master
  1/*-
  2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
  3 *
  4 * Copyright (c) 1991, 1993
  5 *	The Regents of the University of California.  All rights reserved.
  6 *
  7 * This code is derived from software contributed to Berkeley by
  8 * The Mach Operating System project at Carnegie-Mellon University.
  9 *
 10 * Redistribution and use in source and binary forms, with or without
 11 * modification, are permitted provided that the following conditions
 12 * are met:
 13 * 1. Redistributions of source code must retain the above copyright
 14 *    notice, this list of conditions and the following disclaimer.
 15 * 2. Redistributions in binary form must reproduce the above copyright
 16 *    notice, this list of conditions and the following disclaimer in the
 17 *    documentation and/or other materials provided with the distribution.
 18 * 3. Neither the name of the University nor the names of its contributors
 19 *    may be used to endorse or promote products derived from this software
 20 *    without specific prior written permission.
 21 *
 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 32 * SUCH DAMAGE.
 33 *
 34 *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
 35 *
 36 *
 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
 38 * All rights reserved.
 39 *
 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
 41 *
 42 * Permission to use, copy, modify and distribute this software and
 43 * its documentation is hereby granted, provided that both the copyright
 44 * notice and this permission notice appear in all copies of the
 45 * software, derivative works or modified versions, and any portions
 46 * thereof, and that both notices appear in supporting documentation.
 47 *
 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 51 *
 52 * Carnegie Mellon requests users of this software to return to
 53 *
 54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 55 *  School of Computer Science
 56 *  Carnegie Mellon University
 57 *  Pittsburgh PA 15213-3890
 58 *
 59 * any improvements or extensions that they make and grant Carnegie the
 60 * rights to redistribute these changes.
 61 */
 62
 63#ifndef	_VM_PAGEQUEUE_
 64#define	_VM_PAGEQUEUE_
 65
 66#ifdef _KERNEL
 67struct vm_pagequeue {
 68	struct mtx	pq_mutex;
 69	struct pglist	pq_pl;
 70	int		pq_cnt;
 71	const char	* const pq_name;
 72	uint64_t	pq_pdpages;
 73} __aligned(CACHE_LINE_SIZE);
 74
 75#if __SIZEOF_LONG__ == 8
 76#define	VM_BATCHQUEUE_SIZE	63
 77#else
 78#define	VM_BATCHQUEUE_SIZE	15
 79#endif
 80
 81struct vm_batchqueue {
 82	vm_page_t	bq_pa[VM_BATCHQUEUE_SIZE];
 83	int		bq_cnt;
 84} __aligned(CACHE_LINE_SIZE);
 85
 86#include <vm/uma.h>
 87#include <sys/_blockcount.h>
 88#include <sys/pidctrl.h>
 89struct sysctl_oid;
 90
 91/*
 92 * One vm_domain per NUMA domain.  Contains pagequeues, free page structures,
 93 * and accounting.
 94 *
 95 * Lock Key:
 96 * f	vmd_free_mtx
 97 * p	vmd_pageout_mtx
 98 * d	vm_domainset_lock
 99 * a	atomic
100 * c	const after boot
101 * q	page queue lock
102 *
103 * A unique page daemon thread manages each vm_domain structure and is
104 * responsible for ensuring that some free memory is available by freeing
105 * inactive pages and aging active pages.  To decide how many pages to process,
106 * it uses thresholds derived from the number of pages in the domain:
107 *
108 *  vmd_page_count
109 *       ---
110 *        |
111 *        |-> vmd_inactive_target (~3%)
112 *        |   - The active queue scan target is given by
113 *        |     (vmd_inactive_target + vmd_free_target - vmd_free_count).
114 *        |
115 *        |
116 *        |-> vmd_free_target (~2%)
117 *        |   - Target for page reclamation.
118 *        |
119 *        |-> vmd_pageout_wakeup_thresh (~1.8%)
120 *        |   - Threshold for waking up the page daemon.
121 *        |
122 *        |
123 *        |-> vmd_free_min (~0.5%)
124 *        |   - First low memory threshold.
125 *        |   - Causes per-CPU caching to be lazily disabled in UMA.
126 *        |   - vm_wait() sleeps below this threshold.
127 *        |
128 *        |-> vmd_free_severe (~0.25%)
129 *        |   - Second low memory threshold.
130 *        |   - Triggers aggressive UMA reclamation, disables delayed buffer
131 *        |     writes.
132 *        |
133 *        |-> vmd_free_reserved (~0.13%)
134 *        |   - Minimum for VM_ALLOC_NORMAL page allocations.
135 *        |-> vmd_pageout_free_min (32 + 2 pages)
136 *        |   - Minimum for waking a page daemon thread sleeping in vm_wait().
