master
  1/**
  2 * This file has no copyright assigned and is placed in the Public Domain.
  3 * This file is part of the mingw-w64 runtime package.
  4 * No warranty is given; refer to the file DISCLAIMER.PD within this package.
  5 */
  6#include "cephes_mconf.h"
  7
  8#if __SIZEOF_LONG_DOUBLE__ == __SIZEOF_DOUBLE__
  9double tgamma(double x);
 10
 11long double tgammal(long double x)
 12{
 13	return tgamma(x);
 14}
 15#else
 16/*
 17gamma(x+2)  = gamma(x+2) P(x)/Q(x)
 180 <= x <= 1
 19Relative error
 20n=7, d=8
 21Peak error =  1.83e-20
 22Relative error spread =  8.4e-23
 23*/
 24
 25#if UNK
 26static const uLD P[8] = {
 27  { { 4.212760487471622013093E-5L } },
 28  { { 4.542931960608009155600E-4L } },
 29  { { 4.092666828394035500949E-3L } },
 30  { { 2.385363243461108252554E-2L } },
 31  { { 1.113062816019361559013E-1L } },
 32  { { 3.629515436640239168939E-1L } },
 33  { { 8.378004301573126728826E-1L } },
 34  { { 1.000000000000000000009E0L } }
 35};
 36static const uLD Q[9] = {
 37  { { -1.397148517476170440917E-5L } },
 38  { { 2.346584059160635244282E-4L } },
 39  { { -1.237799246653152231188E-3L } },
 40  { { -7.955933682494738320586E-4L } },
 41  { { 2.773706565840072979165E-2L } },
 42  { { -4.633887671244534213831E-2L } },
 43  { { -2.243510905670329164562E-1L } },
 44  { { 4.150160950588455434583E-1L } },
 45  { { 9.999999999999999999908E-1L } }
 46};
 47#endif
 48#if IBMPC
 49static const uLD P[8] = {
 50  { { 0x434a,0x3f22,0x2bda,0xb0b2,0x3ff0, 0x0, 0x0, 0x0 } },
 51  { { 0xf5aa,0xe82f,0x335b,0xee2e,0x3ff3, 0x0, 0x0, 0x0 } },
 52  { { 0xbe6c,0x3757,0xc717,0x861b,0x3ff7, 0x0, 0x0, 0x0 } },
 53  { { 0x7f43,0x5196,0xb166,0xc368,0x3ff9, 0x0, 0x0, 0x0 } },
 54  { { 0x9549,0x8eb5,0x8c3a,0xe3f4,0x3ffb, 0x0, 0x0, 0x0 } },
 55  { { 0x8d75,0x23af,0xc8e4,0xb9d4,0x3ffd, 0x0, 0x0, 0x0 } },
 56  { { 0x29cf,0x19b3,0x16c8,0xd67a,0x3ffe, 0x0, 0x0, 0x0 } },
 57  { { 0x0000,0x0000,0x0000,0x8000,0x3fff, 0x0, 0x0, 0x0 } }
 58};
 59static const uLD Q[9] = {
 60  { { 0x5473,0x2de8,0x1268,0xea67,0xbfee, 0x0, 0x0, 0x0 } },
 61  { { 0x334b,0xc2f0,0xa2dd,0xf60e,0x3ff2, 0x0, 0x0, 0x0 } },
 62  { { 0xbeed,0x1853,0xa691,0xa23d,0xbff5, 0x0, 0x0, 0x0 } },
 63  { { 0x296e,0x7cb1,0x5dfd,0xd08f,0xbff4, 0x0, 0x0, 0x0 } },
 64  { { 0x0417,0x7989,0xd7bc,0xe338,0x3ff9, 0x0, 0x0, 0x0 } },
 65  { { 0x3295,0x3698,0xd580,0xbdcd,0xbffa, 0x0, 0x0, 0x0 } },
 66  { { 0x75ef,0x3ab7,0x4ad3,0xe5bc,0xbffc, 0x0, 0x0, 0x0 } },
 67  { { 0xe458,0x2ec7,0xfd57,0xd47c,0x3ffd, 0x0, 0x0, 0x0 } },
 68  { { 0x0000,0x0000,0x0000,0x8000,0x3fff, 0x0, 0x0, 0x0 } }
 69};
 70#endif
 71#if MIEEE
 72static const uLD P[8] = {
 73  { { 0x3ff00000,0xb0b22bda,0x3f22434a, 0 } },
 74  { { 0x3ff30000,0xee2e335b,0xe82ff5aa, 0 } },
 75  { { 0x3ff70000,0x861bc717,0x3757be6c, 0 } },
 76  { { 0x3ff90000,0xc368b166,0x51967f43, 0 } },
 77  { { 0x3ffb0000,0xe3f48c3a,0x8eb59549, 0 } },
 78  { { 0x3ffd0000,0xb9d4c8e4,0x23af8d75, 0 } },
 79  { { 0x3ffe0000,0xd67a16c8,0x19b329cf, 0 } },
