master
  1//===----------------------------------------------------------------------===//
  2//
  3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4// See https://llvm.org/LICENSE.txt for license information.
  5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6//
  7//===----------------------------------------------------------------------===//
  8
  9#ifndef _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H
 10#define _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H
 11
 12#include <__config>
 13#include <__random/clamp_to_integral.h>
 14#include <__random/exponential_distribution.h>
 15#include <__random/is_valid.h>
 16#include <__random/normal_distribution.h>
 17#include <__random/uniform_real_distribution.h>
 18#include <cmath>
 19#include <iosfwd>
 20#include <limits>
 21
 22#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
 23#  pragma GCC system_header
 24#endif
 25
 26_LIBCPP_PUSH_MACROS
 27#include <__undef_macros>
 28
 29_LIBCPP_BEGIN_NAMESPACE_STD
 30
 31template <class _IntType = int>
 32class poisson_distribution {
 33  static_assert(__libcpp_random_is_valid_inttype<_IntType>::value, "IntType must be a supported integer type");
 34
 35public:
 36  // types
 37  typedef _IntType result_type;
 38
 39  class param_type {
 40    double __mean_;
 41    double __s_;
 42    double __d_;
 43    double __l_;
 44    double __omega_;
 45    double __c0_;
 46    double __c1_;
 47    double __c2_;
 48    double __c3_;
 49    double __c_;
 50
 51  public:
 52    typedef poisson_distribution distribution_type;
 53
 54    _LIBCPP_HIDE_FROM_ABI explicit param_type(double __mean = 1.0);
 55
 56    _LIBCPP_HIDE_FROM_ABI double mean() const { return __mean_; }
 57
 58    friend _LIBCPP_HIDE_FROM_ABI bool operator==(const param_type& __x, const param_type& __y) {
 59      return __x.__mean_ == __y.__mean_;
 60    }
 61    friend _LIBCPP_HIDE_FROM_ABI bool operator!=(const param_type& __x, const param_type& __y) { return !(__x == __y); }
 62
 63    friend class poisson_distribution;
 64  };
 65
 66private:
 67  param_type __p_;
 68
 69public:
 70  // constructors and reset functions
 71#ifndef _LIBCPP_CXX03_LANG
 72  _LIBCPP_HIDE_FROM_ABI poisson_distribution() : poisson_distribution(1.0) {}
 73  _LIBCPP_HIDE_FROM_ABI explicit poisson_distribution(double __mean) : __p_(__mean) {}
 74#else
 75  _LIBCPP_HIDE_FROM_ABI explicit poisson_distribution(double __mean = 1.0) : __p_(__mean) {}
 76#endif
 77  _LIBCPP_HIDE_FROM_ABI explicit poisson_distribution(const param_type& __p) : __p_(__p) {}
 78  _LIBCPP_HIDE_FROM_ABI void reset() {}
 79
 80  // generating functions
 81  template <class _URNG>
 82  _LIBCPP_HIDE_FROM_ABI result_type operator()(_URNG& __g) {
 83    return (*this)(__g, __p_);
 84  }
 85  template <class _URNG>
 86  _LIBCPP_HIDE_FROM_ABI result_type operator()(_URNG& __g, const param_type& __p);
 87
 88  // property functions
 89  _LIBCPP_HIDE_FROM_ABI double mean() const { return __p_.mean(); }
 90
 91  _LIBCPP_HIDE_FROM_ABI param_type param() const { return __p_; }
 92  _LIBCPP_HIDE_FROM_ABI void param(const param_type& __p) { __p_ = __p; }
 93
 94  _LIBCPP_HIDE_FROM_ABI result_type min() const { return 0; }
 95  _LIBCPP_HIDE_FROM_ABI result_type max() const { return numeric_limits<result_type>::max(); }
 96
 97  friend _LIBCPP_HIDE_FROM_ABI bool operator==(const poisson_distribution& __x, const poisson_distribution& __y) {
 98    return __x.__p_ == __y.__p_;
 99  }
100  friend _LIBCPP_HIDE_FROM_ABI bool operator!=(const poisson_distribution& __x, const poisson_distribution& __y) {
101    return !(__x == __y);
102  }
103};
104
105template <class _IntType>
106poisson_distribution<_IntType>::param_type::param_type(double __mean)
107    // According to the standard `inf` is a valid input, but it causes the
108    // distribution to hang, so we replace it with the maximum representable
109    // mean.
