master
  1/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_tgammal.c */
  2/*
  3 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
  4 *
  5 * Permission to use, copy, modify, and distribute this software for any
  6 * purpose with or without fee is hereby granted, provided that the above
  7 * copyright notice and this permission notice appear in all copies.
  8 *
  9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 16 */
 17/*
 18 *      Gamma function
 19 *
 20 *
 21 * SYNOPSIS:
 22 *
 23 * long double x, y, tgammal();
 24 *
 25 * y = tgammal( x );
 26 *
 27 *
 28 * DESCRIPTION:
 29 *
 30 * Returns gamma function of the argument.  The result is
 31 * correctly signed.
 32 *
 33 * Arguments |x| <= 13 are reduced by recurrence and the function
 34 * approximated by a rational function of degree 7/8 in the
 35 * interval (2,3).  Large arguments are handled by Stirling's
 36 * formula. Large negative arguments are made positive using
 37 * a reflection formula.
 38 *
 39 *
 40 * ACCURACY:
 41 *
 42 *                      Relative error:
 43 * arithmetic   domain     # trials      peak         rms
 44 *    IEEE     -40,+40      10000       3.6e-19     7.9e-20
 45 *    IEEE    -1755,+1755   10000       4.8e-18     6.5e-19
 46 *
 47 * Accuracy for large arguments is dominated by error in powl().
 48 *
 49 */
 50
 51#include "libm.h"
 52
 53#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
 54long double tgammal(long double x)
 55{
 56	return tgamma(x);
 57}
 58#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
 59/*
 60tgamma(x+2) = tgamma(x+2) P(x)/Q(x)
 610 <= x <= 1
 62Relative error
 63n=7, d=8
 64Peak error =  1.83e-20
 65Relative error spread =  8.4e-23
 66*/
 67static const long double P[8] = {
 68 4.212760487471622013093E-5L,
 69 4.542931960608009155600E-4L,
 70 4.092666828394035500949E-3L,
 71 2.385363243461108252554E-2L,
 72 1.113062816019361559013E-1L,
 73 3.629515436640239168939E-1L,
 74 8.378004301573126728826E-1L,
 75 1.000000000000000000009E0L,
 76};
 77static const long double Q[9] = {
 78-1.397148517476170440917E-5L,
 79 2.346584059160635244282E-4L,
 80-1.237799246653152231188E-3L,
 81-7.955933682494738320586E-4L,
 82 2.773706565840072979165E-2L,
 83-4.633887671244534213831E-2L,
 84-2.243510905670329164562E-1L,
 85 4.150160950588455434583E-1L,
 86 9.999999999999999999908E-1L,
 87};
 88
 89/*
 90static const long double P[] = {
 91-3.01525602666895735709e0L,
 92-3.25157411956062339893e1L,
 93-2.92929976820724030353e2L,
 94-1.70730828800510297666e3L,
 95-7.96667499622741999770e3L,
 96-2.59780216007146401957e4L,
 97-5.99650230220855581642e4L,
 98-7.15743521530849602425e4L
 99};
100static const long double Q[] = {
101 1.00000000000000000000e0L,
102-1.67955233807178858919e1L,
103 8.85946791747759881659e1L,
104 5.69440799097468430177e1L,
105-1.98526250512761318471e3L,
106 3.31667508019495079814e3L,
107 1.60577839621734713377e4L,
108-2.97045081369399940529e4L,
109-7.15743521530849602412e4L
110};
111*/
112#define MAXGAML 1755.455L
113/*static const long double LOGPI = 1.14472988584940017414L;*/
114
115/* Stirling's formula for the gamma function
116tgamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))
117z(x) = x
11813 <= x <= 1024
119Relative error
120n=8, d=0
121Peak error =  9.44e-21
122Relative error spread =  8.8e-4
123*/
124static const long double STIR[9] = {
125 7.147391378143610789273E-4L,
126-2.363848809501759061727E-5L,
127-5.950237554056330156018E-4L,
128 6.989332260623193171870E-5L,
