from_vacancies() {
228    if (__first_vacancy_ != nullptr) {
229      void* result     = __first_vacancy_;
230      __first_vacancy_ = __first_vacancy_->__next_vacancy_;
231      return result;
232    }
233    return nullptr;
234  }
235
236  void* __allocate_in_new_chunk(memory_resource* upstream, size_t block_size, size_t chunk_size) {
237    _LIBCPP_ASSERT_INTERNAL(chunk_size % block_size == 0, "");
238    static_assert(__default_alignment >= alignof(std::max_align_t), "");
239    static_assert(__default_alignment >= alignof(__chunk_footer), "");
240    static_assert(__default_alignment >= alignof(__vacancy_header), "");
241
242    const size_t footer_size  = sizeof(__chunk_footer);
243    const size_t footer_align = alignof(__chunk_footer);
244
245    size_t aligned_capacity = roundup(chunk_size, footer_align) + footer_size;
246
247    void* result = upstream->allocate(aligned_capacity, __default_alignment);
248
249    __chunk_footer* h = (__chunk_footer*)((char*)result + aligned_capacity - footer_size);
250    h->__next_        = __first_chunk_;
251    h->__start_       = (char*)result;
252    h->__align_       = __default_alignment;
253    __first_chunk_    = h;
254
255    if (chunk_size > block_size) {
256      __vacancy_header* last_vh = this->__first_vacancy_;
257      for (size_t i = block_size; i != chunk_size; i += block_size) {
258        __vacancy_header* vh = (__vacancy_header*)((char*)result + i);
259        vh->__next_vacancy_  = last_vh;
260        last_vh              = vh;
261      }
262      this->__first_vacancy_ = last_vh;
263    }
264    return result;
265  }
266
267  void __evacuate(void* p) {
268    __vacancy_header* vh = (__vacancy_header*)(p);
269    vh->__next_vacancy_  = __first_vacancy_;
270    __first_vacancy_     = vh;
271  }
272
273  size_t __previous_chunk_size_in_bytes() const { return __first_chunk_ ? __first_chunk_->__allocation_size() : 0; }
274
275  static const size_t __default_alignment = alignof(max_align_t);
276};
277
278size_t unsynchronized_pool_resource::__pool_block_size(int i) const { return size_t(1) << __log2_pool_block_size(i); }
279
280int unsynchronized_pool_resource::__log2_pool_block_size(int i) const { return (i + __log2_smallest_block_size); }
281
282int unsynchronized_pool_resource::__pool_index(size_t bytes, size_t align) const {
283  if (align > alignof(std::max_align_t) || bytes > (size_t(1) << __num_fixed_pools_))
284    return __num_fixed_pools_;
285  else {
286    int i = 0;
287    bytes = (bytes > align) ? bytes : align;
288    bytes -= 1;
289    bytes >>= __log2_smallest_block_size;
290    while (bytes != 0) {
291      bytes >>= 1;
292      i += 1;
293    }
294    return i;
295  }
296}
297
298unsynchronized_pool_resource::unsynchronized_pool_resource(const pool_options& opts, memory_resource* upstream)
299    : __res_(upstream), __fixed_pools_(nullptr) {
300  size_t largest_block_size;
301  if (opts.largest_required_pool_block == 0)
302    largest_block_size = __default_largest_block_size;
303  else if (opts.largest_required_pool_block < __smallest_block_size)
304    largest_block_size = __smallest_block_size;
305  else if (opts.largest_required_pool_block > __max_largest_block_size)
306    largest_block_size = __max_largest_block_size;
307  else
308    largest_block_size = opts.largest_required_pool_block;
309
310  if (opts.max_blocks_per_chunk == 0)
311    __options_max_blocks_per_chunk_ = __max_blocks_per_chunk;
312  else if (opts.max_blocks_per_chunk < __min_blocks_per_chunk)
313    __options_max_blocks_per_chunk_ = __min_blocks_per_chunk;
314  else if (opts.max_blocks_per_chunk > __max_blocks_per_chunk)
315    __options_max_blocks_per_chunk_ = __max_blocks_per_chunk;
316  else
317    __options_max_blocks_per_chunk_ = opts.max_blocks_per_chunk;
318
319  __num_fixed_pools_ = 1;
320  size_t capacity    = __smallest_block_size;
321  while (capacity < largest_block_size) {
322    capacity <<= 1;
323    __num_fixed_pools_ += 1;
324  }
325}
326
327pool_options unsynchronized_pool_resource::options() const {
328  pool_options p;
329  p.max_blocks_per_chunk        = __options_max_blocks_per_chunk_;
330  p.largest_required_pool_block = __pool_block_size(__num_fixed_pools_ - 1);
331  return p;
332}
333
334void unsynchronized_pool_resource::release() {
335  __adhoc_pool_.__release_ptr(__res_);
336  if (__fixed_pools_ != nullptr) {
337    const int n = __num_fixed_pools_;
338    for (int i = 0; i < n; ++i)
339      __fixed_pools_[i].__release_ptr(__res_);
340    __res_->deallocate(__fixed_pools_, __num_fixed_pools_ * sizeof(__fixed_pool), alignof(__fixed_pool));
341    __fixed_pools_ = nullptr;
342  }
343}
344
345void* unsynchronized_pool_resource::do_allocate(size_t bytes, size_t align) {
346  // A pointer to allocated storage (6.6.4.4.1) with a size of at least bytes.
