master
  1#define _GNU_SOURCE
  2#include <stdlib.h>
  3#include <string.h>
  4#include <limits.h>
  5#include <stdint.h>
  6#include <errno.h>
  7#include <sys/mman.h>
  8#include "libc.h"
  9#include "atomic.h"
 10#include "pthread_impl.h"
 11#include "malloc_impl.h"
 12#include "fork_impl.h"
 13
 14#define malloc __libc_malloc_impl
 15#define realloc __libc_realloc
 16#define free __libc_free
 17
 18#if defined(__GNUC__) && defined(__PIC__)
 19#define inline inline __attribute__((always_inline))
 20#endif
 21
 22static struct {
 23	volatile uint64_t binmap;
 24	struct bin bins[64];
 25	volatile int split_merge_lock[2];
 26} mal;
 27
 28/* Synchronization tools */
 29
 30static inline void lock(volatile int *lk)
 31{
 32	int need_locks = libc.need_locks;
 33	if (need_locks) {
 34		while(a_swap(lk, 1)) __wait(lk, lk+1, 1, 1);
 35		if (need_locks < 0) libc.need_locks = 0;
 36	}
 37}
 38
 39static inline void unlock(volatile int *lk)
 40{
 41	if (lk[0]) {
 42		a_store(lk, 0);
 43		if (lk[1]) __wake(lk, 1, 1);
 44	}
 45}
 46
 47static inline void lock_bin(int i)
 48{
 49	lock(mal.bins[i].lock);
 50	if (!mal.bins[i].head)
 51		mal.bins[i].head = mal.bins[i].tail = BIN_TO_CHUNK(i);
 52}
 53
 54static inline void unlock_bin(int i)
 55{
 56	unlock(mal.bins[i].lock);
 57}
 58
 59static int first_set(uint64_t x)
 60{
 61#if 1
 62	return a_ctz_64(x);
 63#else
 64	static const char debruijn64[64] = {
 65		0, 1, 2, 53, 3, 7, 54, 27, 4, 38, 41, 8, 34, 55, 48, 28,
 66		62, 5, 39, 46, 44, 42, 22, 9, 24, 35, 59, 56, 49, 18, 29, 11,
 67		63, 52, 6, 26, 37, 40, 33, 47, 61, 45, 43, 21, 23, 58, 17, 10,
 68		51, 25, 36, 32, 60, 20, 57, 16, 50, 31, 19, 15, 30, 14, 13, 12
 69	};
 70	static const char debruijn32[32] = {
 71		0, 1, 23, 2, 29, 24, 19, 3, 30, 27, 25, 11, 20, 8, 4, 13,
 72		31, 22, 28, 18, 26, 10, 7, 12, 21, 17, 9, 6, 16, 5, 15, 14
 73	};
 74	if (sizeof(long) < 8) {
 75		uint32_t y = x;
 76		if (!y) {
 77			y = x>>32;
 78			return 32 + debruijn32[(y&-y)*0x076be629 >> 27];
 79		}
 80		return debruijn32[(y&-y)*0x076be629 >> 27];
 81	}
 82	return debruijn64[(x&-x)*0x022fdd63cc95386dull >> 58];
 83#endif
 84}
 85
 86static const unsigned char bin_tab[60] = {
 87	            32,33,34,35,36,36,37,37,38,38,39,39,
 88	40,40,40,40,41,41,41,41,42,42,42,42,43,43,43,43,
 89	44,44,44,44,44,44,44,44,45,45,45,45,45,45,45,45,
 90	46,46,46,46,46,46,46,46,47,47,47,47,47,47,47,47,
 91};
 92
 93static int bin_index(size_t x)
 94{
 95	x = x / SIZE_ALIGN - 1;
 96	if (x <= 32) return x;
 97	if (x < 512) return bin_tab[x/8-4];
 98	if (x > 0x1c00) return 63;
 99	return bin_tab[x/128-4] + 16;
100}
101
102static int bin_index_up(size_t x)
103{
104	x = x / SIZE_ALIGN - 1;
105	if (x <= 32) return x;
106	x--;
107	if (x < 512) return bin_tab[x/8-4] + 1;
108	return bin_tab[x/128-4] + 17;
109}
110
111#if 0
112void __dump_heap(int x)
113{
114	struct chunk *c;
115	int i;
116	for (c = (void *)mal.heap; CHUNK_SIZE(c); c = NEXT_CHUNK(c))