137 *        |-> vmd_interrupt_free_min (2 pages)
138 *        |   - Minimum for VM_ALLOC_SYSTEM page allocations.
139 *       ---
140 *
141 *--
142 * Free page count regulation:
143 *
144 * The page daemon attempts to ensure that the free page count is above the free
145 * target.  It wakes up periodically (every 100ms) to input the current free
146 * page shortage (free_target - free_count) to a PID controller, which in
147 * response outputs the number of pages to attempt to reclaim.  The shortage's
148 * current magnitude, rate of change, and cumulative value are together used to
149 * determine the controller's output.  The page daemon target thus adapts
150 * dynamically to the system's demand for free pages, resulting in less
151 * burstiness than a simple hysteresis loop.
152 *
153 * When the free page count drops below the wakeup threshold,
154 * vm_domain_allocate() proactively wakes up the page daemon.  This helps ensure
155 * that the system responds promptly to a large instantaneous free page
156 * shortage.
157 *
158 * The page daemon also attempts to ensure that some fraction of the system's
159 * memory is present in the inactive (I) and laundry (L) page queues, so that it
160 * can respond promptly to a sudden free page shortage.  In particular, the page
161 * daemon thread aggressively scans active pages so long as the following
162 * condition holds:
163 *
164 *         len(I) + len(L) + free_target - free_count < inactive_target
165 *
166 * Otherwise, when the inactive target is met, the page daemon periodically
167 * scans a small portion of the active queue in order to maintain up-to-date
168 * per-page access history.  Unreferenced pages in the active queue thus
169 * eventually migrate to the inactive queue.
170 *
171 * The per-domain laundry thread periodically launders dirty pages based on the
172 * number of clean pages freed by the page daemon since the last laundering.  If
173 * the page daemon fails to meet its scan target (i.e., the PID controller
174 * output) because of a shortage of clean inactive pages, the laundry thread
175 * attempts to launder enough pages to meet the free page target.
176 *
177 *--
178 * Page allocation priorities:
179 *
180 * The system defines three page allocation priorities: VM_ALLOC_NORMAL,
181 * VM_ALLOC_SYSTEM and VM_ALLOC_INTERRUPT.  An interrupt-priority allocation can
182 * claim any free page.  This priority is used in the pmap layer when attempting
183 * to allocate a page for the kernel page tables; in such cases an allocation
184 * failure will usually result in a kernel panic.  The system priority is used
185 * for most other kernel memory allocations, for instance by UMA's slab
186 * allocator or the buffer cache.  Such allocations will fail if the free count
187 * is below interrupt_free_min.  All other allocations occur at the normal
188 * priority, which is typically used for allocation of user pages, for instance
189 * in the page fault handler or when allocating page table pages or pv_entry
190 * structures for user pmaps.  Such allocations fail if the free count is below
191 * the free_reserved threshold.
192 *
193 *--
194 * Free memory shortages:
195 *
196 * The system uses the free_min and free_severe thresholds to apply
197 * back-pressure and give the page daemon a chance to recover.  When a page
198 * allocation fails due to a shortage and the allocating thread cannot handle
199 * failure, it may call vm_wait() to sleep until free pages are available.
200 * vm_domain_freecnt_inc() wakes sleeping threads once the free page count rises
201 * above the free_min threshold; the page daemon and laundry threads are given
202 * priority and will wake up once free_count reaches the (much smaller)
203 * pageout_free_min threshold.
204 *
205 * On NUMA systems, the domainset iterators always prefer NUMA domains where the
206 * free page count is above the free_min threshold.  This means that given the
207 * choice between two NUMA domains, one above the free_min threshold and one
208 * below, the former will be used to satisfy the allocation request regardless
209 * of the domain selection policy.
210 *
211 * In addition to reclaiming memory from the page queues, the vm_lowmem event
212 * fires every ten seconds so long as the system is under memory pressure (i.e.,
213 * vmd_free_count < vmd_free_target).  This allows kernel subsystems to register
214 * for notifications of free page shortages, upon which they may shrink their
215 * caches.  Following a vm_lowmem event, UMA's caches are pruned to ensure that
216 * they do not contain an excess of unused memory.  When a domain is below the
217 * free_min threshold, UMA limits the population of per-CPU caches.  When a
218 * domain falls below the free_severe threshold, UMA's caches are completely
219 * drained.
220 *
221 * If the system encounters a global memory shortage, it may resort to the
222 * out-of-memory (OOM) killer, which selects a process and delivers SIGKILL in a
223 * last-ditch attempt to free up some pages.  Either of the two following
224 * conditions will activate the OOM killer:
225 *
226 *  1. The page daemons collectively fail to reclaim any pages during their
227 *     inactive queue scans.  After vm_pageout_oom_seq consecutive scans fail,
228 *     the page daemon thread votes for an OOM kill, and an OOM kill is
229 *     triggered when all page daemons have voted.  This heuristic is strict and
230 *     may fail to trigger even when the system is effectively deadlocked.