110    : __mean_(isinf(__mean) ? numeric_limits<double>::max() : __mean) {
111  if (__mean_ < 10) {
112    __s_     = 0;
113    __d_     = 0;
114    __l_     = std::exp(-__mean_);
115    __omega_ = 0;
116    __c3_    = 0;
117    __c2_    = 0;
118    __c1_    = 0;
119    __c0_    = 0;
120    __c_     = 0;
121  } else {
122    __s_        = std::sqrt(__mean_);
123    __d_        = 6 * __mean_ * __mean_;
124    __l_        = std::trunc(__mean_ - 1.1484);
125    __omega_    = .3989423 / __s_;
126    double __b1 = .4166667E-1 / __mean_;
127    double __b2 = .3 * __b1 * __b1;
128    __c3_       = .1428571 * __b1 * __b2;
129    __c2_       = __b2 - 15. * __c3_;
130    __c1_       = __b1 - 6. * __b2 + 45. * __c3_;
131    __c0_       = 1. - __b1 + 3. * __b2 - 15. * __c3_;
132    __c_        = .1069 / __mean_;
133  }
134}
135
136template <class _IntType>
137template <class _URNG>
138_IntType poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr) {
139  static_assert(__libcpp_random_is_valid_urng<_URNG>::value, "");
140  double __tx;
141  uniform_real_distribution<double> __urd;
142  if (__pr.__mean_ < 10) {
143    __tx = 0;
144    for (double __p = __urd(__urng); __p > __pr.__l_; ++__tx)
145      __p *= __urd(__urng);
146  } else {
147    double __difmuk;
148    double __g = __pr.__mean_ + __pr.__s_ * normal_distribution<double>()(__urng);
149    double __u;
150    if (__g > 0) {
151      __tx = std::trunc(__g);
152      if (__tx >= __pr.__l_)
153        return std::__clamp_to_integral<result_type>(__tx);
154      __difmuk = __pr.__mean_ - __tx;
155      __u      = __urd(__urng);
156      if (__pr.__d_ * __u >= __difmuk * __difmuk * __difmuk)
157        return std::__clamp_to_integral<result_type>(__tx);
158    }
159    exponential_distribution<double> __edist;
160    for (bool __using_exp_dist = false; true; __using_exp_dist = true) {
161      double __e;
162      if (__using_exp_dist || __g <= 0) {
163        double __t;
164        do {
165          __e = __edist(__urng);
166          __u = __urd(__urng);
167          __u += __u - 1;
168          __t = 1.8 + (__u < 0 ? -__e : __e);
169        } while (__t <= -.6744);
170        __tx             = std::trunc(__pr.__mean_ + __pr.__s_ * __t);
171        __difmuk         = __pr.__mean_ - __tx;
172        __using_exp_dist = true;
173      }
174      double __px;
175      double __py;
176      if (__tx < 10 && __tx >= 0) {
177        const double __fac[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880};
178        __px                 = -__pr.__mean_;
179        __py                 = std::pow(__pr.__mean_, (double)__tx) / __fac[static_cast<int>(__tx)];
180      } else {
181        double __del = .8333333E-1 / __tx;
182        __del -= 4.8 * __del * __del * __del;
183        double __v = __difmuk / __tx;
184        if (std::abs(__v) > 0.25)
185          __px = __tx * std::log(1 + __v) - __difmuk - __del;
186        else
187          __px = __tx * __v * __v *
188                     (((((((.1250060 * __v + -.1384794) * __v + .1421878) * __v + -.1661269) * __v + .2000118) * __v +
189                        -.2500068) *
190                           __v +
191                       .3333333) *
192                          __v +
193                      -.5) -
194                 __del;
195        __py = .3989423 / std::sqrt(__tx);
196      }
197      double __r  = (0.5 - __difmuk) / __pr.__s_;
198      double __r2 = __r * __r;
199      double __fx = -0.5 * __r2;
200      double __fy = __pr.__omega_ * (((__pr.__c3_ * __r2 + __pr.__c2_) * __r2 + __pr.__c1_) * __r2 + __pr.__c0_);
201      if (__using_exp_dist) {
202        if (__pr.__c_ * std::abs(__u) <= __py * std::exp(__px + __e) - __fy * std::exp(__fx + __e))
203          break;
204      } else {
205        if (__fy - __u * __fy <= __py * std::exp(__px - __fx))
206          break;
207      }
208    }
209  }
210  return std::__clamp_to_integral<result_type>(__tx);
211}
212
213template <class _CharT, class _Traits, class _IntType>
214_LIBCPP_HIDE_FROM_ABI basic_ostream<_CharT, _Traits>&
215operator<<(basic_ostream<_CharT, _Traits>& __os, const poisson_distribution<_IntType>& __x) {
216  __save_flags<_CharT, _Traits> __lx(__os);
217  typedef basic_ostream<_CharT, _Traits> _OStream;
218  __os.flags(_OStream::dec | _OStream::left | _OStream::fixed | _OStream::scientific);
219  return __os << __x.mean();
220}
221
222template <class _CharT, class _Traits, class _IntType>
223_LIBCPP_HIDE_FROM_ABI basic_istream<_CharT, _Traits>&
224operator>>(basic_istream<_CharT, _Traits>& __is, poisson_distribution<_IntType>& __x) {
225  typedef poisson_distribution<_IntType> _Eng;
226  typedef typename _Eng::param_type param_type;
227  __save_flags<_CharT, _Traits> __lx(__is);
228  typedef basic_istream<_CharT, _Traits> _Istream;
229  __is.flags(_Istream::dec | _Istream::skipws);
230  double __mean;
231  __is >> __mean;
232  if (!__is.fail())
233    __x.param(param_type(__mean));
234  return __is;
235}
236
237_LIBCPP_END_NAMESPACE_STD
238
239_LIBCPP_POP_MACROS
240
241#endif // _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H