master
1/* $NetBSD: sxreg.h,v 1.21 2021/12/10 20:36:03 andvar Exp $ */
2
3/*-
4 * Copyright (c) 2013 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Michael Lorenz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/* register definitions for Sun's SX / SPAM rendering engine */
33
34#ifndef SXREG_H
35#define SXREG_H
36
37/* SX control registers */
38#define SX_CONTROL_STATUS 0x00000000
39#define SX_ERROR 0x00000004
40#define SX_PAGE_BOUND_LOWER 0x00000008
41#define SX_PAGE_BOUND_UPPER 0x0000000c
42#define SX_PLANEMASK 0x00000010
43#define SX_ROP_CONTROL 0x00000014 /* 8 bit ROP */
44#define SX_IQ_OVERFLOW_COUNTER 0x00000018
45#define SX_DIAGNOSTICS 0x0000001c
46#define SX_INSTRUCTIONS 0x00000020
47#define SX_ID 0x00000028
48#define SX_R0_INIT 0x0000002c
49#define SX_SOFTRESET 0x00000030
50#define SX_SYNC 0x00000034 /* write will stall CPU until */
51 /* SX is idle */
52/* write registers directly, only when processor is stopped */
53#define SX_DIRECT_R0 0x00000100
54#define SX_DIRECT_R1 0x00000104 /* and so on until R127 */
55/* write registers via pseudo instructions */
56#define SX_QUEUED_R0 0x00000300
57#define SX_QUEUED_R1 0x00000304 /* and so on until R127 */
58#define SX_QUEUED(r) (0x300 + ((r) << 2))
59
60/* special purpose registers */
61#define R_ZERO 0
62#define R_SCAM 1
63#define R_MASK 2 /* bitmask for SX_STORE_SELECT */
64
65/*
66 * registers are repeated at 0x1000 with certain parts read only
67 * ( like the PAGE_BOUND registers ) which userland has no business writing to
68 */
69
70/* SX_CONTROL_STATUS */
71#define SX_EE1 0x00000001 /* illegal instruction */
72#define SX_EE2 0x00000002 /* page bound error */
73#define SX_EE3 0x00000004 /* illegal memory access */
74#define SX_EE4 0x00000008 /* illegal register access */
75#define SX_EE5 0x00000010 /* alignment violation */
76#define SX_EE6 0x00000020 /* illegal instruction queue write */
77#define SX_EI 0x00000080 /* interrupt on error */
78/*
79 * XXX
80 * the following bit definitions are from the SX manual. They're defined in a
81 * different way in SunOS's sxreg.h, the hardware seems to follow the latter.
82 */
83#if 0
84#define SX_PB 0x00001000 /* enable page bound checking */
85#define SX_WO 0x00002000 /* write occurred ( by SX ) */
86#define SX_GO 0x00004000 /* start/stop the processor */
87#define SX_MT 0x00008000 /* instruction queue is empty */
88#endif
89
90#define SX_PB 0x00000400 /* enable page bound checking */
91#define SX_WO 0x00000800 /* write occurred ( by SX ) */
92#define SX_GO 0x00001000 /* start/stop the processor */
93#define SX_JB 0x00002000 /* Jammed/Busy specifies the type of events */
94 /* which increment the SX timer */
95#define SX_MT 0x00004000 /* instruction queue is empty */
96#define SX_BZ 0x00008000 /* Busy bit. When set it indicates that SX */
97 /* is processing an instruction or an */
98 /* instruction is pending in the Q */
99#define SX_B0MOD 0x00010000 /* When set by SX it indicates that a write */
100 /* to bank zero of the SX registers (0-31) */
101 /* occurred */
102#define SX_B1MOD 0x00020000 /* When set by SX it indicates that a write */
103 /* to bank 1 of the SX registers (32-63) */
104 /* occurred */
105#define SX_B2MOD 0x00040000 /* When set by SX it indicates that a write */
