master
  1/* origin: FreeBSD /usr/src/lib/msun/src/s_ctanh.c */
  2/*-
  3 * Copyright (c) 2011 David Schultz
  4 * All rights reserved.
  5 *
  6 * Redistribution and use in source and binary forms, with or without
  7 * modification, are permitted provided that the following conditions
  8 * are met:
  9 * 1. Redistributions of source code must retain the above copyright
 10 *    notice unmodified, this list of conditions, and the following
 11 *    disclaimer.
 12 * 2. Redistributions in binary form must reproduce the above copyright
 13 *    notice, this list of conditions and the following disclaimer in the
 14 *    documentation and/or other materials provided with the distribution.
 15 *
 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 26 */
 27/*
 28 * Hyperbolic tangent of a complex argument z = x + i y.
 29 *
 30 * The algorithm is from:
 31 *
 32 *   W. Kahan.  Branch Cuts for Complex Elementary Functions or Much
 33 *   Ado About Nothing's Sign Bit.  In The State of the Art in
 34 *   Numerical Analysis, pp. 165 ff.  Iserles and Powell, eds., 1987.
 35 *
 36 * Method:
 37 *
 38 *   Let t    = tan(x)
 39 *       beta = 1/cos^2(y)
 40 *       s    = sinh(x)
 41 *       rho  = cosh(x)
 42 *
 43 *   We have:
 44 *
 45 *   tanh(z) = sinh(z) / cosh(z)
 46 *
 47 *             sinh(x) cos(y) + i cosh(x) sin(y)
 48 *           = ---------------------------------
 49 *             cosh(x) cos(y) + i sinh(x) sin(y)
 50 *
 51 *             cosh(x) sinh(x) / cos^2(y) + i tan(y)
 52 *           = -------------------------------------
 53 *                    1 + sinh^2(x) / cos^2(y)
 54 *
 55 *             beta rho s + i t
 56 *           = ----------------
 57 *               1 + beta s^2
 58 *
 59 * Modifications:
 60 *
 61 *   I omitted the original algorithm's handling of overflow in tan(x) after
 62 *   verifying with nearpi.c that this can't happen in IEEE single or double
 63 *   precision.  I also handle large x differently.
 64 */
 65
 66#include "complex_impl.h"
 67
 68double complex ctanh(double complex z)
 69{
 70	double x, y;
 71	double t, beta, s, rho, denom;
 72	uint32_t hx, ix, lx;
 73
 74	x = creal(z);
 75	y = cimag(z);
 76
 77	EXTRACT_WORDS(hx, lx, x);
 78	ix = hx & 0x7fffffff;
 79
 80	/*
 81	 * ctanh(NaN + i 0) = NaN + i 0
 82	 *
 83	 * ctanh(NaN + i y) = NaN + i NaN               for y != 0
 84	 *
 85	 * The imaginary part has the sign of x*sin(2*y), but there's no
 86	 * special effort to get this right.
 87	 *
 88	 * ctanh(+-Inf +- i Inf) = +-1 +- 0
 89	 *
 90	 * ctanh(+-Inf + i y) = +-1 + 0 sin(2y)         for y finite
 91	 *
 92	 * The imaginary part of the sign is unspecified.  This special
 93	 * case is only needed to avoid a spurious invalid exception when
 94	 * y is infinite.
 95	 */
 96	if (ix >= 0x7ff00000) {
 97		if ((ix & 0xfffff) | lx)        /* x is NaN */
 98			return CMPLX(x, (y == 0 ? y : x * y));
 99		SET_HIGH_WORD(x, hx - 0x40000000);      /* x = copysign(1, x) */
100		return CMPLX(x, copysign(0, isinf(y) ? y : sin(y) * cos(y)));
101	}
102
103	/*
104	 * ctanh(+-0 + i NAN) = +-0 + i NaN
105	 * ctanh(+-0 +- i Inf) = +-0 + i NaN
106	 * ctanh(x + i NAN) = NaN + i NaN
107	 * ctanh(x +- i Inf) = NaN + i NaN
108	 */
109	if (!isfinite(y))
110		return CMPLX(x ? y - y : x, y - y);
111
112	/*
113	 * ctanh(+-huge + i +-y) ~= +-1 +- i 2sin(2y)/exp(2x), using the
114	 * approximation sinh^2(huge) ~= exp(2*huge) / 4.
115	 * We use a modified formula to avoid spurious overflow.
116	 */
117	if (ix >= 0x40360000) { /* x >= 22 */
118		double exp_mx = exp(-fabs(x));
119		return CMPLX(copysign(1, x), 4 * sin(y) * cos(y) * exp_mx * exp_mx);
120	}
121
122	/* Kahan's algorithm */
123	t = tan(y);
124	beta = 1.0 + t * t;     /* = 1 / cos^2(y) */
125	s = sinh(x);
126	rho = sqrt(1 + s * s);  /* = cosh(x) */
127	denom = 1 + beta * s * s;
128	return CMPLX((beta * rho * s) / denom, t / denom);
129}