master
  1/**
  2 * This file has no copyright assigned and is placed in the Public Domain.
  3 * This file is part of the mingw-w64 runtime package.
  4 * No warranty is given; refer to the file DISCLAIMER.PD within this package.
  5 */
  6/*							erfl.c
  7 *
  8 *	Error function
  9 *
 10 *
 11 *
 12 * SYNOPSIS:
 13 *
 14 * long double x, y, erfl();
 15 *
 16 * y = erfl( x );
 17 *
 18 *
 19 *
 20 * DESCRIPTION:
 21 *
 22 * The integral is
 23 *
 24 *                           x 
 25 *                            -
 26 *                 2         | |          2
 27 *   erf(x)  =  --------     |    exp( - t  ) dt.
 28 *              sqrt(pi)   | |
 29 *                          -
 30 *                           0
 31 *
 32 * The magnitude of x is limited to about 106.56 for IEEE
 33 * arithmetic; 1 or -1 is returned outside this range.
 34 *
 35 * For 0 <= |x| < 1, erf(x) = x * P6(x^2)/Q6(x^2);
 36 * Otherwise: erf(x) = 1 - erfc(x).
 37 *
 38 *
 39 *
 40 * ACCURACY:
 41 *
 42 *                      Relative error:
 43 * arithmetic   domain     # trials      peak         rms
 44 *    IEEE      0,1         50000       2.0e-19     5.7e-20
 45 *
 46 */
 47
 48/*							erfcl.c
 49 *
 50 *	Complementary error function
 51 *
 52 *
 53 *
 54 * SYNOPSIS:
 55 *
 56 * long double x, y, erfcl();
 57 *
 58 * y = erfcl( x );
 59 *
 60 *
 61 *
 62 * DESCRIPTION:
 63 *
 64 *
 65 *  1 - erf(x) =
 66 *
 67 *                           inf. 
 68 *                             -
 69 *                  2         | |          2
 70 *   erfc(x)  =  --------     |    exp( - t  ) dt
 71 *               sqrt(pi)   | |
 72 *                           -
 73 *                            x
 74 *
 75 *
 76 * For small x, erfc(x) = 1 - erf(x); otherwise rational
 77 * approximations are computed.
 78 *
 79 * A special function expx2l.c is used to suppress error amplification
 80 * in computing exp(-x^2).
 81 *
 82 *
 83 * ACCURACY:
 84 *
 85 *                      Relative error:
 86 * arithmetic   domain     # trials      peak         rms
 87 *    IEEE      0,13        50000      8.4e-19      9.7e-20
 88 *    IEEE      6,106.56    20000      2.9e-19      7.1e-20
 89 *
 90 *
 91 * ERROR MESSAGES:
 92 *
 93 *   message          condition              value returned
 94 * erfcl underflow    x^2 > MAXLOGL              0.0
 95 *
 96 *
 97 */
 98
 99
100/*
101Modified from file ndtrl.c
102Cephes Math Library Release 2.3:  January, 1995
103Copyright 1984, 1995 by Stephen L. Moshier
104*/
105
106#include <math.h>
107#include "cephes_mconf.h"
108
109long double erfl(long double x);
110
111#if __SIZEOF_LONG_DOUBLE__ == __SIZEOF_DOUBLE__
112long double erfcl(long double x)
113{
114	return erfc(x);
115}
116
