master
  1/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expm1l.c */
  2/*
  3 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
  4 *
  5 * Permission to use, copy, modify, and distribute this software for any
  6 * purpose with or without fee is hereby granted, provided that the above
  7 * copyright notice and this permission notice appear in all copies.
  8 *
  9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 16 */
 17/*
 18 *      Exponential function, minus 1
 19 *      Long double precision
 20 *
 21 *
 22 * SYNOPSIS:
 23 *
 24 * long double x, y, expm1l();
 25 *
 26 * y = expm1l( x );
 27 *
 28 *
 29 * DESCRIPTION:
 30 *
 31 * Returns e (2.71828...) raised to the x power, minus 1.
 32 *
 33 * Range reduction is accomplished by separating the argument
 34 * into an integer k and fraction f such that
 35 *
 36 *     x    k  f
 37 *    e  = 2  e.
 38 *
 39 * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
 40 * in the basic range [-0.5 ln 2, 0.5 ln 2].
 41 *
 42 *
 43 * ACCURACY:
 44 *
 45 *                      Relative error:
 46 * arithmetic   domain     # trials      peak         rms
 47 *    IEEE    -45,+maxarg   200,000     1.2e-19     2.5e-20
 48 */
 49
 50#include "libm.h"
 51
 52#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
 53long double expm1l(long double x)
 54{
 55	return expm1(x);
 56}
 57#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
 58
 59/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
 60   -.5 ln 2  <  x  <  .5 ln 2
 61   Theoretical peak relative error = 3.4e-22  */
 62static const long double
 63P0 = -1.586135578666346600772998894928250240826E4L,
 64P1 =  2.642771505685952966904660652518429479531E3L,
 65P2 = -3.423199068835684263987132888286791620673E2L,
 66P3 =  1.800826371455042224581246202420972737840E1L,
 67P4 = -5.238523121205561042771939008061958820811E-1L,
 68Q0 = -9.516813471998079611319047060563358064497E4L,
 69Q1 =  3.964866271411091674556850458227710004570E4L,
 70Q2 = -7.207678383830091850230366618190187434796E3L,
 71Q3 =  7.206038318724600171970199625081491823079E2L,
 72Q4 = -4.002027679107076077238836622982900945173E1L,
 73/* Q5 = 1.000000000000000000000000000000000000000E0 */
 74/* C1 + C2 = ln 2 */
 75C1 = 6.93145751953125E-1L,
 76C2 = 1.428606820309417232121458176568075500134E-6L,
 77/* ln 2^-65 */
 78minarg = -4.5054566736396445112120088E1L,
 79/* ln 2^16384 */
 80maxarg = 1.1356523406294143949492E4L;
 81
 82long double expm1l(long double x)
 83{
 84	long double px, qx, xx;
 85	int k;
 86
 87	if (isnan(x))
 88		return x;
 89	if (x > maxarg)
 90		return x*0x1p16383L; /* overflow, unless x==inf */
 91	if (x == 0.0)
 92		return x;
 93	if (x < minarg)
 94		return -1.0;
 95
 96	xx = C1 + C2;
 97	/* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
 98	px = floorl(0.5 + x / xx);
 99	k = px;
100	/* remainder times ln 2 */
101	x -= px * C1;
102	x -= px * C2;
103
104	/* Approximate exp(remainder ln 2).*/
105	px = (((( P4 * x + P3) * x + P2) * x + P1) * x + P0) * x;
106	qx = (((( x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
107	xx = x * x;
108	qx = x + (0.5 * xx + xx * px / qx);
109
110	/* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
111	 We have qx = exp(remainder ln 2) - 1, so
112	 exp(x) - 1  =  2^k (qx + 1) - 1  =  2^k qx + 2^k - 1.  */
113	px = scalbnl(1.0, k);
114	x = px * qx + (px - 1.0);
115	return x;
116}
117#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
118// TODO: broken implementation to make things compile
119long double expm1l(long double x)
120{
121	return expm1(x);
122}
123#endif