master
  1/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expl.c */
  2/*
  3 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
  4 *
  5 * Permission to use, copy, modify, and distribute this software for any
  6 * purpose with or without fee is hereby granted, provided that the above
  7 * copyright notice and this permission notice appear in all copies.
  8 *
  9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 16 */
 17/*
 18 *      Exponential function, long double precision
 19 *
 20 *
 21 * SYNOPSIS:
 22 *
 23 * long double x, y, expl();
 24 *
 25 * y = expl( x );
 26 *
 27 *
 28 * DESCRIPTION:
 29 *
 30 * Returns e (2.71828...) raised to the x power.
 31 *
 32 * Range reduction is accomplished by separating the argument
 33 * into an integer k and fraction f such that
 34 *
 35 *     x    k  f
 36 *    e  = 2  e.
 37 *
 38 * A Pade' form of degree 5/6 is used to approximate exp(f) - 1
 39 * in the basic range [-0.5 ln 2, 0.5 ln 2].
 40 *
 41 *
 42 * ACCURACY:
 43 *
 44 *                      Relative error:
 45 * arithmetic   domain     # trials      peak         rms
 46 *    IEEE      +-10000     50000       1.12e-19    2.81e-20
 47 *
 48 *
 49 * Error amplification in the exponential function can be
 50 * a serious matter.  The error propagation involves
 51 * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
 52 * which shows that a 1 lsb error in representing X produces
 53 * a relative error of X times 1 lsb in the function.
 54 * While the routine gives an accurate result for arguments
 55 * that are exactly represented by a long double precision
 56 * computer number, the result contains amplified roundoff
 57 * error for large arguments not exactly represented.
 58 *
 59 *
 60 * ERROR MESSAGES:
 61 *
 62 *   message         condition      value returned
 63 * exp underflow    x < MINLOG         0.0
 64 * exp overflow     x > MAXLOG         MAXNUM
 65 *
 66 */
 67
 68#include "libm.h"
 69
 70#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
 71long double expl(long double x)
 72{
 73	return exp(x);
 74}
 75#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
 76
 77static const long double P[3] = {
 78 1.2617719307481059087798E-4L,
 79 3.0299440770744196129956E-2L,
 80 9.9999999999999999991025E-1L,
 81};
 82static const long double Q[4] = {
 83 3.0019850513866445504159E-6L,
 84 2.5244834034968410419224E-3L,
 85 2.2726554820815502876593E-1L,
 86 2.0000000000000000000897E0L,
 87};
 88static const long double
 89LN2HI = 6.9314575195312500000000E-1L,
 90LN2LO = 1.4286068203094172321215E-6L,
 91LOG2E = 1.4426950408889634073599E0L;
 92
 93long double expl(long double x)
 94{
 95	long double px, xx;
 96	int k;
 97
 98	if (isnan(x))
 99		return x;
100	if (x > 11356.5234062941439488L) /* x > ln(2^16384 - 0.5) */
101		return x * 0x1p16383L;
102	if (x < -11399.4985314888605581L) /* x < ln(2^-16446) */
103		return -0x1p-16445L/x;
104
105	/* Express e**x = e**f 2**k
106	 *   = e**(f + k ln(2))
107	 */
108	px = floorl(LOG2E * x + 0.5);
109	k = px;
110	x -= px * LN2HI;
111	x -= px * LN2LO;
112
113	/* rational approximation of the fractional part:
114	 * e**x =  1 + 2x P(x**2)/(Q(x**2) - x P(x**2))
115	 */
116	xx = x * x;
117	px = x * __polevll(xx, P, 2);
118	x = px/(__polevll(xx, Q, 3) - px);
119	x = 1.0 + 2.0 * x;
120	return scalbnl(x, k);
121}
122#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
123// TODO: broken implementation to make things compile
124long double expl(long double x)
125{
126	return exp(x);
127}
128#endif