1/*-
  2 * Copyright (c) 1990 The Regents of the University of California.
  3 * All rights reserved.
  4 * Copyright (c) 1994 John S. Dyson
  5 * All rights reserved.
  6 *
  7 * This code is derived from software contributed to Berkeley by
  8 * William Jolitz.
  9 *
 10 * Redistribution and use in source and binary forms, with or without
 11 * modification, are permitted provided that the following conditions
 12 * are met:
 13 * 1. Redistributions of source code must retain the above copyright
 14 *    notice, this list of conditions and the following disclaimer.
 15 * 2. Redistributions in binary form must reproduce the above copyright
 16 *    notice, this list of conditions and the following disclaimer in the
 17 *    documentation and/or other materials provided with the distribution.
 18 * 3. Neither the name of the University nor the names of its contributors
 19 *    may be used to endorse or promote products derived from this software
 20 *    without specific prior written permission.
 21 *
 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 32 * SUCH DAMAGE.
 33 *
 34 *	from: @(#)vmparam.h     5.9 (Berkeley) 5/12/91
 35 *	from: FreeBSD: src/sys/i386/include/vmparam.h,v 1.33 2000/03/30
 36 */
 37
 38#ifndef	_MACHINE_VMPARAM_H_
 39#define	_MACHINE_VMPARAM_H_
 40
 41/*
 42 * Virtual memory related constants, all in bytes
 43 */
 44#ifndef MAXTSIZ
 45#define	MAXTSIZ		(1*1024*1024*1024)	/* max text size */
 46#endif
 47#ifndef DFLDSIZ
 48#define	DFLDSIZ		(128*1024*1024)		/* initial data size limit */
 49#endif
 50#ifndef MAXDSIZ
 51#define	MAXDSIZ		(1*1024*1024*1024)	/* max data size */
 52#endif
 53#ifndef DFLSSIZ
 54#define	DFLSSIZ		(128*1024*1024)		/* initial stack size limit */
 55#endif
 56#ifndef MAXSSIZ
 57#define	MAXSSIZ		(1*1024*1024*1024)	/* max stack size */
 58#endif
 59#ifndef SGROWSIZ
 60#define	SGROWSIZ	(128*1024)		/* amount to grow stack */
 61#endif
 62
 63/*
 64 * The physical address space is sparsely populated.
 65 */
 66#define	VM_PHYSSEG_SPARSE
 67
 68/*
 69 * The number of PHYSSEG entries.
 70 */
 71#define	VM_PHYSSEG_MAX		64
 72
 73/*
 74 * Create two free page pools: VM_FREEPOOL_DEFAULT is the default pool
 75 * from which physical pages are allocated and VM_FREEPOOL_DIRECT is
 76 * the pool from which physical pages for small UMA objects are
 77 * allocated.
 78 */
 79#define	VM_NFREEPOOL		2
 80#define	VM_FREEPOOL_DEFAULT	0
 81#define	VM_FREEPOOL_DIRECT	1
 82
 83/*
 84 * Create one free page list: VM_FREELIST_DEFAULT is for all physical
 85 * pages.
 86 */
 87#define	VM_NFREELIST		1
 88#define	VM_FREELIST_DEFAULT	0
 89
 90/*
 91 * An allocation size of 16MB is supported in order to optimize the
 92 * use of the direct map by UMA.  Specifically, a cache line contains
 93 * at most four TTEs, collectively mapping 16MB of physical memory.
 94 * By reducing the number of distinct 16MB "pages" that are used by UMA,
 95 * the physical memory allocator reduces the likelihood of both 4MB
 96 * page TLB misses and cache misses caused by 4MB page TLB misses.
 97 */
 98#define	VM_NFREEORDER		12
 99
100/*
101 * Enable superpage reservations: 1 level.
102 */
103#ifndef	VM_NRESERVLEVEL
104#define	VM_NRESERVLEVEL		1
105#endif
106
107/*
108 * Level 0 reservations consist of 512 pages.
