1/*	$NetBSD: pmap.h,v 1.97 2021/01/25 20:05:29 mrg Exp $ */
  2
  3/*
  4 * Copyright (c) 1996
  5 * 	The President and Fellows of Harvard College. All rights reserved.
  6 * Copyright (c) 1992, 1993
  7 *	The Regents of the University of California.  All rights reserved.
  8 *
  9 * This software was developed by the Computer Systems Engineering group
 10 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
 11 * contributed to Berkeley.
 12 *
 13 * All advertising materials mentioning features or use of this software
 14 * must display the following acknowledgement:
 15 *	This product includes software developed by Aaron Brown and
 16 *	Harvard University.
 17 *	This product includes software developed by the University of
 18 *	California, Lawrence Berkeley Laboratory.
 19 *
 20 * @InsertRedistribution@
 21 * 3. All advertising materials mentioning features or use of this software
 22 *    must display the following acknowledgement:
 23 *	This product includes software developed by Aaron Brown and
 24 *	Harvard University.
 25 *	This product includes software developed by the University of
 26 *	California, Berkeley and its contributors.
 27 * 4. Neither the name of the University nor the names of its contributors
 28 *    may be used to endorse or promote products derived from this software
 29 *    without specific prior written permission.
 30 *
 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 41 * SUCH DAMAGE.
 42 *
 43 *	@(#)pmap.h	8.1 (Berkeley) 6/11/93
 44 */
 45
 46#ifndef	_SPARC_PMAP_H_
 47#define _SPARC_PMAP_H_
 48
 49#if defined(_KERNEL_OPT)
 50#include "opt_sparc_arch.h"
 51#endif
 52
 53struct vm_page;
 54
 55#include <uvm/uvm_prot.h>
 56#include <uvm/uvm_pmap.h>
 57
 58#include <sparc/pte.h>
 59
 60/*
 61 * Pmap structure.
 62 *
 63 * The pmap structure really comes in two variants, one---a single
 64 * instance---for kernel virtual memory and the other---up to nproc
 65 * instances---for user virtual memory.  Unfortunately, we have to mash
 66 * both into the same structure.  Fortunately, they are almost the same.
 67 *
 68 * The kernel begins at 0xf8000000 and runs to 0xffffffff (although
 69 * some of this is not actually used).  Kernel space, including DVMA
 70 * space (for now?), is mapped identically into all user contexts.
 71 * There is no point in duplicating this mapping in each user process
 72 * so they do not appear in the user structures.
 73 *
 74 * User space begins at 0x00000000 and runs through 0x1fffffff,
 75 * then has a `hole', then resumes at 0xe0000000 and runs until it
 76 * hits the kernel space at 0xf8000000.  This can be mapped
 77 * contiguously by ignorning the top two bits and pretending the
 78 * space goes from 0 to 37ffffff.  Typically the lower range is
 79 * used for text+data and the upper for stack, but the code here
 80 * makes no such distinction.
 81 *
 82 * Since each virtual segment covers 256 kbytes, the user space
 83 * requires 3584 segments, while the kernel (including DVMA) requires
 84 * only 512 segments.
 85 *
 86 *
 87 ** FOR THE SUN4/SUN4C
 88 *
 89 * The segment map entry for virtual segment vseg is offset in
 90 * pmap->pm_rsegmap by 0 if pmap is not the kernel pmap, or by
 91 * NUSEG if it is.  We keep a pointer called pmap->pm_segmap
 92 * pre-offset by this value.  pmap->pm_segmap thus contains the
 93 * values to be loaded into the user portion of the hardware segment
 94 * map so as to reach the proper PMEGs within the MMU.  The kernel
 95 * mappings are `set early' and are always valid in every context
 96 * (every change is always propagated immediately).
 97 *
 98 * The PMEGs within the MMU are loaded `on demand'; when a PMEG is
 99 * taken away from context `c', the pmap for context c has its
100 * corresponding pm_segmap[vseg] entry marked invalid (the MMU segment
101 * map entry is also made invalid at the same time).  Thus
102 * pm_segmap[vseg] is the `invalid pmeg' number (127 or 511) whenever
103 * the corresponding PTEs are not actually in the MMU.  On the other
104 * hand, pm_pte[vseg] is NULL only if no pages in that virtual segment
105 * are in core; otherwise it points to a copy of the 32 or 64 PTEs that
106 * must be loaded in the MMU in order to reach those pages.