347  // The size and alignment of the allocated memory shall meet the requirements for
348  // a class derived from memory_resource (23.12).
349  // If the pool selected for a block of size bytes is unable to satisfy the memory request
350  // from its own internal data structures, it will call upstream_resource()->allocate()
351  // to obtain more memory. If bytes is larger than that which the largest pool can handle,
352  // then memory will be allocated using upstream_resource()->allocate().
353
354  int i = __pool_index(bytes, align);
355  if (i == __num_fixed_pools_)
356    return __adhoc_pool_.__do_allocate(__res_, bytes, align);
357  else {
358    if (__fixed_pools_ == nullptr) {
359      __fixed_pools_ =
360          (__fixed_pool*)__res_->allocate(__num_fixed_pools_ * sizeof(__fixed_pool), alignof(__fixed_pool));
361      __fixed_pool* first = __fixed_pools_;
362      __fixed_pool* last  = __fixed_pools_ + __num_fixed_pools_;
363      for (__fixed_pool* pool = first; pool != last; ++pool)
364        ::new ((void*)pool) __fixed_pool;
365    }
366    void* result = __fixed_pools_[i].__try_allocate_from_vacancies();
367    if (result == nullptr) {
368      auto min = [](size_t a, size_t b) { return a < b ? a : b; };
369      auto max = [](size_t a, size_t b) { return a < b ? b : a; };
370
371      size_t prev_chunk_size_in_bytes  = __fixed_pools_[i].__previous_chunk_size_in_bytes();
372      size_t prev_chunk_size_in_blocks = prev_chunk_size_in_bytes >> __log2_pool_block_size(i);
373
374      size_t chunk_size_in_blocks;
375
376      if (prev_chunk_size_in_blocks == 0) {
377        size_t min_blocks_per_chunk = max(__min_bytes_per_chunk >> __log2_pool_block_size(i), __min_blocks_per_chunk);
378        chunk_size_in_blocks        = min_blocks_per_chunk;
379      } else {
380        static_assert(__max_bytes_per_chunk <= SIZE_MAX - (__max_bytes_per_chunk / 4), "unsigned overflow is possible");
381        chunk_size_in_blocks = prev_chunk_size_in_blocks + (prev_chunk_size_in_blocks / 4);
382      }
383
384      size_t max_blocks_per_chunk =
385          min((__max_bytes_per_chunk >> __log2_pool_block_size(i)),
386              min(__max_blocks_per_chunk, __options_max_blocks_per_chunk_));
387      if (chunk_size_in_blocks > max_blocks_per_chunk)
388        chunk_size_in_blocks = max_blocks_per_chunk;
389
390      size_t block_size = __pool_block_size(i);
391
392      size_t chunk_size_in_bytes = (chunk_size_in_blocks << __log2_pool_block_size(i));
393      result                     = __fixed_pools_[i].__allocate_in_new_chunk(__res_, block_size, chunk_size_in_bytes);
394    }
395    return result;
396  }
397}
398
399void unsynchronized_pool_resource::do_deallocate(void* p, size_t bytes, size_t align) {
400  // Returns the memory at p to the pool. It is unspecified if,
401  // or under what circumstances, this operation will result in
402  // a call to upstream_resource()->deallocate().