 80  { { 0x3fff0000,0x80000000,0x00000000, 0 } }
 81};
 82static const uLD Q[9] = {
 83  { { 0xbfee0000,0xea671268,0x2de85473, 0 } },
 84  { { 0x3ff20000,0xf60ea2dd,0xc2f0334b, 0 } },
 85  { { 0xbff50000,0xa23da691,0x1853beed, 0 } },
 86  { { 0xbff40000,0xd08f5dfd,0x7cb1296e, 0 } },
 87  { { 0x3ff90000,0xe338d7bc,0x79890417, 0 } },
 88  { { 0xbffa0000,0xbdcdd580,0x36983295, 0 } },
 89  { { 0xbffc0000,0xe5bc4ad3,0x3ab775ef, 0 } },
 90  { { 0x3ffd0000,0xd47cfd57,0x2ec7e458, 0 } },
 91  { { 0x3fff0000,0x80000000,0x00000000, 0 } }
 92};
 93#endif
 94
 95#define MAXGAML 1755.455L
 96/*static const long double LOGPI = 1.14472988584940017414L;*/
 97
 98/* Stirling's formula for the gamma function
 99gamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))
100z(x) = x
10113 <= x <= 1024
102Relative error
103n=8, d=0
104Peak error =  9.44e-21
105Relative error spread =  8.8e-4
106*/
107#if UNK
108static const uLD STIR[9] = {
109  { { 7.147391378143610789273E-4L } },
110  { { -2.363848809501759061727E-5L } },
111  { { -5.950237554056330156018E-4L } },
112  { { 6.989332260623193171870E-5L } },
113  { { 7.840334842744753003862E-4L } },
114  { { -2.294719747873185405699E-4L } },
115  { { -2.681327161876304418288E-3L } },
116  { { 3.472222222230075327854E-3L } },
117  { { 8.333333333333331800504E-2L } }
118};
119#endif
120#if IBMPC
121static const uLD STIR[9] = {
122  { { 0x6ede,0x69f7,0x54e3,0xbb5d,0x3ff4, 0, 0, 0 } },
123  { { 0xc395,0x0295,0x4443,0xc64b,0xbfef, 0, 0, 0 } },
124  { { 0xba6f,0x7c59,0x5e47,0x9bfb,0xbff4, 0, 0, 0 } },
125  { { 0x5704,0x1a39,0xb11d,0x9293,0x3ff1, 0, 0, 0 } },
126  { { 0x30b7,0x1a21,0x98b2,0xcd87,0x3ff4, 0, 0, 0 } },
127  { { 0xbef3,0x7023,0x6a08,0xf09e,0xbff2, 0, 0, 0 } },
128  { { 0x3a1c,0x5ac8,0x3478,0xafb9,0xbff6, 0, 0, 0 } },
129  { { 0xc3c9,0x906e,0x38e3,0xe38e,0x3ff6, 0, 0, 0 } },
130  { { 0xa1d5,0xaaaa,0xaaaa,0xaaaa,0x3ffb, 0, 0, 0 } }
131};
132#endif
133#if MIEEE
134static const uLD STIR[9] = {
135  { { 0x3ff40000,0xbb5d54e3,0x69f76ede, 0 } },
136  { { 0xbfef0000,0xc64b4443,0x0295c395, 0 } },
137  { { 0xbff40000,0x9bfb5e47,0x7c59ba6f, 0 } },
138  { { 0x3ff10000,0x9293b11d,0x1a395704, 0 } },
139  { { 0x3ff40000,0xcd8798b2,0x1a2130b7, 0 } },
140  { { 0xbff20000,0xf09e6a08,0x7023bef3, 0 } },
141  { { 0xbff60000,0xafb93478,0x5ac83a1c, 0 } },
142  { { 0x3ff60000,0xe38e38e3,0x906ec3c9, 0 } },
143  { { 0x3ffb0000,0xaaaaaaaa,0xaaaaa1d5, 0 } }
144};
145#endif
146#define MAXSTIR 1024.0L
147static const long double SQTPI = 2.50662827463100050242E0L;
148
149/* 1/gamma(x) = z P(z)
150 * z(x) = 1/x
151 * 0 < x < 0.03125
152 * Peak relative error 4.2e-23
153 */
154#if UNK
155static const uLD S[9] = {
156  { { -1.193945051381510095614E-3L } },
157  { { 7.220599478036909672331E-3L } },
158  { { -9.622023360406271645744E-3L } },
159  { { -4.219773360705915470089E-2L } },
160  { { 1.665386113720805206758E-1L } },
161  { { -4.200263503403344054473E-2L } },
162  { { -6.558780715202540684668E-1L } },