106 /* to bank 2 of the SX registers (64-95) */
107 /* occurred */
108#define SX_B3MOD 0x00080000 /* When set by SX it indicates that a write */
109 /* to bank 3 of the SX registers (96-127) */
110 /* occurred */
111
112/* SX_ERROR */
113#define SX_SE1 0x00000001 /* illegal instruction */
114#define SX_SE2 0x00000002 /* page bound error */
115#define SX_SE3 0x00000004 /* illegal memory access */
116#define SX_SE4 0x00000008 /* illegal register access */
117#define SX_SE5 0x00000010 /* alignment violation */
118#define SX_SE6 0x00000020 /* illegal instruction queue write */
119#define SX_SI 0x00000080 /* interrupt on error */
120
121/* SX_ID from the manual */
122#if 0
123#define SX_ARCHITECTURE_MASK 0x000000ff
124#define SX_CHIP_REVISION 0x0000ff00
125#endif
126
127#define SX_ARCHITECTURE_MASK 0x00000003
128#define SX_CHIP_REVISION 0x000000f8
129
130/* SX_DIAGNOSTICS */
131#define SX_IQ_FIFO_ACCESS 0x00000001 /* allow memory instructions
132 * in SX_INSTRUCTIONS */
133#define SX_SERIAL_INSTRUCTIONS 0x00000002 /* force inst. serializing */
134#define SX_RAM_PAGE_CROSS 0x00000004 /* indicates page crossing */
135#define SX_ARRAY_CONSTRAINING 0x00000008 /* When set constrains VRAM */
136 /* array offset effective */
137 /* address calculation */
138#define SX_UPG_MPG_DISABLE 0x00000010 /* When set, disables page */
139 /* cross input into ld/st */
140 /* state machines */
141#define SX_DIAG_INIT 0x4804 /* Setting of the diag reg */
142 /* upon reset */
143
144
145/*
146 * memory referencing instructions are written to 0x800000000 + PA
147 * so we have to go through ASI 0x28 ( ASI_BYPASS + 8 )
148 */
149#define ASI_SX 0x28
150
151/* load / store instructions */
152#define SX_STORE_COND (0x4 << 19) /* conditional write with mask */
153#define SX_STORE_CLAMP (0x2 << 19)
154#define SX_STORE_MASK (0x1 << 19) /* apply plane mask */
155#define SX_STORE_SELECT (0x8 << 19) /* expand with plane reg dest[0]/dest[1] */
156#define SX_LOAD (0xa << 19)
157#define SX_STORE (0x0 << 19)
158
159/* data type */
160#define SX_UBYTE_0 (0x00 << 14)
161#define SX_UBYTE_8 (0x01 << 14)
162#define SX_UBYTE_16 (0x02 << 14)
163#define SX_UBYTE_24 (0x03 << 14)
164#define SX_SBYTE_0 (0x04 << 14)
165#define SX_SBYTE_8 (0x05 << 14)
166#define SX_SBYTE_16 (0x06 << 14)
167#define SX_SBYTE_24 (0x07 << 14)
168#define SX_UQUAD_0 (0x08 << 14)
169#define SX_UQUAD_8 (0x09 << 14)
170#define SX_UQUAD_16 (0x0a << 14)
171#define SX_UQUAD_24 (0x0b << 14)
172#define SX_SQUAD_0 (0x0c << 14)
173#define SX_SQUAD_8 (0x0d << 14)
174#define SX_SQUAD_16 (0x0e << 14)
175#define SX_SQUAD_24 (0x0f << 14)
176#define SX_UCHAN_0 (0x10 << 14)
177#define SX_UCHAN_8 (0x11 << 14)
178#define SX_UCHAN_16 (0x12 << 14)
179#define SX_UCHAN_24 (0x13 << 14)
180#define SX_SCHAN_0 (0x14 << 14)
181#define SX_SCHAN_8 (0x15 << 14)
182#define SX_SCHAN_16 (0x16 << 14)
183#define SX_SCHAN_24 (0x17 << 14)
184#define SX_USHORT_0 (0x18 << 14)
185#define SX_USHORT_8 (0x19 << 14)
186#define SX_USHORT_16 (0x1a << 14)
187#define SX_SSHORT_0 (0x1c << 14)
188#define SX_SSHORT_8 (0x1d << 14)
189#define SX_SSHORT_16 (0x1e << 14)
190#define SX_LONG (0x1b << 14)
191#define SX_PACKED (0x1f << 14)
192
193
194#define SX_LD(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
195 SX_LONG | (dreg << 7) | (o))