107 * pm_npte[vseg] counts the number of valid pages in each vseg.
108 *
109 * XXX performance: faster to count valid bits?
110 *
111 * The kernel pmap cannot malloc() PTEs since malloc() will sometimes
112 * allocate a new virtual segment.  Since kernel mappings are never
113 * `stolen' out of the MMU, we just keep all its PTEs there, and have
114 * no software copies.  Its mmu entries are nonetheless kept on lists
115 * so that the code that fiddles with mmu lists has something to fiddle.
116 *
117 ** FOR THE SUN4M/SUN4D
118 *
119 * On this architecture, the virtual-to-physical translation (page) tables
120 * are *not* stored within the MMU as they are in the earlier Sun architect-
121 * ures; instead, they are maintained entirely within physical memory (there
122 * is a TLB cache to prevent the high performance hit from keeping all page
123 * tables in core). Thus there is no need to dynamically allocate PMEGs or
124 * SMEGs; only contexts must be shared.
125 *
126 * We maintain two parallel sets of tables: one is the actual MMU-edible
127 * hierarchy of page tables in allocated kernel memory; these tables refer
128 * to each other by physical address pointers in SRMMU format (thus they
129 * are not very useful to the kernel's management routines). The other set
130 * of tables is similar to those used for the Sun4/100's 3-level MMU; it
131 * is a hierarchy of regmap and segmap structures which contain kernel virtual
132 * pointers to each other. These must (unfortunately) be kept in sync.
133 *
134 */
135#define NKREG	((int)((-(unsigned)KERNBASE) / NBPRG))	/* i.e., 8 */
136#define NUREG	(256 - NKREG)				/* i.e., 248 */
137
138TAILQ_HEAD(mmuhd,mmuentry);
139
140/*
141 * data appearing in both user and kernel pmaps
142 *
143 * note: if we want the same binaries to work on the 4/4c and 4m, we have to
144 *       include the fields for both to make sure that the struct kproc
145 * 	 is the same size.
146 */
147struct pmap {
148	union	ctxinfo *pm_ctx;	/* current context, if any */
149	int	pm_ctxnum;		/* current context's number */
150	u_int	pm_cpuset;		/* CPU's this pmap has context on */
151	int	pm_refcount;		/* just what it says */
152
153	struct mmuhd	pm_reglist;	/* MMU regions on this pmap (4/4c) */
154	struct mmuhd	pm_seglist;	/* MMU segments on this pmap (4/4c) */
155
156	struct regmap	*pm_regmap;
157
158	int		**pm_reg_ptps;	/* SRMMU-edible region tables for 4m */
159	int		*pm_reg_ptps_pa;/* _Physical_ address of pm_reg_ptps */
160
161	int		pm_gap_start;	/* Starting with this vreg there's */
162	int		pm_gap_end;	/* no valid mapping until here */
163
164	struct pmap_statistics	pm_stats;	/* pmap statistics */
165	u_int		pm_flags;
166#define PMAP_USERCACHECLEAN	1
167};
168
169struct regmap {
170	struct segmap	*rg_segmap;	/* point to NSGPRG PMEGs */
171	int		*rg_seg_ptps; 	/* SRMMU-edible segment tables (NULL
172					 * indicates invalid region (4m) */
173	smeg_t		rg_smeg;	/* the MMU region number (4c) */
174	u_char		rg_nsegmap;	/* number of valid PMEGS */
175};
176
177struct segmap {
178	uint64_t sg_wiremap;		/* per-page wire bits (4m) */
179	int	*sg_pte;		/* points to NPTESG PTEs */
180	pmeg_t	sg_pmeg;		/* the MMU segment number (4c) */
181	u_char	sg_npte;		/* number of valid PTEs in sg_pte
182					 * (not used for 4m/4d kernel_map) */
183	int8_t	sg_nwired;		/* number of wired pages */
184};
185
186#ifdef _KERNEL
187
188#define PMAP_NULL	((pmap_t)0)
189
190/* Mostly private data exported for a few key consumers. */
191struct memarr;
192extern struct memarr *pmemarr;
193extern int npmemarr;
194extern vaddr_t prom_vstart;
195extern vaddr_t prom_vend;
196
197/*
198 * Bounds on managed physical addresses. Used by (MD) users
199 * of uvm_pglistalloc() to provide search hints.