117long double erfl(long double x)
118{
119	return erf(x);
120}
121#else
122/* erfc(x) = exp(-x^2) P(1/x)/Q(1/x)
123   1/8 <= 1/x <= 1
124   Peak relative error 5.8e-21  */
125
126static const uLD P[10] = {
127  { { 0x4bf0,0x9ad8,0x7a03,0x86c7,0x401d, 0, 0, 0 } },
128  { { 0xdf23,0xd843,0x4032,0x8881,0x401e, 0, 0, 0 } },
129  { { 0xd025,0xcfd5,0x8494,0x88d3,0x401e, 0, 0, 0 } },
130  { { 0xb6d0,0xc92b,0x5417,0xacb1,0x401d, 0, 0, 0 } },
131  { { 0xada8,0x356a,0x4982,0x94a6,0x401c, 0, 0, 0 } },
132  { { 0x4e13,0xcaee,0x9e31,0xb258,0x401a, 0, 0, 0 } },
133  { { 0x5840,0x554d,0x37a3,0x9239,0x4018, 0, 0, 0 } },
134  { { 0x3b58,0x3da2,0xaf02,0x9780,0x4015, 0, 0, 0 } },
135  { { 0x0144,0x489e,0xbe68,0x9c31,0x4011, 0, 0, 0 } },
136  { { 0x333b,0xd9e6,0xd404,0x986f,0xbfee, 0, 0, 0 } }
137};
138static const uLD Q[] = {
139  { { 0x0e43,0x302d,0x79ed,0x86c7,0x401d, 0, 0, 0 } },
140  { { 0xf817,0x9128,0xc0f8,0xd48b,0x401e, 0, 0, 0 } },
141  { { 0x8eae,0x8dad,0x6eb4,0x9aa2,0x401f, 0, 0, 0 } },
142  { { 0x00e7,0x7595,0xcd06,0x88bb,0x401f, 0, 0, 0 } },
143  { { 0x4991,0xcfda,0x52f1,0xa2a9,0x401e, 0, 0, 0 } },
144  { { 0xc39d,0xe415,0xc43d,0x87c0,0x401d, 0, 0, 0 } },
145  { { 0xa75d,0x436f,0x30dd,0xa027,0x401b, 0, 0, 0 } },
146  { { 0xc4cb,0x305a,0xbf78,0x8220,0x4019, 0, 0, 0 } },
147  { { 0x3708,0x33b1,0x07fa,0x8644,0x4016, 0, 0, 0 } },
148  { { 0x24fa,0x96f6,0x7153,0x8a6c,0x4012, 0, 0, 0 } }
149};
150
151/* erfc(x) = exp(-x^2) 1/x R(1/x^2) / S(1/x^2)
152   1/128 <= 1/x < 1/8
153   Peak relative error 1.9e-21  */
154
155static const uLD R[] = {
156  { { 0x260a,0xab95,0x2fc7,0xe7c4,0x4000, 0, 0, 0 } },
157  { { 0x4761,0x613e,0xdf6d,0xe58e,0x4001, 0, 0, 0 } },
158  { { 0x0615,0x4b00,0x575f,0xdc7b,0x4000, 0, 0, 0 } },
159  { { 0x521d,0x8527,0x3435,0x8dc2,0x3ffe, 0, 0, 0 } },
160  { { 0x22cf,0xc711,0x6c5b,0xdcfb,0x3ff9, 0, 0, 0 } }
161};
162static const uLD S[] = {
163  { { 0x5de6,0x17d7,0x54d6,0xaba9,0x4002, 0, 0, 0 } },
164  { { 0x55d5,0xd300,0xe71e,0xf564,0x4002, 0, 0, 0 } },
165  { { 0xb611,0x8f76,0xf020,0xd255,0x4001, 0, 0, 0 } },
166  { { 0x3684,0x3798,0xb793,0x80b0,0x3fff, 0, 0, 0 } },
167  { { 0xf5af,0x2fb2,0x1e57,0xc3d7,0x3ffa, 0, 0, 0 } }
168};
169
170/* erf(x)  = x T(x^2)/U(x^2)
171   0 <= x <= 1
172   Peak relative error 7.6e-23  */
173
174static const uLD T[] = {
175  { { 0xfd7a,0x3a1a,0x705b,0xe0c4,0x3ffb, 0, 0, 0 } },
176  { { 0x3128,0xc337,0x3716,0xace5,0x4001, 0, 0, 0 } },
177  { { 0x9517,0x4e93,0x540e,0x8f97,0x4007, 0, 0, 0 } },
178  { { 0x6118,0x6059,0x9093,0xa757,0x400a, 0, 0, 0 } },
179  { { 0xb954,0xa987,0xc60c,0xbc83,0x400e, 0, 0, 0 } },
180  { { 0x7a56,0xe45a,0xa4bd,0x975b,0x4010, 0, 0, 0 } },
181  { { 0xc446,0x6bab,0x0b2a,0x86d0,0x4013, 0, 0, 0 } }
182};
183
184static const uLD U[] = {
