master
  1/*
  2 This Software is provided under the Zope Public License (ZPL) Version 2.1.
  3
  4 Copyright (c) 2009, 2010 by the mingw-w64 project
  5
  6 See the AUTHORS file for the list of contributors to the mingw-w64 project.
  7
  8 This license has been certified as open source. It has also been designated
  9 as GPL compatible by the Free Software Foundation (FSF).
 10
 11 Redistribution and use in source and binary forms, with or without
 12 modification, are permitted provided that the following conditions are met:
 13
 14   1. Redistributions in source code must retain the accompanying copyright
 15      notice, this list of conditions, and the following disclaimer.
 16   2. Redistributions in binary form must reproduce the accompanying
 17      copyright notice, this list of conditions, and the following disclaimer
 18      in the documentation and/or other materials provided with the
 19      distribution.
 20   3. Names of the copyright holders must not be used to endorse or promote
 21      products derived from this software without prior written permission
 22      from the copyright holders.
 23   4. The right to distribute this software or to use it for any purpose does
 24      not give you the right to use Servicemarks (sm) or Trademarks (tm) of
 25      the copyright holders.  Use of them is covered by separate agreement
 26      with the copyright holders.
 27   5. If any files are modified, you must cause the modified files to carry
 28      prominent notices stating that you changed the files and the date of
 29      any change.
 30
 31 Disclaimer
 32
 33 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY EXPRESSED
 34 OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 35 OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 36 EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY DIRECT, INDIRECT,
 37 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 38 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, 
 39 OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 40 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 41 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 42 EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 43*/
 44
 45__FLT_TYPE __complex__ __cdecl
 46__FLT_ABI(catanh) (__FLT_TYPE __complex__ z)
 47{
 48  __complex__ __FLT_TYPE ret;
 49  __FLT_TYPE i2, n, d;
 50  int r_class = fpclassify (__real__ z);
 51  int i_class = fpclassify (__imag__ z);
 52
 53  if (r_class == FP_INFINITE || r_class == FP_NAN || i_class == FP_INFINITE || i_class == FP_NAN)
 54  {
 55    if (i_class == FP_INFINITE)
 56    {
 57      __real__ ret = __FLT_ABI(copysign) (__FLT_CST(0.0), __real__ z);
 58      __imag__ ret = __FLT_ABI(copysign) (__FLT_PI_2, __imag__ z);
 59      return ret;
 60    }
 61
 62    if (r_class == FP_INFINITE || r_class == FP_ZERO)
 63    {
 64      __real__ ret = __FLT_ABI(copysign) (__FLT_CST(0.0), __real__ z);
 65      __imag__ ret = ((i_class != FP_NAN && i_class != FP_INFINITE)
 66        ? __FLT_ABI(copysign) (__FLT_PI_2, __imag__ z) : __FLT_NAN);
 67      return ret;
 68    }
 69
 70    __real__ ret = __FLT_NAN;
 71    __imag__ ret = __FLT_NAN;
 72    return ret;
 73  }
 74
 75  if (r_class == FP_ZERO && i_class == FP_ZERO)
 76    return z;
 77
 78  /* catanh(z) = 1/2 * clog(1+z) - 1/2 * clog(1-z) = 1/2 * clog((1+z)/(1-z)) */
 79
 80  /* Use identity clog(c) = 1/2*log(|c|^2) + i*arg(c) to calculate real and
 81  imaginary parts separately. */
 82
 83  /* real part */
 84  /* |c|^2 = (Im(z)^2 + (1+Re(z))^2)/(Im(z)^2 + (1-Re(z))^2) */
 85  i2 = __imag__ z * __imag__ z;
 86
 87  if (__FLT_ABI(fabs) (__real__ z) <= __FLT_EPSILON)
 88  {
 89    /* |c|^2 = 1 + 4*Re(z)/(1+Im(z)^2) + O(Re(z)^2)  (Taylor series) */
 90    __real__ ret = __FLT_CST(0.25) *
 91      __FLT_ABI(log1p) (__FLT_CST(4.0)*(__real__ z) / (__FLT_CST(1.0) + i2));
 92  }
 93  else if ((__real__ z)*(__real__ z) <= __FLT_EPSILON)
 94  {
 95    /* |c|^2 = 1 + 4*Re(z)/(1+Im(z)^2) + 8*Re(z)^2/(1+Im(z)^2)^2 + O(Re(z)^3)  (Taylor series) */
 96    d = __real__ z / (__FLT_CST(1.0) + i2);
 97    __real__ ret = __FLT_CST(0.25) *
 98      __FLT_ABI(log1p) (__FLT_CST(4.0) * d * (__FLT_CST(1.0) + __FLT_CST(2.0) * d));
 99  }
100  else
101  {
102    n = __FLT_CST(1.0) + __real__ z;
103    n = i2 + n * n;
104
105    d = __FLT_CST(1.0) - __real__ z;
106    d = i2 + d * d;
107
108    __real__ ret = __FLT_CST(0.25) * (__FLT_ABI(log) (n) - __FLT_ABI(log) (d));
109  }
110
111  /* imaginary part */
112  /* z = (1 - Re(z)^2 - Im(z)^2 + 2i * Im(z) / ((1-Re(z))^2 + Im(z)^2) */
113  d = __FLT_CST(1.0) - __real__ z * __real__ z - i2;
114
115  __imag__ ret = __FLT_CST(0.5) * __FLT_ABI(atan2) (__FLT_CST(2.0) * __imag__ z, d);
116
117  return ret;
118}