163  { { 5.772156649015328608253E-1L } },
164  { { 1.000000000000000000000E0L } }
165};
166#endif
167#if IBMPC
168static const uLD S[9] = {
169  { { 0xbaeb,0xd6d3,0x25e5,0x9c7e,0xbff5, 0, 0, 0 } },
170  { { 0xfe9a,0xceb4,0xc74e,0xec9a,0x3ff7, 0, 0, 0 } },
171  { { 0x9225,0xdfef,0xb0e9,0x9da5,0xbff8, 0, 0, 0 } },
172  { { 0x10b0,0xec17,0x87dc,0xacd7,0xbffa, 0, 0, 0 } },
173  { { 0x6b8d,0x7515,0x1905,0xaa89,0x3ffc, 0, 0, 0 } },
174  { { 0xf183,0x126b,0xf47d,0xac0a,0xbffa, 0, 0, 0 } },
175  { { 0x7bf6,0x57d1,0xa013,0xa7e7,0xbffe, 0, 0, 0 } },
176  { { 0xc7a9,0x7db0,0x67e3,0x93c4,0x3ffe, 0, 0, 0 } },
177  { { 0x0000,0x0000,0x0000,0x8000,0x3fff, 0, 0, 0 } }
178};
179#endif
180#if MIEEE
181static const long S[9] = {
182  { { 0xbff50000,0x9c7e25e5,0xd6d3baeb, 0 } },
183  { { 0x3ff70000,0xec9ac74e,0xceb4fe9a, 0 } },
184  { { 0xbff80000,0x9da5b0e9,0xdfef9225, 0 } },
185  { { 0xbffa0000,0xacd787dc,0xec1710b0, 0 } },
186  { { 0x3ffc0000,0xaa891905,0x75156b8d, 0 } },
187  { { 0xbffa0000,0xac0af47d,0x126bf183, 0 } },
188  { { 0xbffe0000,0xa7e7a013,0x57d17bf6, 0 } },
189  { { 0x3ffe0000,0x93c467e3,0x7db0c7a9, 0 } },
190  { { 0x3fff0000,0x80000000,0x00000000, 0 } }
191};
192#endif
193/* 1/gamma(-x) = z P(z)
194 * z(x) = 1/x
195 * 0 < x < 0.03125
196 * Peak relative error 5.16e-23
197 * Relative error spread =  2.5e-24
198 */
199#if UNK
200static const uLD SN[9] = {
201  { { 1.133374167243894382010E-3L } },
202  { { 7.220837261893170325704E-3L } },
203  { { 9.621911155035976733706E-3L } },
204  { { -4.219773343731191721664E-2L } },
205  { { -1.665386113944413519335E-1L } },
206  { { -4.200263503402112910504E-2L } },
207  { { 6.558780715202536547116E-1L } },
208  { { 5.772156649015328608727E-1L } },
209  { { -1.000000000000000000000E0L } }
210};
211#endif
212#if IBMPC
213static const uLD SN[9] = {
214  { { 0x5dd1,0x02de,0xb9f7,0x948d,0x3ff5, 0, 0, 0 } },
215  { { 0x989b,0xdd68,0xc5f1,0xec9c,0x3ff7, 0, 0, 0 } },
216  { { 0x2ca1,0x18f0,0x386f,0x9da5,0x3ff8, 0, 0, 0 } },
217  { { 0x783f,0x41dd,0x87d1,0xacd7,0xbffa, 0, 0, 0 } },
218  { { 0x7a5b,0xd76d,0x1905,0xaa89,0xbffc, 0, 0, 0 } },
219  { { 0x7f64,0x1234,0xf47d,0xac0a,0xbffa, 0, 0, 0 } },
220  { { 0x5e26,0x57d1,0xa013,0xa7e7,0x3ffe, 0, 0, 0 } },
221  { { 0xc7aa,0x7db0,0x67e3,0x93c4,0x3ffe, 0, 0, 0 } },
222  { { 0x0000,0x0000,0x0000,0x8000,0xbfff, 0, 0, 0 } }
223};
224#endif
225#if MIEEE
226static const uLD SN[9] = {
227  { { 0x3ff50000,0x948db9f7,0x02de5dd1, 0 } },
228  { { 0x3ff70000,0xec9cc5f1,0xdd68989b, 0 } },
229  { { 0x3ff80000,0x9da5386f,0x18f02ca1, 0 } },
230  { { 0xbffa0000,0xacd787d1,0x41dd783f, 0 } },
231  { { 0xbffc0000,0xaa891905,0xd76d7a5b, 0 } },
232  { { 0xbffa0000,0xac0af47d,0x12347f64, 0 } },
233  { { 0x3ffe0000,0xa7e7a013,0x57d15e26, 0 } },
234  { { 0x3ffe0000,0x93c467e3,0x7db0c7aa, 0 } },
235  { { 0xbfff0000,0x80000000,0x00000000, 0 } }
236};
237#endif
238
239static long double stirf (long double);
240
241/* Gamma function computed by Stirling's formula.  */
