1/* origin: FreeBSD /usr/src/lib/msun/src/s_fmal.c */
  2/*-
  3 * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
  4 * All rights reserved.
  5 *
  6 * Redistribution and use in source and binary forms, with or without
  7 * modification, are permitted provided that the following conditions
  8 * are met:
  9 * 1. Redistributions of source code must retain the above copyright
 10 *    notice, this list of conditions and the following disclaimer.
 11 * 2. Redistributions in binary form must reproduce the above copyright
 12 *    notice, this list of conditions and the following disclaimer in the
 13 *    documentation and/or other materials provided with the distribution.
 14 *
 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 25 * SUCH DAMAGE.
 26 */
 27
 28
 29#include "libm.h"
 30#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
 31long double fmal(long double x, long double y, long double z)
 32{
 33	return fma(x, y, z);
 34}
 35#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
 36#include <fenv.h>
 37#if LDBL_MANT_DIG == 64
 38#define LASTBIT(u) (u.i.m & 1)
 39#define SPLIT (0x1p32L + 1)
 40#elif LDBL_MANT_DIG == 113
 41#define LASTBIT(u) (u.i.lo & 1)
 42#define SPLIT (0x1p57L + 1)
 43#endif
 44
 45/*
 46 * A struct dd represents a floating-point number with twice the precision
 47 * of a long double.  We maintain the invariant that "hi" stores the high-order
 48 * bits of the result.
 49 */
 50struct dd {
 51	long double hi;
 52	long double lo;
 53};
 54
 55/*
 56 * Compute a+b exactly, returning the exact result in a struct dd.  We assume
 57 * that both a and b are finite, but make no assumptions about their relative
 58 * magnitudes.
 59 */
 60static inline struct dd dd_add(long double a, long double b)
 61{
 62	struct dd ret;
 63	long double s;
 64
 65	ret.hi = a + b;
 66	s = ret.hi - a;
 67	ret.lo = (a - (ret.hi - s)) + (b - s);
 68	return (ret);
 69}
 70
 71/*
 72 * Compute a+b, with a small tweak:  The least significant bit of the
 73 * result is adjusted into a sticky bit summarizing all the bits that
 74 * were lost to rounding.  This adjustment negates the effects of double
 75 * rounding when the result is added to another number with a higher
 76 * exponent.  For an explanation of round and sticky bits, see any reference
 77 * on FPU design, e.g.,
 78 *
 79 *     J. Coonen.  An Implementation Guide to a Proposed Standard for
 80 *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
 81 */
 82static inline long double add_adjusted(long double a, long double b)
 83{
 84	struct dd sum;
 85	union ldshape u;
 86
 87	sum = dd_add(a, b);
 88	if (sum.lo != 0) {
 89		u.f = sum.hi;
 90		if (!LASTBIT(u))
 91			sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
 92	}
 93	return (sum.hi);
 94}
 95
 96/*
 97 * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
 98 * that the result will be subnormal, and care is taken to ensure that
 99 * double rounding does not occur.
100 */
101static inline long double add_and_denormalize(long double a, long double b, int scale)
102{
103	struct dd sum;
104	int bits_lost;
105	union ldshape u;
106
107	sum = dd_add(a, b);
108
109	/*
110	 * If we are losing at least two bits of accuracy to denormalization,
111	 * then the first lost bit becomes a round bit, and we adjust the
112	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
113	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
114	 * break any ties in the correct direction.
115	 *
116	 * If we are losing only one bit to denormalization, however, we must
117	 * break the ties manually.
118	 */
119	if (sum.lo != 0) {
120		u.f = sum.hi;
121		bits_lost = -u.i.se - scale + 1;
122		if ((bits_lost != 1) ^ LASTBIT(u))
123			sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
124	}
125	return scalbnl(sum.hi, scale);
126}
127
128/*
129 * Compute a*b exactly, returning the exact result in a struct dd.  We assume
130 * that both a and b are normalized, so no underflow or overflow will occur.
131 * The current rounding mode must be round-to-nearest.
132 */
133static inline struct dd dd_mul(long double a, long double b)
134{
135	struct dd ret;
136	long double ha, hb, la, lb, p, q;
137
138	p = a * SPLIT;
139	ha = a - p;
140	ha += p;
141	la = a - ha;
142
143	p = b * SPLIT;
144	hb = b - p;
145	hb += p;
146	lb = b - hb;
147
148	p = ha * hb;
149	q = ha * lb + la * hb;
150
151	ret.hi = p + q;
152	ret.lo = p - ret.hi + q + la * lb;
153	return (ret);
154}
155
156/*
157 * Fused multiply-add: Compute x * y + z with a single rounding error.