403
404  int i = __pool_index(bytes, align);
405  if (i == __num_fixed_pools_)
406    return __adhoc_pool_.__do_deallocate(__res_, p, bytes, align);
407  else {
408    _LIBCPP_ASSERT_NON_NULL(
409        __fixed_pools_ != nullptr, "deallocating a block that was not allocated with this allocator");
410    __fixed_pools_[i].__evacuate(p);
411  }
412}
413
414bool synchronized_pool_resource::do_is_equal(const memory_resource& other) const noexcept { return &other == this; }
415
416// 23.12.6, mem.res.monotonic.buffer
417
418constexpr size_t __default_growth_factor = 2;
419
420static void* align_down(size_t align, size_t size, void*& ptr, size_t& space) {
421  if (size > space)
422    return nullptr;
423
424  char* p1      = static_cast<char*>(ptr);
425  char* new_ptr = reinterpret_cast<char*>(reinterpret_cast<uintptr_t>(p1 - size) & ~(align - 1));
426
427  if (new_ptr < (p1 - space))
428    return nullptr;
429
430  ptr = new_ptr;
431  space -= p1 - new_ptr;
432
433  return ptr;
434}
435
436template <bool is_initial, typename Chunk>
437void* __try_allocate_from_chunk(Chunk& self, size_t bytes, size_t align) {
438  if constexpr (is_initial) {
439    // only for __initial_descriptor.
440    // if __initial_descriptor.__cur_ equals nullptr, means no available buffer given when ctor.
441    // here we just return nullptr, let the caller do the next handling.
442    if (!self.__cur_)
443      return nullptr;
444  }
445  void* new_ptr       = static_cast<void*>(self.__cur_);
446  size_t new_capacity = (self.__cur_ - self.__start_);
447  void* aligned_ptr   = align_down(align, bytes, new_ptr, new_capacity);
448  if (aligned_ptr != nullptr)
449    self.__cur_ = static_cast<char*>(new_ptr);
450  return aligned_ptr;
451}
452
453void* monotonic_buffer_resource::do_allocate(size_t bytes, size_t align) {
454  const size_t footer_size  = sizeof(__chunk_footer);
455  const size_t footer_align = alignof(__chunk_footer);
456
457  auto previous_allocation_size = [&]() {
458    if (__chunks_ != nullptr)
459      return __chunks_->__allocation_size();
460
461    size_t newsize = (__initial_.__start_ != nullptr) ? (__initial_.__end_ - __initial_.__start_) : __initial_.__size_;
462
463    return roundup(newsize, footer_align) + footer_size;
464  };
465
466  if (void* result = __try_allocate_from_chunk<true, __initial_descriptor>(__initial_, bytes, align))
467    return result;
468  if (__chunks_ != nullptr) {
469    if (void* result = __try_allocate_from_chunk<false, __chunk_footer>(*__chunks_, bytes, align))
470      return result;
471  }
472
473  // Allocate a brand-new chunk.
474
475  if (align < footer_align)
476    align = footer_align;
477
478  size_t aligned_capacity  = roundup(bytes, footer_align) + footer_size;
479  size_t previous_capacity = previous_allocation_size();
480
481  if (aligned_capacity <= previous_capacity) {
482    size_t newsize   = __default_growth_factor * (previous_capacity - footer_size);
483    aligned_capacity = roundup(newsize, footer_align) + footer_size;
484  }
485
486  char* start            = (char*)__res_->allocate(aligned_capacity, align);
487  auto end               = start + aligned_capacity - footer_size;
488  __chunk_footer* footer = (__chunk_footer*)(end);
489  footer->__next_        = __chunks_;
490  footer->__start_       = start;
491  footer->__cur_         = end;
492  footer->__align_       = align;
493  __chunks_              = footer;
494
495  return __try_allocate_from_chunk<false, __chunk_footer>(*__chunks_, bytes, align);
496}
497
498} // namespace pmr
499
500_LIBCPP_END_NAMESPACE_STD