196#define SX_LDB(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
197 SX_UBYTE_0 | (dreg << 7) | (o))
198#define SX_LDP(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
199 SX_PACKED | (dreg << 7) | (o))
200#define SX_LDUQ0(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
201 SX_UQUAD_0 | (dreg << 7) | (o))
202#define SX_LDUQ8(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
203 SX_UQUAD_8 | (dreg << 7) | (o))
204#define SX_LDUQ16(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
205 SX_UQUAD_16 | (dreg << 7) | (o))
206#define SX_LDUQ24(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
207 SX_UQUAD_24 | (dreg << 7) | (o))
208#define SX_LDUC0(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
209 SX_UCHAN_0 | (dreg << 7) | (o))
210#define SX_LDUC8(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
211 SX_UCHAN_8 | (dreg << 7) | (o))
212#define SX_LDUC16(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
213 SX_UCHAN_16 | (dreg << 7) | (o))
214#define SX_LDUC24(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
215 SX_UCHAN_24 | (dreg << 7) | (o))
216#define SX_ST(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
217 SX_LONG | (sreg << 7) | (o))
218#define SX_STM(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE_MASK | \
219 SX_LONG | (sreg << 7) | (o))
220#define SX_STB(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
221 SX_UBYTE_0 | (sreg << 7) | (o))
222#define SX_STBM(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE_MASK | \
223 SX_UBYTE_0 | (sreg << 7) | (o))
224#define SX_STBC(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE_CLAMP | \
225 SX_UBYTE_0 | (sreg << 7) | (o))
226#define SX_STP(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
227 SX_PACKED | (sreg << 7) | (o))
228#define SX_STPS(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE_SELECT | \
229 SX_PACKED | (sreg << 7) | (o))
230#define SX_STS(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE_SELECT \
231 | SX_LONG | (sreg << 7) | (o))
232#define SX_STBS(reg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE_SELECT \
233 | SX_UBYTE_0 | (reg << 7) | (o))
234#define SX_STUQ0(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
235 SX_UQUAD_0 | (sreg << 7) | (o))
236#define SX_STUQ0C(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE_CLAMP | \
237 SX_UQUAD_0 | (sreg << 7) | (o))
238#define SX_STUQ8(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
239 SX_UQUAD_8 | (sreg << 7) | (o))
240#define SX_STUQ16(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
241 SX_UQUAD_16 | (sreg << 7) | (o))
242#define SX_STUQ24(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
243 SX_UQUAD_24 | (sreg << 7) | (o))
244#define SX_STUC0(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
245 SX_UCHAN_0 | (sreg << 7) | (o))
246#define SX_STUC0C(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE_CLAMP | \
247 SX_UCHAN_0 | (sreg << 7) | (o))
248#define SX_STUC8(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
249 SX_UCHAN_8 | (sreg << 7) | (o))
250#define SX_STUC16(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
251 SX_UCHAN_16 | (sreg << 7) | (o))
252#define SX_STUC24(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
253 SX_UCHAN_24 | (sreg << 7) | (o))
254