200 */
201extern paddr_t		vm_first_phys, vm_last_phys;
202extern psize_t		vm_num_phys;
203
204/*
205 * Since PTEs also contain type bits, we have to have some way
206 * to tell pmap_enter `this is an IO page' or `this is not to
207 * be cached'.  Since physical addresses are always aligned, we
208 * can do this with the low order bits.
209 *
210 * The ordering below is important: PMAP_PGTYPE << PG_TNC must give
211 * exactly the PG_NC and PG_TYPE bits.
212 */
213#define	PMAP_OBIO	1		/* tells pmap_enter to use PG_OBIO */
214#define	PMAP_VME16	2		/* etc */
215#define	PMAP_VME32	3		/* etc */
216#define	PMAP_NC		4		/* tells pmap_enter to set PG_NC */
217#define	PMAP_TNC_4	7		/* mask to get PG_TYPE & PG_NC */
218
219#define	PMAP_T2PTE_4(x)		(((x) & PMAP_TNC_4) << PG_TNC_SHIFT)
220#define	PMAP_IOENC_4(io)	(io)
221
222/*
223 * On a SRMMU machine, the iospace is encoded in bits [3-6] of the
224 * physical address passed to pmap_enter().
225 */
226#define PMAP_TYPE_SRMMU		0x78	/* mask to get 4m page type */
227#define PMAP_PTESHFT_SRMMU	25	/* right shift to put type in pte */
228#define PMAP_SHFT_SRMMU		3	/* left shift to extract iospace */
229#define	PMAP_TNC_SRMMU		127	/* mask to get PG_TYPE & PG_NC */
230
231/*#define PMAP_IOC      0x00800000      -* IO cacheable, NOT shifted */
232
233#define PMAP_T2PTE_SRMMU(x)	(((x) & PMAP_TYPE_SRMMU) << PMAP_PTESHFT_SRMMU)
234#define PMAP_IOENC_SRMMU(io)	((io) << PMAP_SHFT_SRMMU)
235
236/* Encode IO space for pmap_enter() */
237#define PMAP_IOENC(io)	(CPU_HAS_SRMMU ? PMAP_IOENC_SRMMU(io) \
238				       : PMAP_IOENC_4(io))
239
240int	pmap_dumpsize(void);
241int	pmap_dumpmmu(int (*)(dev_t, daddr_t, void *, size_t), daddr_t);
242
243#define	pmap_resident_count(pm)	((pm)->pm_stats.resident_count)
244#define	pmap_wired_count(pm)	((pm)->pm_stats.wired_count)
245
246#define PMAP_PREFER(fo, ap, sz, td)	pmap_prefer((fo), (ap), (sz), (td))
247
248#define PMAP_EXCLUDE_DECLS	/* tells MI pmap.h *not* to include decls */
249
250/* FUNCTION DECLARATIONS FOR COMMON PMAP MODULE */
251
252void		pmap_activate(struct lwp *);
253void		pmap_deactivate(struct lwp *);
254void		pmap_bootstrap(int nmmu, int nctx, int nregion);
255void		pmap_prefer(vaddr_t, vaddr_t *, size_t, int);
256int		pmap_pa_exists(paddr_t);
257void		pmap_unwire(pmap_t, vaddr_t);
258void		pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
259pmap_t		pmap_create(void);
260void		pmap_destroy(pmap_t);
261void		pmap_init(void);
262vaddr_t		pmap_map(vaddr_t, paddr_t, paddr_t, int);
263#define		pmap_phys_address(x) (x)
264void		pmap_reference(pmap_t);
265void		pmap_remove(pmap_t, vaddr_t, vaddr_t);
266#define		pmap_update(pmap)		__USE(pmap)
267void		pmap_virtual_space(vaddr_t *, vaddr_t *);
268#ifdef PMAP_GROWKERNEL
269vaddr_t		pmap_growkernel(vaddr_t);
270#endif
271void		pmap_redzone(void);
272void		kvm_uncache(char *, int);
273int		mmu_pagein(struct pmap *pm, vaddr_t, int);
274void		pmap_writetext(unsigned char *, int);
275void		pmap_globalize_boot_cpuinfo(struct cpu_info *);
276bool		pmap_remove_all(struct pmap *pm);
277#define 	pmap_mmap_flags(x)	0	/* dummy so far */
278
279/* SUN4/SUN4C SPECIFIC DECLARATIONS */