231 *
232 *  2. Threads in the user fault handler are repeatedly unable to make progress
233 *     while allocating a page to satisfy the fault.  After
234 *     vm_pfault_oom_attempts page allocation failures with intervening
235 *     vm_wait() calls, the faulting thread will trigger an OOM kill.
236 */
237struct vm_domain {
238	struct vm_pagequeue vmd_pagequeues[PQ_COUNT];
239	struct mtx_padalign vmd_free_mtx;
240	struct mtx_padalign vmd_pageout_mtx;
241	struct vm_pgcache {
242		int domain;
243		int pool;
244		uma_zone_t zone;
245	} vmd_pgcache[VM_NFREEPOOL];
246	struct vmem *vmd_kernel_arena;	/* (c) per-domain kva R/W arena. */
247	struct vmem *vmd_kernel_rwx_arena; /* (c) per-domain kva R/W/X arena. */
248	u_int vmd_domain;		/* (c) Domain number. */
249	u_int vmd_page_count;		/* (c) Total page count. */
250	long vmd_segs;			/* (c) bitmask of the segments */
251	u_int __aligned(CACHE_LINE_SIZE) vmd_free_count; /* (a,f) free page count */
252	u_int vmd_pageout_deficit;	/* (a) Estimated number of pages deficit */
253	uint8_t vmd_pad[CACHE_LINE_SIZE - (sizeof(u_int) * 2)];
254
255	/* Paging control variables, used within single threaded page daemon. */
256	struct pidctrl vmd_pid;		/* Pageout controller. */
257	boolean_t vmd_oom;
258	u_int vmd_inactive_threads;
259	u_int vmd_inactive_shortage;		/* Per-thread shortage. */
260	blockcount_t vmd_inactive_running;	/* Number of inactive threads. */
261	blockcount_t vmd_inactive_starting;	/* Number of threads started. */
262	volatile u_int vmd_addl_shortage;	/* Shortage accumulator. */
263	volatile u_int vmd_inactive_freed;	/* Successful inactive frees. */
264	volatile u_int vmd_inactive_us;		/* Microseconds for above. */
265	u_int vmd_inactive_pps;		/* Exponential decay frees/second. */
266	int vmd_oom_seq;
267	int vmd_last_active_scan;
268	struct vm_page vmd_markers[PQ_COUNT]; /* (q) markers for queue scans */
269	struct vm_page vmd_inacthead; /* marker for LRU-defeating insertions */
270	struct vm_page vmd_clock[2]; /* markers for active queue scan */
271
272	int vmd_pageout_wanted;		/* (a, p) pageout daemon wait channel */
273	int vmd_pageout_pages_needed;	/* (d) page daemon waiting for pages? */
274	bool vmd_minset;		/* (d) Are we in vm_min_domains? */
275	bool vmd_severeset;		/* (d) Are we in vm_severe_domains? */
276	enum {
277		VM_LAUNDRY_IDLE = 0,
278		VM_LAUNDRY_BACKGROUND,
279		VM_LAUNDRY_SHORTFALL
280	} vmd_laundry_request;
281
282	/* Paging thresholds and targets. */
283	u_int vmd_clean_pages_freed;	/* (q) accumulator for laundry thread */
284	u_int vmd_background_launder_target; /* (c) */
285	u_int vmd_free_reserved;	/* (c) pages reserved for deadlock */
286	u_int vmd_free_target;		/* (c) pages desired free */
287	u_int vmd_free_min;		/* (c) pages desired free */
288	u_int vmd_inactive_target;	/* (c) pages desired inactive */
289	u_int vmd_pageout_free_min;	/* (c) min pages reserved for kernel */
290	u_int vmd_pageout_wakeup_thresh;/* (c) min pages to wake pagedaemon */
291	u_int vmd_interrupt_free_min;	/* (c) reserved pages for int code */
292	u_int vmd_free_severe;		/* (c) severe page depletion point */
293
294	/* Name for sysctl etc. */
295	struct sysctl_oid *vmd_oid;
296	char vmd_name[sizeof(__XSTRING(MAXMEMDOM))];
297} __aligned(CACHE_LINE_SIZE);
298
299extern struct vm_domain vm_dom[MAXMEMDOM];
300
301#define	VM_DOMAIN(n)		(&vm_dom[(n)])
302#define	VM_DOMAIN_EMPTY(n)	(vm_dom[(n)].vmd_page_count == 0)
303
304#define	vm_pagequeue_assert_locked(pq)	mtx_assert(&(pq)->pq_mutex, MA_OWNED)
