master
  1/*
  2 This Software is provided under the Zope Public License (ZPL) Version 2.1.
  3
  4 Copyright (c) 2009, 2010 by the mingw-w64 project
  5
  6 See the AUTHORS file for the list of contributors to the mingw-w64 project.
  7
  8 This license has been certified as open source. It has also been designated
  9 as GPL compatible by the Free Software Foundation (FSF).
 10
 11 Redistribution and use in source and binary forms, with or without
 12 modification, are permitted provided that the following conditions are met:
 13
 14   1. Redistributions in source code must retain the accompanying copyright
 15      notice, this list of conditions, and the following disclaimer.
 16   2. Redistributions in binary form must reproduce the accompanying
 17      copyright notice, this list of conditions, and the following disclaimer
 18      in the documentation and/or other materials provided with the
 19      distribution.
 20   3. Names of the copyright holders must not be used to endorse or promote
 21      products derived from this software without prior written permission
 22      from the copyright holders.
 23   4. The right to distribute this software or to use it for any purpose does
 24      not give you the right to use Servicemarks (sm) or Trademarks (tm) of
 25      the copyright holders.  Use of them is covered by separate agreement
 26      with the copyright holders.
 27   5. If any files are modified, you must cause the modified files to carry
 28      prominent notices stating that you changed the files and the date of
 29      any change.
 30
 31 Disclaimer
 32
 33 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY EXPRESSED
 34 OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 35 OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 36 EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY DIRECT, INDIRECT,
 37 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 38 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, 
 39 OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 40 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 41 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 42 EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 43*/
 44
 45__FLT_TYPE __complex__ __cdecl
 46__FLT_ABI(casinh) (__FLT_TYPE __complex__ z)
 47{
 48  __complex__ __FLT_TYPE ret;
 49  __complex__ __FLT_TYPE x;
 50  __FLT_TYPE arz, aiz;
 51  int r_class = fpclassify (__real__ z);
 52  int i_class = fpclassify (__imag__ z);
 53
 54  if (i_class == FP_INFINITE)
 55  {
 56    __real__ ret = __FLT_ABI(copysign) (__FLT_HUGE_VAL, __real__ z);
 57    __imag__ ret = (r_class == FP_NAN
 58      ? __FLT_NAN
 59      : (__FLT_ABI(copysign) ((r_class != FP_NAN && r_class != FP_INFINITE) ? __FLT_PI_2 : __FLT_PI_4, __imag__ z)));
 60    return ret;
 61  }
 62
 63  if (r_class == FP_INFINITE)
 64  {
 65    __real__ ret = __real__ z;
 66    __imag__ ret = (i_class != FP_NAN
 67      ? __FLT_ABI(copysign) (__FLT_CST(0.0), __imag__ z)
 68      : __FLT_NAN);
 69    return ret;
 70  }
 71
 72  if (r_class == FP_NAN)
 73  {
 74    __real__ ret = __real__ z;
 75    __imag__ ret = (i_class == FP_ZERO
 76      ? __FLT_ABI(copysign) (__FLT_CST(0.0), __imag__ z)
 77      : __FLT_NAN);
 78    return ret;
 79  }
 80
 81  if (i_class == FP_NAN)
 82  {
 83    __real__ ret = __FLT_NAN;
 84    __imag__ ret = __FLT_NAN;
 85    return ret;
 86  }
 87
 88  if (r_class == FP_ZERO && i_class == FP_ZERO)
 89    return z;
 90
 91  /* casinh(z) = log(z + sqrt(z*z + 1)) */
 92
 93  /* Use symmetries to perform the calculation in the first quadrant. */
 94  arz = __FLT_ABI(fabs) (__real__ z);
 95  aiz = __FLT_ABI(fabs) (__imag__ z);
 96
 97  if (arz >= __FLT_CST(1.0)/__FLT_EPSILON
 98      || aiz >= __FLT_CST(1.0)/__FLT_EPSILON)
 99  {
100    /* For large z, z + sqrt(z*z + 1) is approximately 2*z.
101    Use that approximation to avoid overflow when squaring. */
102    __real__ x = arz;
103    __imag__ x = aiz;
104    ret = __FLT_ABI(clog) (x);
105    __real__ ret += M_LN2;
106  }
107  else if (aiz < __FLT_CST(1.0) && arz <= __FLT_EPSILON)
108  {
109    /* Taylor series expansion around arz=0 for z + sqrt(z*z + 1):
110    c = arz + sqrt(1-aiz^2) + i*(aiz + arz*aiz / sqrt(1-aiz^2)) + O(arz^2)
111    Identity: clog(c) = log(|c|) + i*arg(c)
112    For real part of result:
113    |c| = 1 + arz / sqrt(1-aiz^2) + O(arz^2)  (Taylor series expansion)
114    For imaginary part of result:
115    c = (arz + sqrt(1-aiz^2))/sqrt(1-aiz^2) * (sqrt(1-aiz^2) + i*aiz) + O(arz^6)
116    */
117    __FLT_TYPE s1maiz2 = __FLT_ABI(sqrt) ((__FLT_CST(1.0)+aiz)*(__FLT_CST(1.0)-aiz));
118    __real__ ret = __FLT_ABI(log1p) (arz / s1maiz2);
119    __imag__ ret = __FLT_ABI(atan2) (aiz, s1maiz2);
120  }
121  else if (aiz < __FLT_CST(1.0) && arz*arz <= __FLT_EPSILON)
122  {
123    /* Taylor series expansion around arz=0 for z + sqrt(z*z + 1):
124    c = arz + sqrt(1-aiz^2) + arz^2 / (2*(1-aiz^2)^(3/2)) + i*(aiz + arz*aiz / sqrt(1-aiz^2)) + O(arz^4)
125    Identity: clog(c) = log(|c|) + i*arg(c)
126    For real part of result:
127    |c| = 1 + arz / sqrt(1-aiz^2) + arz^2/(2*(1-aiz^2)) + O(arz^3)  (Taylor series expansion)
128    For imaginary part of result:
129    c = 1/sqrt(1-aiz^2) * ((1-aiz^2) + arz*sqrt(1-aiz^2) + arz^2/(2*(1-aiz^2)) + i*aiz*(sqrt(1-aiz^2)+arz)) + O(arz^3)
130    */
131    __FLT_TYPE onemaiz2 = (__FLT_CST(1.0)+aiz)*(__FLT_CST(1.0)-aiz);
132    __FLT_TYPE s1maiz2 = __FLT_ABI(sqrt) (onemaiz2);
133    __FLT_TYPE arz2red = arz * arz / __FLT_CST(2.0) / s1maiz2;
134    __real__ ret = __FLT_ABI(log1p) ((arz + arz2red) / s1maiz2);
135    __imag__ ret = __FLT_ABI(atan2) (aiz * (s1maiz2 + arz),
136                                     onemaiz2 + arz*s1maiz2 + arz2red);
137  }
138  else
139  {
140    __real__ x = (arz - aiz) * (arz + aiz) + __FLT_CST(1.0);
141    __imag__ x = __FLT_CST(2.0) * arz * aiz;
142
143    x = __FLT_ABI(csqrt) (x);
144
145    __real__ x += arz;
146    __imag__ x += aiz;
147
148    ret = __FLT_ABI(clog) (x);
149  }
150
151  /* adjust signs for input quadrant */
152  __real__ ret = __FLT_ABI(copysign) (__real__ ret, __real__ z);
153  __imag__ ret = __FLT_ABI(copysign) (__imag__ ret, __imag__ z);
154
155  return ret;
156}