255/* ROP and SELECT instructions */
256#define SX_ROP_B (0x0 << 21) /* mask bits apply to bytes */
257#define SX_ROP_M (0x1 << 21) /* mask bits apply to each bit */
258#define SX_ROP_L (0x2 << 21) /* mask bits apply per register */
259#define SX_SEL_B (0x4 << 21) /* byte select scalar */
260#define SX_SEL_V (0x6 << 21) /* register select vector */
261#define SX_SEL_S (0x7 << 21) /* register select scalar */
262
263#define SX_ROP(sa, sb, d, cnt) (0x90000000 | ((cnt) << 24) | SX_ROP_L | \
264 ((sa) << 14) | (sb) | ((d) << 7))
265#define SX_ROPB(sa, sb, d, cnt) (0x90000000 | ((cnt) << 24) | SX_ROP_B | \
266 ((sa) << 14) | (sb) | ((d) << 7))
267#define SX_SELECT_S(sa, sb, d, cnt) (0x90000000 | ((cnt) << 24) | SX_SEL_S | \
268 ((sa) << 14) | (sb) | ((d) << 7))
269
270/* multiply group */
271#define SX_M16X16SR0 (0x0 << 28) /* 16bit multiply, no shift */
272#define SX_M16X16SR8 (0x1 << 28) /* 16bit multiply, shift right 8 */
273#define SX_M16X16SR16 (0x2 << 28) /* 16bit multiply, shift right 16 */
274#define SX_M32X16SR0 (0x4 << 28) /* 32x16bit multiply, no shift */
275#define SX_M32X16SR8 (0x5 << 28) /* 32x16bit multiply, shift right 8 */
276#define SX_M32X16SR16 (0x6 << 28) /* 32x16bit multiply, shift right 16 */
277
278#define SX_MULTIPLY (0x0 << 21) /* normal multiplication */
279#define SX_DOT (0x1 << 21) /* dot product of A and B */
280#define SX_SAXP (0x2 << 21) /* A * SCAM + B */
281
282#define SX_ROUND (0x1 << 23) /* round results */
283
284#define SX_MUL16X16(sa, sb, d, cnt) (SX_M16X16SR0 | ((cnt) << 24) | \
285 SX_MULTIPLY | ((sa) << 14) | ((d) << 7) | (sb))
286#define SX_MUL16X16R(sa, sb, d, cnt) (SX_M16X16SR0 | ((cnt) << 24) | \
287 SX_MULTIPLY | ((sa) << 14) | ((d) << 7) | (sb) | SX_ROUND)
288#define SX_MUL16X16SR8(sa, sb, d, cnt) (SX_M16X16SR8 | ((cnt) << 24) | \
289 SX_MULTIPLY | ((sa) << 14) | ((d) << 7) | (sb))
290#define SX_MUL16X16SR8R(sa, sb, d, cnt) (SX_M16X16SR8 | ((cnt) << 24) | \
291 SX_MULTIPLY | ((sa) << 14) | ((d) << 7) | (sb) | SX_ROUND)
292
293#define SX_SAXP16X16(sa, sb, d, cnt) (SX_M16X16SR0 | ((cnt) << 24) | \
294 SX_SAXP | ((sa) << 14) | ((d) << 7) | (sb))
295#define SX_SAXP16X16R(sa, sb, d, cnt) (SX_M16X16SR0 | ((cnt) << 24) | \
296 SX_SAXP | ((sa) << 14) | ((d) << 7) | (sb) | SX_ROUND)
297#define SX_SAXP16X16SR8(sa, sb, d, cnt) (SX_M16X16SR8 | ((cnt) << 24) | \
298 SX_SAXP | ((sa) << 14) | ((d) << 7) | (sb))
299#define SX_SAXP16X16SR8R(sa, sb, d, cnt) (SX_M16X16SR8 | ((cnt) << 24) | \
300 SX_SAXP | ((sa) << 14) | ((d) << 7) | (sb) | SX_ROUND)
301
302/* logic group */
303#define SX_AND_V (0x0 << 21) /* vector AND vector */
304#define SX_AND_S (0x1 << 21) /* vector AND scalar */
305#define SX_AND_I (0x2 << 21) /* vector AND immediate */
306#define SX_XOR_V (0x3 << 21) /* vector XOR vector */
307#define SX_XOR_S (0x4 << 21) /* vector XOR scalar */
308#define SX_XOR_I (0x5 << 21) /* vector XOR immediate */
309#define SX_OR_V (0x6 << 21) /* vector OR vector */
310#define SX_OR_S (0x7 << 21) /* vector OR scalar */
311/* immediates are 7bit sign extended to 32bit */
312
313#define SX_ANDV(sa, sb, d, cnt) (0xb0000000 | ((cnt) << 24) | SX_AND_V | \
314 ((sa) << 14) | ((d) << 7) | (sb))
315#define SX_ANDS(sa, sb, d, cnt) (0xb0000000 | ((cnt) << 24) | SX_AND_S | \
316 ((sa) << 14) | ((d) << 7) | (sb))