117		fprintf(stderr, "base %p size %zu (%d) flags %d/%d\n",
118			c, CHUNK_SIZE(c), bin_index(CHUNK_SIZE(c)),
119			c->csize & 15,
120			NEXT_CHUNK(c)->psize & 15);
121	for (i=0; i<64; i++) {
122		if (mal.bins[i].head != BIN_TO_CHUNK(i) && mal.bins[i].head) {
123			fprintf(stderr, "bin %d: %p\n", i, mal.bins[i].head);
124			if (!(mal.binmap & 1ULL<<i))
125				fprintf(stderr, "missing from binmap!\n");
126		} else if (mal.binmap & 1ULL<<i)
127			fprintf(stderr, "binmap wrongly contains %d!\n", i);
128	}
129}
130#endif
131
132/* This function returns true if the interval [old,new]
133 * intersects the 'len'-sized interval below &libc.auxv
134 * (interpreted as the main-thread stack) or below &b
135 * (the current stack). It is used to defend against
136 * buggy brk implementations that can cross the stack. */
137
138static int traverses_stack_p(uintptr_t old, uintptr_t new)
139{
140	const uintptr_t len = 8<<20;
141	uintptr_t a, b;
142
143	b = (uintptr_t)libc.auxv;
144	a = b > len ? b-len : 0;
145	if (new>a && old<b) return 1;
146
147	b = (uintptr_t)&b;
148	a = b > len ? b-len : 0;
149	if (new>a && old<b) return 1;
150
151	return 0;
152}
153
154/* Expand the heap in-place if brk can be used, or otherwise via mmap,
155 * using an exponential lower bound on growth by mmap to make
156 * fragmentation asymptotically irrelevant. The size argument is both
157 * an input and an output, since the caller needs to know the size
158 * allocated, which will be larger than requested due to page alignment
159 * and mmap minimum size rules. The caller is responsible for locking
160 * to prevent concurrent calls. */
161
162static void *__expand_heap(size_t *pn)
163{
164	static uintptr_t brk;
165	static unsigned mmap_step;
166	size_t n = *pn;
167
168	if (n > SIZE_MAX/2 - PAGE_SIZE) {
169		errno = ENOMEM;
170		return 0;
171	}
172	n += -n & PAGE_SIZE-1;
173
174	if (!brk) {
175		brk = __syscall(SYS_brk, 0);
176		brk += -brk & PAGE_SIZE-1;
177	}
178
179	if (n < SIZE_MAX-brk && !traverses_stack_p(brk, brk+n)
180	    && __syscall(SYS_brk, brk+n)==brk+n) {
181		*pn = n;
182		brk += n;
183		return (void *)(brk-n);
184	}
185
186	size_t min = (size_t)PAGE_SIZE << mmap_step/2;
187	if (n < min) n = min;
188	void *area = __mmap(0, n, PROT_READ|PROT_WRITE,
189		MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
190	if (area == MAP_FAILED) return 0;
191	*pn = n;
192	mmap_step++;
193	return area;
194}
195
196static struct chunk *expand_heap(size_t n)
197{
198	static void *end;
199	void *p;
200	struct chunk *w;
201
202	/* The argument n already accounts for the caller's chunk
203	 * overhead needs, but if the heap can't be extended in-place,
204	 * we need room for an extra zero-sized sentinel chunk. */
205	n += SIZE_ALIGN;
206
207	p = __expand_heap(&n);
208	if (!p) return 0;
209
210	/* If not just expanding existing space, we need to make a
211	 * new sentinel chunk below the allocated space. */
212	if (p != end) {
213		/* Valid/safe because of the prologue increment. */