109 */
110#ifndef	VM_LEVEL_0_ORDER
111#define	VM_LEVEL_0_ORDER	9
112#endif
113
114/**
115 * Address space layout.
116 *
117 * RISC-V implements multiple paging modes with different virtual address space
118 * sizes: SV32, SV39, SV48 and SV57.  Only SV39 and SV48 are supported by
119 * FreeBSD.  SV39 provides a 512GB virtual address space and uses three-level
120 * page tables, while SV48 provides a 256TB virtual address space and uses
121 * four-level page tables.  64-bit RISC-V implementations are required to provide
122 * at least SV39 mode; locore initially enables SV39 mode while bootstrapping
123 * page tables, and pmap_bootstrap() optionally switches to SV48 mode.
124 *
125 * The address space is split into two regions at each end of the 64-bit address
126 * space; the lower region is for use by user mode software, while the upper
127 * region is used for various kernel maps.  The kernel map layout in SV48 mode
128 * is currently identical to that used in SV39 mode.
129 *
130 * SV39 memory map:
131 * 0x0000000000000000 - 0x0000003fffffffff    256GB user map
132 * 0x0000004000000000 - 0xffffffbfffffffff    unmappable
133 * 0xffffffc000000000 - 0xffffffc7ffffffff    32GB kernel map
134 * 0xffffffc800000000 - 0xffffffcfffffffff    32GB unused
135 * 0xffffffd000000000 - 0xffffffefffffffff    128GB direct map
136 * 0xfffffff000000000 - 0xffffffffffffffff    64GB unused
137 *
138 * SV48 memory map:
139 * 0x0000000000000000 - 0x00007fffffffffff    128TB user map
140 * 0x0000800000000000 - 0xffff7fffffffffff    unmappable
141 * 0xffff800000000000 - 0xffffffc7ffffffff    127.75TB hole
142 * 0xffffffc000000000 - 0xffffffc7ffffffff    32GB kernel map
143 * 0xffffffc800000000 - 0xffffffcfffffffff    32GB unused
144 * 0xffffffd000000000 - 0xffffffefffffffff    128GB direct map
145 * 0xfffffff000000000 - 0xffffffffffffffff    64GB unused
146 *
147 * The kernel is loaded at the beginning of the kernel map.
148 *
149 * We define some interesting address constants:
150 *
151 * VM_MIN_ADDRESS and VM_MAX_ADDRESS define the start and end of the entire
152 * 64 bit address space, mostly just for convenience.
153 *
154 * VM_MIN_KERNEL_ADDRESS and VM_MAX_KERNEL_ADDRESS define the start and end of
155 * mappable kernel virtual address space.
156 *
157 * VM_MIN_USER_ADDRESS and VM_MAX_USER_ADDRESS define the start and end of the
158 * user address space.
159 */
160#define	VM_MIN_ADDRESS		(0x0000000000000000UL)
161#define	VM_MAX_ADDRESS		(0xffffffffffffffffUL)
162
163#define	VM_MIN_KERNEL_ADDRESS	(0xffffffc000000000UL)
164#define	VM_MAX_KERNEL_ADDRESS	(0xffffffc800000000UL)
165
166#define	DMAP_MIN_ADDRESS	(0xffffffd000000000UL)
167#define	DMAP_MAX_ADDRESS	(0xfffffff000000000UL)
168
169#define	DMAP_MIN_PHYSADDR	(dmap_phys_base)
170#define	DMAP_MAX_PHYSADDR	(dmap_phys_max)
171