280
281#if defined(SUN4) || defined(SUN4C)
282bool		pmap_clear_modify4_4c(struct vm_page *);
283bool		pmap_clear_reference4_4c(struct vm_page *);
284void		pmap_copy_page4_4c(paddr_t, paddr_t);
285int		pmap_enter4_4c(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
286bool		pmap_extract4_4c(pmap_t, vaddr_t, paddr_t *);
287bool		pmap_is_modified4_4c(struct vm_page *);
288bool		pmap_is_referenced4_4c(struct vm_page *);
289void		pmap_kenter_pa4_4c(vaddr_t, paddr_t, vm_prot_t, u_int);
290void		pmap_kremove4_4c(vaddr_t, vsize_t);
291void		pmap_kprotect4_4c(vaddr_t, vsize_t, vm_prot_t);
292void		pmap_page_protect4_4c(struct vm_page *, vm_prot_t);
293void		pmap_protect4_4c(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
294void		pmap_zero_page4_4c(paddr_t);
295#endif /* defined SUN4 || defined SUN4C */
296
297/* SIMILAR DECLARATIONS FOR SUN4M/SUN4D MODULE */
298
299#if defined(SUN4M) || defined(SUN4D)
300bool		pmap_clear_modify4m(struct vm_page *);
301bool		pmap_clear_reference4m(struct vm_page *);
302void		pmap_copy_page4m(paddr_t, paddr_t);
303void		pmap_copy_page_viking_mxcc(paddr_t, paddr_t);
304void		pmap_copy_page_hypersparc(paddr_t, paddr_t);
305int		pmap_enter4m(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
306bool		pmap_extract4m(pmap_t, vaddr_t, paddr_t *);
307bool		pmap_is_modified4m(struct vm_page *);
308bool		pmap_is_referenced4m(struct vm_page *);
309void		pmap_kenter_pa4m(vaddr_t, paddr_t, vm_prot_t, u_int);
310void		pmap_kremove4m(vaddr_t, vsize_t);
311void		pmap_kprotect4m(vaddr_t, vsize_t, vm_prot_t);
312void		pmap_page_protect4m(struct vm_page *, vm_prot_t);
313void		pmap_protect4m(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
314void		pmap_zero_page4m(paddr_t);
315void		pmap_zero_page_viking_mxcc(paddr_t);
316void		pmap_zero_page_hypersparc(paddr_t);
317#endif /* defined SUN4M || defined SUN4D */
318
319#if !(defined(SUN4M) || defined(SUN4D)) && (defined(SUN4) || defined(SUN4C))
320
321#define		pmap_clear_modify	pmap_clear_modify4_4c
322#define		pmap_clear_reference	pmap_clear_reference4_4c
323#define		pmap_enter		pmap_enter4_4c
324#define		pmap_extract		pmap_extract4_4c
325#define		pmap_is_modified	pmap_is_modified4_4c
326#define		pmap_is_referenced	pmap_is_referenced4_4c
327#define		pmap_kenter_pa		pmap_kenter_pa4_4c
328#define		pmap_kremove		pmap_kremove4_4c
329#define		pmap_kprotect		pmap_kprotect4_4c
330#define		pmap_page_protect	pmap_page_protect4_4c
331#define		pmap_protect		pmap_protect4_4c
332
333#elif (defined(SUN4M) || defined(SUN4D)) && !(defined(SUN4) || defined(SUN4C))
334
335#define		pmap_clear_modify	pmap_clear_modify4m
336#define		pmap_clear_reference	pmap_clear_reference4m
337#define		pmap_enter		pmap_enter4m
338#define		pmap_extract		pmap_extract4m
339#define		pmap_is_modified	pmap_is_modified4m
340#define		pmap_is_referenced	pmap_is_referenced4m
341#define		pmap_kenter_pa		pmap_kenter_pa4m
342#define		pmap_kremove		pmap_kremove4m
343#define		pmap_kprotect		pmap_kprotect4m
344#define		pmap_page_protect	pmap_page_protect4m
345#define		pmap_protect		pmap_protect4m
346
347#else  /* must use function pointers */
