master
  1/* origin: OpenBSD /usr/src/lib/libm/src/ld80/s_log1pl.c */
  2/*
  3 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
  4 *
  5 * Permission to use, copy, modify, and distribute this software for any
  6 * purpose with or without fee is hereby granted, provided that the above
  7 * copyright notice and this permission notice appear in all copies.
  8 *
  9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 16 */
 17/*
 18 *      Relative error logarithm
 19 *      Natural logarithm of 1+x, long double precision
 20 *
 21 *
 22 * SYNOPSIS:
 23 *
 24 * long double x, y, log1pl();
 25 *
 26 * y = log1pl( x );
 27 *
 28 *
 29 * DESCRIPTION:
 30 *
 31 * Returns the base e (2.718...) logarithm of 1+x.
 32 *
 33 * The argument 1+x is separated into its exponent and fractional
 34 * parts.  If the exponent is between -1 and +1, the logarithm
 35 * of the fraction is approximated by
 36 *
 37 *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
 38 *
 39 * Otherwise, setting  z = 2(x-1)/x+1),
 40 *
 41 *     log(x) = z + z^3 P(z)/Q(z).
 42 *
 43 *
 44 * ACCURACY:
 45 *
 46 *                      Relative error:
 47 * arithmetic   domain     # trials      peak         rms
 48 *    IEEE     -1.0, 9.0    100000      8.2e-20    2.5e-20
 49 */
 50
 51#include "libm.h"
 52
 53#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
 54long double log1pl(long double x)
 55{
 56	return log1p(x);
 57}
 58#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
 59/* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
 60 * 1/sqrt(2) <= x < sqrt(2)
 61 * Theoretical peak relative error = 2.32e-20
 62 */
 63static const long double P[] = {
 64 4.5270000862445199635215E-5L,
 65 4.9854102823193375972212E-1L,
 66 6.5787325942061044846969E0L,
 67 2.9911919328553073277375E1L,
 68 6.0949667980987787057556E1L,
 69 5.7112963590585538103336E1L,
 70 2.0039553499201281259648E1L,
 71};
 72static const long double Q[] = {
 73/* 1.0000000000000000000000E0,*/
 74 1.5062909083469192043167E1L,
 75 8.3047565967967209469434E1L,
 76 2.2176239823732856465394E2L,
 77 3.0909872225312059774938E2L,
 78 2.1642788614495947685003E2L,
 79 6.0118660497603843919306E1L,
 80};
 81
 82/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
 83 * where z = 2(x-1)/(x+1)
 84 * 1/sqrt(2) <= x < sqrt(2)
 85 * Theoretical peak relative error = 6.16e-22
 86 */
 87static const long double R[4] = {
 88 1.9757429581415468984296E-3L,
 89-7.1990767473014147232598E-1L,
 90 1.0777257190312272158094E1L,
 91-3.5717684488096787370998E1L,
 92};
 93static const long double S[4] = {
 94/* 1.00000000000000000000E0L,*/
 95-2.6201045551331104417768E1L,
 96 1.9361891836232102174846E2L,
 97-4.2861221385716144629696E2L,
 98};
 99static const long double C1 = 6.9314575195312500000000E-1L;
100static const long double C2 = 1.4286068203094172321215E-6L;
101
102#define SQRTH 0.70710678118654752440L
103
104long double log1pl(long double xm1)
105{
106	long double x, y, z;
107	int e;
108
109	if (isnan(xm1))
110		return xm1;
111	if (xm1 == INFINITY)
112		return xm1;
113	if (xm1 == 0.0)
114		return xm1;
115
116	x = xm1 + 1.0;
117
118	/* Test for domain errors.  */
119	if (x <= 0.0) {
120		if (x == 0.0)
121			return -1/(x*x); /* -inf with divbyzero */
122		return 0/0.0f; /* nan with invalid */
123	}
124
125	/* Separate mantissa from exponent.
126	   Use frexp so that denormal numbers will be handled properly.  */
127	x = frexpl(x, &e);
128
129	/* logarithm using log(x) = z + z^3 P(z)/Q(z),
130	   where z = 2(x-1)/x+1)  */
131	if (e > 2 || e < -2) {
132		if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
133			e -= 1;
134			z = x - 0.5;
135			y = 0.5 * z + 0.5;
136		} else { /*  2 (x-1)/(x+1)   */
137			z = x - 0.5;
138			z -= 0.5;
139			y = 0.5 * x  + 0.5;
140		}
141		x = z / y;
142		z = x*x;
143		z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
144		z = z + e * C2;
145		z = z + x;
146		z = z + e * C1;
147		return z;
148	}
149
150	/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
151	if (x < SQRTH) {
152		e -= 1;
153		if (e != 0)
154			x = 2.0 * x - 1.0;
155		else
156			x = xm1;
157	} else {
158		if (e != 0)
159			x = x - 1.0;
160		else
161			x = xm1;
162	}
163	z = x*x;
164	y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6));
165	y = y + e * C2;
166	z = y - 0.5 * z;
167	z = z + x;
168	z = z + e * C1;
169	return z;
170}
171#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
172// TODO: broken implementation to make things compile
173long double log1pl(long double x)
174{
175	return log1p(x);
176}
177#endif