172/* True if pa is in the dmap range */
173#define	PHYS_IN_DMAP(pa)	((pa) >= DMAP_MIN_PHYSADDR && \
174    (pa) < DMAP_MAX_PHYSADDR)
175/* True if va is in the dmap range */
176#define	VIRT_IN_DMAP(va)	((va) >= DMAP_MIN_ADDRESS && \
177    (va) < (dmap_max_addr))
178
179#define	PMAP_HAS_DMAP	1
180#define	PHYS_TO_DMAP(pa)						\
181({									\
182	KASSERT(PHYS_IN_DMAP(pa),					\
183	    ("%s: PA out of range, PA: 0x%lx", __func__,		\
184	    (vm_paddr_t)(pa)));						\
185	((pa) - dmap_phys_base) + DMAP_MIN_ADDRESS;			\
186})
187
188#define	DMAP_TO_PHYS(va)						\
189({									\
190	KASSERT(VIRT_IN_DMAP(va),					\
191	    ("%s: VA out of range, VA: 0x%lx", __func__,		\
192	    (vm_offset_t)(va)));					\
193	((va) - DMAP_MIN_ADDRESS) + dmap_phys_base;			\
194})
195
196#define	VM_MIN_USER_ADDRESS		(0x0000000000000000UL)
197#define	VM_MAX_USER_ADDRESS_SV39	(0x0000004000000000UL)
198#define	VM_MAX_USER_ADDRESS_SV48	(0x0000800000000000UL)
199#define	VM_MAX_USER_ADDRESS		VM_MAX_USER_ADDRESS_SV48
200
201#define	VM_MINUSER_ADDRESS	(VM_MIN_USER_ADDRESS)
202#define	VM_MAXUSER_ADDRESS	(VM_MAX_USER_ADDRESS)
203
204#define	KERNBASE		(VM_MIN_KERNEL_ADDRESS)
205#define	SHAREDPAGE_SV39		(VM_MAX_USER_ADDRESS_SV39 - PAGE_SIZE)
206#define	SHAREDPAGE_SV48		(VM_MAX_USER_ADDRESS_SV48 - PAGE_SIZE)
207#define	SHAREDPAGE		SHAREDPAGE_SV48
208#define	USRSTACK_SV39		SHAREDPAGE_SV39
209#define	USRSTACK_SV48		SHAREDPAGE_SV48
210#define	USRSTACK		USRSTACK_SV48
211#define	PS_STRINGS_SV39		(USRSTACK_SV39 - sizeof(struct ps_strings))
212#define	PS_STRINGS_SV48		(USRSTACK_SV48 - sizeof(struct ps_strings))
213
214#define	VM_EARLY_DTB_ADDRESS	(VM_MAX_KERNEL_ADDRESS - (2 * L2_SIZE))
215
216/*
217 * How many physical pages per kmem arena virtual page.
218 */
219#ifndef VM_KMEM_SIZE_SCALE
220#define	VM_KMEM_SIZE_SCALE	(1)
221#endif
222
223/*
224 * Optional ceiling (in bytes) on the size of the kmem arena: 60% of the
225 * kernel map.
226 */
227#ifndef VM_KMEM_SIZE_MAX
228#define	VM_KMEM_SIZE_MAX	((VM_MAX_KERNEL_ADDRESS - \
229    VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5)
230#endif
231
232/*
233 * Initial pagein size of beginning of executable file.
234 */
235#ifndef	VM_INITIAL_PAGEIN
236#define	VM_INITIAL_PAGEIN	16
237#endif
238
239#define	UMA_MD_SMALL_ALLOC
240
241#ifndef LOCORE
242extern vm_paddr_t dmap_phys_base;
243extern vm_paddr_t dmap_phys_max;
244extern vm_offset_t dmap_max_addr;
245extern vm_offset_t init_pt_va;
246#endif
247
248#define	ZERO_REGION_SIZE	(64 * 1024)	/* 64KB */
249
250#define	DEVMAP_MAX_VADDR	VM_MAX_KERNEL_ADDRESS
251#define	PMAP_MAPDEV_EARLY_SIZE	L2_SIZE
252
253/*
254 * No non-transparent large page support in the pmap.
255 */
256#define	PMAP_HAS_LARGEPAGES	0
257
258/*
259 * Need a page dump array for minidump.
260 */
261#define MINIDUMP_PAGE_TRACKING	1
262
263#endif /* !_MACHINE_VMPARAM_H_ */