348
349extern bool	(*pmap_clear_modify_p)(struct vm_page *);
350extern bool	(*pmap_clear_reference_p)(struct vm_page *);
351extern int	(*pmap_enter_p)(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
352extern bool	 (*pmap_extract_p)(pmap_t, vaddr_t, paddr_t *);
353extern bool	(*pmap_is_modified_p)(struct vm_page *);
354extern bool	(*pmap_is_referenced_p)(struct vm_page *);
355extern void	(*pmap_kenter_pa_p)(vaddr_t, paddr_t, vm_prot_t, u_int);
356extern void	(*pmap_kremove_p)(vaddr_t, vsize_t);
357extern void	(*pmap_kprotect_p)(vaddr_t, vsize_t, vm_prot_t);
358extern void	(*pmap_page_protect_p)(struct vm_page *, vm_prot_t);
359extern void	(*pmap_protect_p)(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
360
361#define		pmap_clear_modify	(*pmap_clear_modify_p)
362#define		pmap_clear_reference	(*pmap_clear_reference_p)
363#define		pmap_enter		(*pmap_enter_p)
364#define		pmap_extract		(*pmap_extract_p)
365#define		pmap_is_modified	(*pmap_is_modified_p)
366#define		pmap_is_referenced	(*pmap_is_referenced_p)
367#define		pmap_kenter_pa		(*pmap_kenter_pa_p)
368#define		pmap_kremove		(*pmap_kremove_p)
369#define		pmap_kprotect		(*pmap_kprotect_p)
370#define		pmap_page_protect	(*pmap_page_protect_p)
371#define		pmap_protect		(*pmap_protect_p)
372
373#endif
374
375/* pmap_{zero,copy}_page() may be assisted by specialized hardware */
376#define		pmap_zero_page		(*cpuinfo.zero_page)
377#define		pmap_copy_page		(*cpuinfo.copy_page)
378
379#if defined(SUN4M) || defined(SUN4D)
380/*
381 * Macros which implement SRMMU TLB flushing/invalidation
382 */
383#define tlb_flush_page_real(va)    \
384	sta(((vaddr_t)(va) & 0xfffff000) | ASI_SRMMUFP_L3, ASI_SRMMUFP, 0)
385
386#define tlb_flush_segment_real(va) \
387	sta(((vaddr_t)(va) & 0xfffc0000) | ASI_SRMMUFP_L2, ASI_SRMMUFP, 0)
388
389#define tlb_flush_region_real(va) \
390	sta(((vaddr_t)(va) & 0xff000000) | ASI_SRMMUFP_L1, ASI_SRMMUFP, 0)
391
392#define tlb_flush_context_real()	sta(ASI_SRMMUFP_L0, ASI_SRMMUFP, 0)
393#define tlb_flush_all_real()		sta(ASI_SRMMUFP_LN, ASI_SRMMUFP, 0)
394
395void setpte4m(vaddr_t va, int pte);
396
397#endif /* SUN4M || SUN4D */
398
399#define __HAVE_VM_PAGE_MD
400
401/*
402 * For each managed physical page, there is a list of all currently
403 * valid virtual mappings of that page.  Since there is usually one
404 * (or zero) mapping per page, the table begins with an initial entry,
405 * rather than a pointer; this head entry is empty iff its pv_pmap
406 * field is NULL.
407 */
408struct vm_page_md {
409	struct pvlist {
410		struct	pvlist *pv_next;	/* next pvlist, if any */
411		struct	pmap *pv_pmap;		/* pmap of this va */
412		vaddr_t	pv_va;			/* virtual address */
413		int	pv_flags;		/* flags (below) */
414	} pvlisthead;
415};
416#define VM_MDPAGE_PVHEAD(pg)	(&(pg)->mdpage.pvlisthead)
417
418#define VM_MDPAGE_INIT(pg) do {				\
419	(pg)->mdpage.pvlisthead.pv_next = NULL;		\
420	(pg)->mdpage.pvlisthead.pv_pmap = NULL;		\
421	(pg)->mdpage.pvlisthead.pv_va = 0;		\
422	(pg)->mdpage.pvlisthead.pv_flags = 0;		\
423} while(/*CONSTCOND*/0)
424
425#endif /* _KERNEL */
426
427#endif /* _SPARC_PMAP_H_ */