214		n -= SIZE_ALIGN;
215		p = (char *)p + SIZE_ALIGN;
216		w = MEM_TO_CHUNK(p);
217		w->psize = 0 | C_INUSE;
218	}
219
220	/* Record new heap end and fill in footer. */
221	end = (char *)p + n;
222	w = MEM_TO_CHUNK(end);
223	w->psize = n | C_INUSE;
224	w->csize = 0 | C_INUSE;
225
226	/* Fill in header, which may be new or may be replacing a
227	 * zero-size sentinel header at the old end-of-heap. */
228	w = MEM_TO_CHUNK(p);
229	w->csize = n | C_INUSE;
230
231	return w;
232}
233
234static int adjust_size(size_t *n)
235{
236	/* Result of pointer difference must fit in ptrdiff_t. */
237	if (*n-1 > PTRDIFF_MAX - SIZE_ALIGN - PAGE_SIZE) {
238		if (*n) {
239			errno = ENOMEM;
240			return -1;
241		} else {
242			*n = SIZE_ALIGN;
243			return 0;
244		}
245	}
246	*n = (*n + OVERHEAD + SIZE_ALIGN - 1) & SIZE_MASK;
247	return 0;
248}
249
250static void unbin(struct chunk *c, int i)
251{
252	if (c->prev == c->next)
253		a_and_64(&mal.binmap, ~(1ULL<<i));
254	c->prev->next = c->next;
255	c->next->prev = c->prev;
256	c->csize |= C_INUSE;
257	NEXT_CHUNK(c)->psize |= C_INUSE;
258}
259
260static void bin_chunk(struct chunk *self, int i)
261{
262	self->next = BIN_TO_CHUNK(i);
263	self->prev = mal.bins[i].tail;
264	self->next->prev = self;
265	self->prev->next = self;
266	if (self->prev == BIN_TO_CHUNK(i))
267		a_or_64(&mal.binmap, 1ULL<<i);
268}
269
270static void trim(struct chunk *self, size_t n)
271{
272	size_t n1 = CHUNK_SIZE(self);
273	struct chunk *next, *split;
274
275	if (n >= n1 - DONTCARE) return;
276
277	next = NEXT_CHUNK(self);
278	split = (void *)((char *)self + n);
279
280	split->psize = n | C_INUSE;
281	split->csize = n1-n;
282	next->psize = n1-n;
283	self->csize = n | C_INUSE;
284
285	int i = bin_index(n1-n);
286	lock_bin(i);
287
288	bin_chunk(split, i);
289
290	unlock_bin(i);
291}
292
293void *malloc(size_t n)
294{
295	struct chunk *c;
296	int i, j;
297	uint64_t mask;
298
299	if (adjust_size(&n) < 0) return 0;
300
301	if (n > MMAP_THRESHOLD) {
302		size_t len = n + OVERHEAD + PAGE_SIZE - 1 & -PAGE_SIZE;
303		char *base = __mmap(0, len, PROT_READ|PROT_WRITE,
304			MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
305		if (base == (void *)-1) return 0;
306		c = (void *)(base + SIZE_ALIGN - OVERHEAD);
307		c->csize = len - (SIZE_ALIGN - OVERHEAD);
308		c->psize = SIZE_ALIGN - OVERHEAD;
309		return CHUNK_TO_MEM(c);
310	}
311
312	i = bin_index_up(n);
313	if (i<63 && (mal.binmap & (1ULL<<i))) {
314		lock_bin(i);
315		c = mal.bins[i].head;
316		if (c != BIN_TO_CHUNK(i) && CHUNK_SIZE(c)-n <= DONTCARE) {
317			unbin(c, i);
318			unlock_bin(i);
319			return CHUNK_TO_MEM(c);
320		}
321		unlock_bin(i);
322	}
323	lock(mal.split_merge_lock);
324	for (mask = mal.binmap & -(1ULL<<i); mask; mask -= (mask&-mask)) {
325		j = first_set(mask);
326		lock_bin(j);
327		c = mal.bins[j].head;
328		if (c != BIN_TO_CHUNK(j)) {
329			unbin(c, j);
330			unlock_bin(j);
331			break;
332		}
333		unlock_bin(j);
