master
  1/* origin: FreeBSD /usr/src/lib/msun/src/e_asin.c */
  2/*
  3 * ====================================================
  4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5 *
  6 * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7 * Permission to use, copy, modify, and distribute this
  8 * software is freely granted, provided that this notice
  9 * is preserved.
 10 * ====================================================
 11 */
 12/* asin(x)
 13 * Method :
 14 *      Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
 15 *      we approximate asin(x) on [0,0.5] by
 16 *              asin(x) = x + x*x^2*R(x^2)
 17 *      where
 18 *              R(x^2) is a rational approximation of (asin(x)-x)/x^3
 19 *      and its remez error is bounded by
 20 *              |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
 21 *
 22 *      For x in [0.5,1]
 23 *              asin(x) = pi/2-2*asin(sqrt((1-x)/2))
 24 *      Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
 25 *      then for x>0.98
 26 *              asin(x) = pi/2 - 2*(s+s*z*R(z))
 27 *                      = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
 28 *      For x<=0.98, let pio4_hi = pio2_hi/2, then
 29 *              f = hi part of s;
 30 *              c = sqrt(z) - f = (z-f*f)/(s+f)         ...f+c=sqrt(z)
 31 *      and
 32 *              asin(x) = pi/2 - 2*(s+s*z*R(z))
 33 *                      = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
 34 *                      = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
 35 *
 36 * Special cases:
 37 *      if x is NaN, return x itself;
 38 *      if |x|>1, return NaN with invalid signal.
 39 *
 40 */
 41
 42#include "libm.h"
 43
 44static const double
 45pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
 46pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
 47/* coefficients for R(x^2) */
 48pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
 49pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
 50pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
 51pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
 52pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
 53pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
 54qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
 55qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
 56qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
 57qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
 58
 59static double R(double z)
 60{
 61	double_t p, q;
 62	p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
 63	q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
 64	return p/q;
 65}
 66
 67double asin(double x)
 68{
 69	double z,r,s;
 70	uint32_t hx,ix;
 71
 72	GET_HIGH_WORD(hx, x);
 73	ix = hx & 0x7fffffff;
 74	/* |x| >= 1 or nan */
 75	if (ix >= 0x3ff00000) {
 76		uint32_t lx;
 77		GET_LOW_WORD(lx, x);
 78		if ((ix-0x3ff00000 | lx) == 0)
 79			/* asin(1) = +-pi/2 with inexact */
 80			return x*pio2_hi + 0x1p-120f;
 81		return 0/(x-x);
 82	}
 83	/* |x| < 0.5 */
 84	if (ix < 0x3fe00000) {
 85		/* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */
 86		if (ix < 0x3e500000 && ix >= 0x00100000)
 87			return x;
 88		return x + x*R(x*x);
 89	}
 90	/* 1 > |x| >= 0.5 */
 91	z = (1 - fabs(x))*0.5;
 92	s = sqrt(z);
 93	r = R(z);
 94	if (ix >= 0x3fef3333) {  /* if |x| > 0.975 */
 95		x = pio2_hi-(2*(s+s*r)-pio2_lo);
 96	} else {
 97		double f,c;
 98		/* f+c = sqrt(z) */
 99		f = s;
100		SET_LOW_WORD(f,0);
101		c = (z-f*f)/(s+f);
102		x = 0.5*pio2_hi - (2*s*r - (pio2_lo-2*c) - (0.5*pio2_hi-2*f));
103	}
104	if (hx >> 31)
105		return -x;
106	return x;
107}