158 *
159 * We use scaling to avoid overflow/underflow, along with the
160 * canonical precision-doubling technique adapted from:
161 *
162 *      Dekker, T.  A Floating-Point Technique for Extending the
163 *      Available Precision.  Numer. Math. 18, 224-242 (1971).
164 */
165long double fmal(long double x, long double y, long double z)
166{
167	#pragma STDC FENV_ACCESS ON
168	long double xs, ys, zs, adj;
169	struct dd xy, r;
170	int oround;
171	int ex, ey, ez;
172	int spread;
173
174	/*
175	 * Handle special cases. The order of operations and the particular
176	 * return values here are crucial in handling special cases involving
177	 * infinities, NaNs, overflows, and signed zeroes correctly.
178	 */
179	if (!isfinite(x) || !isfinite(y))
180		return (x * y + z);
181	if (!isfinite(z))
182		return (z);
183	if (x == 0.0 || y == 0.0)
184		return (x * y + z);
185	if (z == 0.0)
186		return (x * y);
187
188	xs = frexpl(x, &ex);
189	ys = frexpl(y, &ey);
190	zs = frexpl(z, &ez);
191	oround = fegetround();
192	spread = ex + ey - ez;
193
194	/*
195	 * If x * y and z are many orders of magnitude apart, the scaling
196	 * will overflow, so we handle these cases specially.  Rounding
197	 * modes other than FE_TONEAREST are painful.
198	 */
199	if (spread < -LDBL_MANT_DIG) {
200#ifdef FE_INEXACT
201		feraiseexcept(FE_INEXACT);
202#endif
203#ifdef FE_UNDERFLOW
204		if (!isnormal(z))
205			feraiseexcept(FE_UNDERFLOW);
206#endif
207		switch (oround) {
208		default: /* FE_TONEAREST */
209			return (z);
210#ifdef FE_TOWARDZERO
211		case FE_TOWARDZERO:
212			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
213				return (z);
214			else
215				return (nextafterl(z, 0));
216#endif
217#ifdef FE_DOWNWARD
218		case FE_DOWNWARD:
219			if (x > 0.0 ^ y < 0.0)
220				return (z);
221			else
222				return (nextafterl(z, -INFINITY));
223#endif
224#ifdef FE_UPWARD
225		case FE_UPWARD:
226			if (x > 0.0 ^ y < 0.0)
227				return (nextafterl(z, INFINITY));
228			else
229				return (z);
230#endif
231		}
232	}
233	if (spread <= LDBL_MANT_DIG * 2)
234		zs = scalbnl(zs, -spread);
235	else
236		zs = copysignl(LDBL_MIN, zs);
237
238	fesetround(FE_TONEAREST);
239
240	/*
241	 * Basic approach for round-to-nearest:
242	 *
243	 *     (xy.hi, xy.lo) = x * y           (exact)
244	 *     (r.hi, r.lo)   = xy.hi + z       (exact)
245	 *     adj = xy.lo + r.lo               (inexact; low bit is sticky)
246	 *     result = r.hi + adj              (correctly rounded)
247	 */
248	xy = dd_mul(xs, ys);
249	r = dd_add(xy.hi, zs);
250
251	spread = ex + ey;
252
253	if (r.hi == 0.0) {
254		/*
255		 * When the addends cancel to 0, ensure that the result has
256		 * the correct sign.
257		 */
258		fesetround(oround);
259#ifdef __wasilibc_unmodified_upstream // WASI doesn't need old GCC workarounds
260		volatile long double vzs = zs; /* XXX gcc CSE bug workaround */
261#else
262		long double vzs = zs;
263#endif
264		return xy.hi + vzs + scalbnl(xy.lo, spread);
265	}
266
267	if (oround != FE_TONEAREST) {
268		/*
269		 * There is no need to worry about double rounding in directed
270		 * rounding modes.
271		 * But underflow may not be raised correctly, example in downward rounding:
272		 * fmal(0x1.0000000001p-16000L, 0x1.0000000001p-400L, -0x1p-16440L)
273		 */
274		long double ret;
275#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
276		int e = fetestexcept(FE_INEXACT);
277		feclearexcept(FE_INEXACT);
278#endif
279		fesetround(oround);
280		adj = r.lo + xy.lo;
281		ret = scalbnl(r.hi + adj, spread);
282#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
283		if (ilogbl(ret) < -16382 && fetestexcept(FE_INEXACT))
284			feraiseexcept(FE_UNDERFLOW);
285		else if (e)
286			feraiseexcept(FE_INEXACT);
287#endif
288		return ret;
289	}
290
291	adj = add_adjusted(r.lo, xy.lo);
292	if (spread + ilogbl(r.hi) > -16383)
293		return scalbnl(r.hi + adj, spread);
294	else
295		return add_and_denormalize(r.hi, adj, spread);
296}
297#endif