185  { { 0x3453,0x1f8e,0xf688,0xb507,0x4004, 0, 0, 0 } },
186  { { 0x71ac,0xb12f,0x21ca,0xf2e2,0x4008, 0, 0, 0 } },
187  { { 0xffe8,0x9cac,0x3b84,0xc2ac,0x400c, 0, 0, 0 } },
188  { { 0x481d,0x445b,0xc807,0xc232,0x400f, 0, 0, 0 } },
189  { { 0x9ad5,0x1aef,0x45b1,0xe25e,0x4011, 0, 0, 0 } },
190  { { 0x71a7,0x1cad,0x012e,0xeef3,0x4012, 0, 0, 0 } }
191};
192
193/*							expx2l.c
194 *
195 *	Exponential of squared argument
196 *
197 *
198 *
199 * SYNOPSIS:
200 *
201 * long double x, y, expmx2l();
202 * int sign;
203 *
204 * y = expx2l( x );
205 *
206 *
207 *
208 * DESCRIPTION:
209 *
210 * Computes y = exp(x*x) while suppressing error amplification
211 * that would ordinarily arise from the inexactness of the
212 * exponential argument x*x.
213 *
214 *
215 *
216 * ACCURACY:
217 *
218 *                      Relative error:
219 * arithmetic      domain        # trials      peak         rms
220 *   IEEE     -106.566, 106.566    10^5       1.6e-19     4.4e-20
221 *
222 */
223
224#define M 32768.0L
225#define MINV 3.0517578125e-5L
226
227static long double expx2l (long double x)
228{
229	long double u, u1, m, f;
230
231	x = fabsl (x);
232	/* Represent x as an exact multiple of M plus a residual.
233	   M is a power of 2 chosen so that exp(m * m) does not overflow
234	   or underflow and so that |x - m| is small.  */
235	m = MINV * floorl(M * x + 0.5L);
236	f = x - m;
237
238	/* x^2 = m^2 + 2mf + f^2 */
239	u = m * m;
240	u1 = 2 * m * f  +  f * f;
241
242	if ((u + u1) > MAXLOGL)
243		return (INFINITYL);
244
245	/* u is exact, u1 is small.  */
246	u = expl(u) * expl(u1);
247	return (u);
248}
249
250long double erfcl(long double a)
251{
252	long double p, q, x, y, z;
253
254	if (isinf (a))
255		return (signbit(a) ? 2.0 : 0.0);
256
257	if (isnan (a))
258		return (a);
259
260	x = fabsl (a);
261
262	if (x < 1.0L)
263		return (1.0L - erfl(a));
264
265	z = a * a;
266
267	if (z  > MAXLOGL)
268	{
269under:
270		mtherr("erfcl", UNDERFLOW);
271		errno = ERANGE;
272		return (signbit(a) ? 2.0 : 0.0);
273	}
274
275	/* Compute z = expl(a * a).  */
276	z = expx2l(a);
277	y = 1.0L/x;
278
279	if (x < 8.0L)
280	{
281		p = polevll(y, P, 9);
282		q = p1evll(y, Q, 10);
283	}
284	else
285	{
286		q = y * y;
287		p = y * polevll(q, R, 4);
288		q = p1evll(q, S, 5);
289	}
290	y = p/(q * z);
291
292	if (a < 0.0L)
293		y = 2.0L - y;
294
295	if (y == 0.0L)
296		goto under;
297
298	return (y);
299}
300
301long double erfl(long double x)
302{
303	long double y, z;
304
305	if (x == 0.0L)
306		return (x);
307
308	if (isinf (x))
309		return (signbit(x) ?  -1.0L : 1.0L);
310
311	if (fabsl(x) > 1.0L)
312		return (1.0L - erfcl(x));
313
314	z = x * x;
315	y = x * polevll(z, T, 6) / p1evll(z, U, 6);
316	return (y);
317}
318#endif