334	}
335	if (!mask) {
336		c = expand_heap(n);
337		if (!c) {
338			unlock(mal.split_merge_lock);
339			return 0;
340		}
341	}
342	trim(c, n);
343	unlock(mal.split_merge_lock);
344	return CHUNK_TO_MEM(c);
345}
346
347int __malloc_allzerop(void *p)
348{
349	return IS_MMAPPED(MEM_TO_CHUNK(p));
350}
351
352void *realloc(void *p, size_t n)
353{
354	struct chunk *self, *next;
355	size_t n0, n1;
356	void *new;
357
358	if (!p) return malloc(n);
359
360	if (adjust_size(&n) < 0) return 0;
361
362	self = MEM_TO_CHUNK(p);
363	n1 = n0 = CHUNK_SIZE(self);
364
365	if (n<=n0 && n0-n<=DONTCARE) return p;
366
367	if (IS_MMAPPED(self)) {
368		size_t extra = self->psize;
369		char *base = (char *)self - extra;
370		size_t oldlen = n0 + extra;
371		size_t newlen = n + extra;
372		/* Crash on realloc of freed chunk */
373		if (extra & 1) a_crash();
374		if (newlen < PAGE_SIZE && (new = malloc(n-OVERHEAD))) {
375			n0 = n;
376			goto copy_free_ret;
377		}
378		newlen = (newlen + PAGE_SIZE-1) & -PAGE_SIZE;
379		if (oldlen == newlen) return p;
380		base = __mremap(base, oldlen, newlen, MREMAP_MAYMOVE);
381		if (base == (void *)-1)
382			goto copy_realloc;
383		self = (void *)(base + extra);
384		self->csize = newlen - extra;
385		return CHUNK_TO_MEM(self);
386	}
387
388	next = NEXT_CHUNK(self);
389
390	/* Crash on corrupted footer (likely from buffer overflow) */
391	if (next->psize != self->csize) a_crash();
392
393	if (n < n0) {
394		int i = bin_index_up(n);
395		int j = bin_index(n0);
396		if (i<j && (mal.binmap & (1ULL << i)))
397			goto copy_realloc;
398		struct chunk *split = (void *)((char *)self + n);
399		self->csize = split->psize = n | C_INUSE;
400		split->csize = next->psize = n0-n | C_INUSE;
401		__bin_chunk(split);
402		return CHUNK_TO_MEM(self);
403	}
404
405	lock(mal.split_merge_lock);
406
407	size_t nsize = next->csize & C_INUSE ? 0 : CHUNK_SIZE(next);
408	if (n0+nsize >= n) {
409		int i = bin_index(nsize);
410		lock_bin(i);
411		if (!(next->csize & C_INUSE)) {
412			unbin(next, i);
413			unlock_bin(i);
414			next = NEXT_CHUNK(next);
415			self->csize = next->psize = n0+nsize | C_INUSE;
416			trim(self, n);
417			unlock(mal.split_merge_lock);
418			return CHUNK_TO_MEM(self);
419		}
420		unlock_bin(i);
421	}
422	unlock(mal.split_merge_lock);
423
424copy_realloc:
425	/* As a last resort, allocate a new chunk and copy to it. */
426	new = malloc(n-OVERHEAD);
427	if (!new) return 0;
428copy_free_ret:
429	memcpy(new, p, (n<n0 ? n : n0) - OVERHEAD);
430	free(CHUNK_TO_MEM(self));
431	return new;
432}
433
434void __bin_chunk(struct chunk *self)
435{
436	struct chunk *next = NEXT_CHUNK(self);
437
438	/* Crash on corrupted footer (likely from buffer overflow) */
439	if (next->psize != self->csize) a_crash();
440
441	lock(mal.split_merge_lock);
442
443	size_t osize = CHUNK_SIZE(self), size = osize;
444
445	/* Since we hold split_merge_lock, only transition from free to
446	 * in-use can race; in-use to free is impossible */