242
243static long double stirf(long double x)
244{
245	long double y, w, v;
246
247	w = 1.0L/x;
248	/* For large x, use rational coefficients from the analytical expansion.  */
249	if (x > 1024.0L)
250		w = (((((6.97281375836585777429E-5L * w
251		      + 7.84039221720066627474E-4L) * w
252		      - 2.29472093621399176955E-4L) * w
253		      - 2.68132716049382716049E-3L) * w
254		      + 3.47222222222222222222E-3L) * w
255		      + 8.33333333333333333333E-2L) * w
256		      + 1.0L;
257	else
258		w = 1.0L + w * polevll( w, STIR, 8 );
259	y = expl(x);
260	if (x > MAXSTIR)
261	{ /* Avoid overflow in pow() */
262		v = powl(x, 0.5L * x - 0.25L);
263		y = v * (v / y);
264	}
265	else
266	{
267		y = powl(x, x - 0.5L) / y;
268	}
269	y = SQTPI * y * w;
270	return (y);
271}
272
273long double __tgammal_r(long double, int *);
274
275long double __tgammal_r(long double x, int* sgngaml)
276{
277	long double p, q, z;
278	int i;
279
280	*sgngaml = 1;
281#ifdef NANS
282	if (isnanl(x))
283		return x;
284#endif
285#ifdef INFINITIES
286#ifdef NANS
287	if (x == INFINITYL)
288		return (x);
289	if (x == -INFINITYL)
290		return (NANL);
291#else
292	if (!isfinite(x))
293		return (x);
294#endif
295#endif
296	if (x == 0.0L)
297		return copysignl(HUGE_VALL, x);
298
299	q = fabsl(x);
300
301	if (q > 13.0L)
302	{
303		if (q > MAXGAML)
304			goto goverf;
305		if (x < 0.0L)
306		{
307			p = floorl(q);
308			if (p == q)
309			{
310gsing:
311				_SET_ERRNO(EDOM);
312				mtherr("tgammal", SING);
313#ifdef NANS
314				return (NAN);
315#else
316				return (*sgngaml * MAXNUML);
317#endif
318			}
319			i = p;
320			if ((i & 1) == 0)
321				*sgngaml = -1;
322			z = q - p;
323			if (z > 0.5L)
324			{
325				p += 1.0L;
326				z = q - p;
327			}
328			z = q * sinl(PIL * z);
329			z = fabsl(z) * stirf(q);
330			if (z <= PIL/MAXNUML)
331			{
332goverf:
333				_SET_ERRNO(ERANGE);
334				mtherr("tgammal", OVERFLOW);
335#ifdef INFINITIES
336				return(*sgngaml * INFINITYL);
337#else
338				return(*sgngaml * MAXNUML);
339#endif
340			}
341			z = PIL/z;
342		}
343		else
344		{
345			z = stirf(x);
346		}
347		return (*sgngaml * z);
348	}
349
350	z = 1.0L;
351	while (x >= 3.0L)
352	{
353		x -= 1.0L;
354		z *= x;
355	}
356
357	while (x < -0.03125L)
358	{
359		z /= x;
360		x += 1.0L;
361	}
362
363	if (x <= 0.03125L)
364		goto Small;
365
366	while (x < 2.0L)
367	{
368		z /= x;
369		x += 1.0L;
370	}
371
372	if (x == 2.0L)
373		return (z);
374
375	x -= 2.0L;
376	p = polevll( x, P, 7 );
377	q = polevll( x, Q, 8 );
378	return (z * p / q);
379
380Small:
381	if (x == 0.0L)
382	{
383		goto gsing;
384	}
385	else
386	{
387		if (x < 0.0L)
388		{
389			x = -x;
390			q = z / (x * polevll(x, SN, 8));
391		}
392		else
393			q = z / (x * polevll(x, S, 8));
394	}
395	return q;
396}
397
398/* This is the C99 version. */
399long double tgammal(long double x)
400{
401	int local_sgngaml = 0;
402	return (__tgammal_r(x, &local_sgngaml));
403}
404#endif