129 7.840334842744753003862E-4L,
130-2.294719747873185405699E-4L,
131-2.681327161876304418288E-3L,
132 3.472222222230075327854E-3L,
133 8.333333333333331800504E-2L,
134};
135
136#define MAXSTIR 1024.0L
137static const long double SQTPI = 2.50662827463100050242E0L;
138
139/* 1/tgamma(x) = z P(z)
140 * z(x) = 1/x
141 * 0 < x < 0.03125
142 * Peak relative error 4.2e-23
143 */
144static const long double S[9] = {
145-1.193945051381510095614E-3L,
146 7.220599478036909672331E-3L,
147-9.622023360406271645744E-3L,
148-4.219773360705915470089E-2L,
149 1.665386113720805206758E-1L,
150-4.200263503403344054473E-2L,
151-6.558780715202540684668E-1L,
152 5.772156649015328608253E-1L,
153 1.000000000000000000000E0L,
154};
155
156/* 1/tgamma(-x) = z P(z)
157 * z(x) = 1/x
158 * 0 < x < 0.03125
159 * Peak relative error 5.16e-23
160 * Relative error spread =  2.5e-24
161 */
162static const long double SN[9] = {
163 1.133374167243894382010E-3L,
164 7.220837261893170325704E-3L,
165 9.621911155035976733706E-3L,
166-4.219773343731191721664E-2L,
167-1.665386113944413519335E-1L,
168-4.200263503402112910504E-2L,
169 6.558780715202536547116E-1L,
170 5.772156649015328608727E-1L,
171-1.000000000000000000000E0L,
172};
173
174static const long double PIL = 3.1415926535897932384626L;
175
176/* Gamma function computed by Stirling's formula.
177 */
178static long double stirf(long double x)
179{
180	long double y, w, v;
181
182	w = 1.0/x;
183	/* For large x, use rational coefficients from the analytical expansion.  */
184	if (x > 1024.0)
185		w = (((((6.97281375836585777429E-5L * w
186		 + 7.84039221720066627474E-4L) * w
187		 - 2.29472093621399176955E-4L) * w
188		 - 2.68132716049382716049E-3L) * w
189		 + 3.47222222222222222222E-3L) * w
190		 + 8.33333333333333333333E-2L) * w
191		 + 1.0;
192	else
193		w = 1.0 + w * __polevll(w, STIR, 8);
194	y = expl(x);
195	if (x > MAXSTIR) { /* Avoid overflow in pow() */
196		v = powl(x, 0.5L * x - 0.25L);
197		y = v * (v / y);
198	} else {
199		y = powl(x, x - 0.5L) / y;
200	}
201	y = SQTPI * y * w;
202	return y;
203}
204
205long double tgammal(long double x)
206{
207	long double p, q, z;
208
209	if (!isfinite(x))
210		return x + INFINITY;
211
212	q = fabsl(x);
213	if (q > 13.0) {
214		if (x < 0.0) {
215			p = floorl(q);
216			z = q - p;
217			if (z == 0)
218				return 0 / z;
219			if (q > MAXGAML) {
220				z = 0;
221			} else {
222				if (z > 0.5) {
223					p += 1.0;
224					z = q - p;
225				}
226				z = q * sinl(PIL * z);
227				z = fabsl(z) * stirf(q);
228				z = PIL/z;
229			}
230			if (0.5 * p == floorl(q * 0.5))
231				z = -z;
232		} else if (x > MAXGAML) {
233			z = x * 0x1p16383L;
234		} else {
235			z = stirf(x);
236		}
237		return z;
238	}
239
240	z = 1.0;
241	while (x >= 3.0) {
242		x -= 1.0;
243		z *= x;
244	}
245	while (x < -0.03125L) {
246		z /= x;
247		x += 1.0;
248	}
249	if (x <= 0.03125L)
250		goto small;
251	while (x < 2.0) {
252		z /= x;
253		x += 1.0;
254	}
255	if (x == 2.0)
256		return z;
257
258	x -= 2.0;
259	p = __polevll(x, P, 7);
260	q = __polevll(x, Q, 8);
261	z = z * p / q;
262	return z;
263
264small:
265	/* z==1 if x was originally +-0 */
266	if (x == 0 && z != 1)
267		return x / x;
268	if (x < 0.0) {
269		x = -x;
270		q = z / (x * __polevll(x, SN, 8));
271	} else
272		q = z / (x * __polevll(x, S, 8));
273	return q;
274}
275#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
276// TODO: broken implementation to make things compile
277long double tgammal(long double x)
278{
279	return tgamma(x);
280}
281#endif