317#define SX_ANDI(sa, sb, d, cnt) (0xb0000000 | ((cnt) << 24) | SX_AND_I | \
318 ((sa) << 14) | ((d) << 7) | (sb))
319#define SX_XORV(sa, sb, d, cnt) (0xb0000000 | ((cnt) << 24) | SX_XOR_V | \
320 ((sa) << 14) | ((d) << 7) | (sb))
321#define SX_XORS(sa, sb, d, cnt) (0xb0000000 | ((cnt) << 24) | SX_XOR_S | \
322 ((sa) << 14) | ((d) << 7) | (sb))
323#define SX_XORI(sa, sb, d, cnt) (0xb0000000 | ((cnt) << 24) | SX_XOR_I | \
324 ((sa) << 14) | ((d) << 7) | (sb))
325#define SX_ORV(sa, sb, d, cnt) (0xb0000000 | ((cnt) << 24) | SX_OR_V | \
326 ((sa) << 14) | ((d) << 7) | (sb))
327#define SX_ORS(sa, sb, d, cnt) (0xb0000000 | ((cnt) << 24) | SX_OR_S | \
328 ((sa) << 14) | ((d) << 7) | (sb))
329
330/* arithmetic group */
331#define SX_ADD_V (0x00 << 21) /* vector + vector */
332#define SX_ADD_S (0x01 << 21) /* vector + scalar */
333#define SX_ADD_I (0x02 << 21) /* vector + immediate */
334#define SX_SUM (0x03 << 21) /* sum of vector and scalar */
335#define SX_SUB_V (0x04 << 21) /* vector - vector */
336#define SX_SUB_S (0x05 << 21) /* vector - scalar */
337#define SX_SUB_I (0x06 << 21) /* vector - immediate */
338#define SX_ABS (0x07 << 21) /* abs(sb) with sa=R0 */
339/* hardware does sa - sb for sb < 0 and sa + sb if sb > 0 */
340
341#define SX_ADDV(sa, sb, d, cnt) (0xa0000000 | ((cnt) << 24) | SX_ADD_V | \
342 ((sa) << 14) | ((d) << 7) | (sb))
343
344/* MISC group */
345#define SX_GTHR (3 << 21) /* sa with spacing sb -> d */
346#define SX_SCTR (2 << 21) /* sa -> d with spacing sb */
347#define SX_GATHER(sa, sb, d, cnt) (0xe0000000 | ((cnt) << 24) | SX_GTHR | \
348 ((sa) << 14) | ((d) << 7) | (sb))
349#define SX_SCATTER(sa, sb, d, cnt) (0xe0000000 | ((cnt) << 24) | SX_SCTR | \
350 ((sa) << 14) | ((d) << 7) | (sb))
351
352/* shift group */
353#define SX_SRL_V (0 << 21) /* shift right logical, by vector */
354#define SX_SRL_I (1 << 21) /* shift right logical, by immediate */
355#define SX_SRA_V (2 << 21) /* shift right arithmetic, by vector */
356#define SX_SRA_I (3 << 21) /* shift right arithmetic, by immediate */
357#define SX_SLL_V (4 << 21) /* shift left logical, by vector */
358#define SX_SLL_I (5 << 21) /* shift left logical, by immediate */
359#define SX_SLF_S (6 << 21) /* shift left funnel, by SRCB */
360#define SX_SLF_I (7 << 21) /* shift left funnel, by immediate */
361
362#define SX_SRLV(sa, sb, d, cnt) (0xc0000000 | ((cnt) << 24) | SX_SRL_V | \
363 ((sa) << 14) | ((d) << 7) | (sb))
364#define SX_SRLI(sa, sb, d, cnt) (0xc0000000 | ((cnt) << 24) | SX_SRL_I | \
365 ((sa) << 14) | ((d) << 7) | (sb))
366#define SX_SRAV(sa, sb, d, cnt) (0xc0000000 | ((cnt) << 24) | SX_SRA_V | \
367 ((sa) << 14) | ((d) << 7) | (sb))
368#define SX_SRAI(sa, sb, d, cnt) (0xc0000000 | ((cnt) << 24) | SX_SRA_I | \
369 ((sa) << 14) | ((d) << 7) | (sb))
370#define SX_SLLV(sa, sb, d, cnt) (0xc0000000 | ((cnt) << 24) | SX_SLL_V | \
371 ((sa) << 14) | ((d) << 7) | (sb))
372#define SX_SLLI(sa, sb, d, cnt) (0xc0000000 | ((cnt) << 24) | SX_SLL_I | \
373 ((sa) << 14) | ((d) << 7) | (sb))
374#define SX_FUNNEL_S(sa, sb, d, cnt) (0xc0000000 | ((cnt) << 24) | SX_SLF_S | \
375 ((sa) << 14) | ((d) << 7) | (sb))
376#define SX_FUNNEL_I(sa, sb, d, cnt) (0xc0000000 | ((cnt) << 24) | SX_SLF_I | \
377 ((sa) << 14) | ((d) << 7) | (sb))
378
379#endif /* SXREG_H */