447	size_t psize = self->psize & C_INUSE ? 0 : CHUNK_PSIZE(self);
448	size_t nsize = next->csize & C_INUSE ? 0 : CHUNK_SIZE(next);
449
450	if (psize) {
451		int i = bin_index(psize);
452		lock_bin(i);
453		if (!(self->psize & C_INUSE)) {
454			struct chunk *prev = PREV_CHUNK(self);
455			unbin(prev, i);
456			self = prev;
457			size += psize;
458		}
459		unlock_bin(i);
460	}
461	if (nsize) {
462		int i = bin_index(nsize);
463		lock_bin(i);
464		if (!(next->csize & C_INUSE)) {
465			unbin(next, i);
466			next = NEXT_CHUNK(next);
467			size += nsize;
468		}
469		unlock_bin(i);
470	}
471
472	int i = bin_index(size);
473	lock_bin(i);
474
475	self->csize = size;
476	next->psize = size;
477	bin_chunk(self, i);
478	unlock(mal.split_merge_lock);
479
480	/* Replace middle of large chunks with fresh zero pages */
481	if (size > RECLAIM && (size^(size-osize)) > size-osize) {
482		uintptr_t a = (uintptr_t)self + SIZE_ALIGN+PAGE_SIZE-1 & -PAGE_SIZE;
483		uintptr_t b = (uintptr_t)next - SIZE_ALIGN & -PAGE_SIZE;
484		int e = errno;
485#if 1
486		__madvise((void *)a, b-a, MADV_DONTNEED);
487#else
488		__mmap((void *)a, b-a, PROT_READ|PROT_WRITE,
489			MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, -1, 0);
490#endif
491		errno = e;
492	}
493
494	unlock_bin(i);
495}
496
497static void unmap_chunk(struct chunk *self)
498{
499	size_t extra = self->psize;
500	char *base = (char *)self - extra;
501	size_t len = CHUNK_SIZE(self) + extra;
502	/* Crash on double free */
503	if (extra & 1) a_crash();
504	int e = errno;
505	__munmap(base, len);
506	errno = e;
507}
508
509void free(void *p)
510{
511	if (!p) return;
512
513	struct chunk *self = MEM_TO_CHUNK(p);
514
515	if (IS_MMAPPED(self))
516		unmap_chunk(self);
517	else
518		__bin_chunk(self);
519}
520
521void __malloc_donate(char *start, char *end)
522{
523	size_t align_start_up = (SIZE_ALIGN-1) & (-(uintptr_t)start - OVERHEAD);
524	size_t align_end_down = (SIZE_ALIGN-1) & (uintptr_t)end;
525
526	/* Getting past this condition ensures that the padding for alignment
527	 * and header overhead will not overflow and will leave a nonzero
528	 * multiple of SIZE_ALIGN bytes between start and end. */
529	if (end - start <= OVERHEAD + align_start_up + align_end_down)
530		return;
531	start += align_start_up + OVERHEAD;
532	end   -= align_end_down;
533
534	struct chunk *c = MEM_TO_CHUNK(start), *n = MEM_TO_CHUNK(end);
535	c->psize = n->csize = C_INUSE;
536	c->csize = n->psize = C_INUSE | (end-start);
537	__bin_chunk(c);
538}
539
540void __malloc_atfork(int who)
541{
542	if (who<0) {
543		lock(mal.split_merge_lock);
544		for (int i=0; i<64; i++)
545			lock(mal.bins[i].lock);
546	} else if (!who) {
547		for (int i=0; i<64; i++)
548			unlock(mal.bins[i].lock);
549		unlock(mal.split_merge_lock);
550	} else {
551		for (int i=0; i<64; i++)
552			mal.bins[i].lock[0] = mal.bins[i].lock[1] = 0;
553		mal.split_merge_lock[1] = 0;
554		mal.split_merge_lock[0] = 0;
555	}
556}