305#define	vm_pagequeue_lock(pq)		mtx_lock(&(pq)->pq_mutex)
306#define	vm_pagequeue_lockptr(pq)	(&(pq)->pq_mutex)
307#define	vm_pagequeue_trylock(pq)	mtx_trylock(&(pq)->pq_mutex)
308#define	vm_pagequeue_unlock(pq)		mtx_unlock(&(pq)->pq_mutex)
309
310#define	vm_domain_free_assert_locked(n)					\
311	    mtx_assert(vm_domain_free_lockptr((n)), MA_OWNED)
312#define	vm_domain_free_assert_unlocked(n)				\
313	    mtx_assert(vm_domain_free_lockptr((n)), MA_NOTOWNED)
314#define	vm_domain_free_lock(d)						\
315	    mtx_lock(vm_domain_free_lockptr((d)))
316#define	vm_domain_free_lockptr(d)					\
317	    (&(d)->vmd_free_mtx)
318#define	vm_domain_free_trylock(d)					\
319	    mtx_trylock(vm_domain_free_lockptr((d)))
320#define	vm_domain_free_unlock(d)					\
321	    mtx_unlock(vm_domain_free_lockptr((d)))
322
323#define	vm_domain_pageout_lockptr(d)					\
324	    (&(d)->vmd_pageout_mtx)
325#define	vm_domain_pageout_assert_locked(n)				\
326	    mtx_assert(vm_domain_pageout_lockptr((n)), MA_OWNED)
327#define	vm_domain_pageout_assert_unlocked(n)				\
328	    mtx_assert(vm_domain_pageout_lockptr((n)), MA_NOTOWNED)
329#define	vm_domain_pageout_lock(d)					\
330	    mtx_lock(vm_domain_pageout_lockptr((d)))
331#define	vm_domain_pageout_unlock(d)					\
332	    mtx_unlock(vm_domain_pageout_lockptr((d)))
333
334static __inline void
335vm_pagequeue_cnt_add(struct vm_pagequeue *pq, int addend)
336{
337
338	vm_pagequeue_assert_locked(pq);
339	pq->pq_cnt += addend;
340}
341#define	vm_pagequeue_cnt_inc(pq)	vm_pagequeue_cnt_add((pq), 1)
342#define	vm_pagequeue_cnt_dec(pq)	vm_pagequeue_cnt_add((pq), -1)
343
344static inline void
345vm_pagequeue_remove(struct vm_pagequeue *pq, vm_page_t m)
346{
347
348	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
349	vm_pagequeue_cnt_dec(pq);
350}
351
352static inline void
353vm_batchqueue_init(struct vm_batchqueue *bq)
354{
355
356	bq->bq_cnt = 0;
357}
358
359static inline int
360vm_batchqueue_insert(struct vm_batchqueue *bq, vm_page_t m)
361{
362	int slots_free;
363
364	slots_free = nitems(bq->bq_pa) - bq->bq_cnt;
365	if (slots_free > 0) {
366		bq->bq_pa[bq->bq_cnt++] = m;
367		return (slots_free);
368	}
369	return (slots_free);
370}
371
372static inline vm_page_t
373vm_batchqueue_pop(struct vm_batchqueue *bq)
374{
375
376	if (bq->bq_cnt == 0)
377		return (NULL);
378	return (bq->bq_pa[--bq->bq_cnt]);
379}
380
381void vm_domain_set(struct vm_domain *vmd);
382void vm_domain_clear(struct vm_domain *vmd);
383int vm_domain_allocate(struct vm_domain *vmd, int req, int npages);
384
385/*
386 *      vm_pagequeue_domain:
387 *
388 *      Return the memory domain the page belongs to.
389 */
390static inline struct vm_domain *
391vm_pagequeue_domain(vm_page_t m)
392{
393
394	return (VM_DOMAIN(vm_page_domain(m)));
395}
396
397/*
398 * Return the number of pages we need to free-up or cache
399 * A positive number indicates that we do not have enough free pages.
400 */
401static inline int
402vm_paging_target(struct vm_domain *vmd)
403{
404
405	return (vmd->vmd_free_target - vmd->vmd_free_count);
406}
407
408/*
409 * Returns TRUE if the pagedaemon needs to be woken up.
410 */
411static inline int
412vm_paging_needed(struct vm_domain *vmd, u_int free_count)
413{
414
415	return (free_count < vmd->vmd_pageout_wakeup_thresh);
416}
417
418/*
419 * Returns TRUE if the domain is below the min paging target.
420 */
421static inline int
422vm_paging_min(struct vm_domain *vmd)
423{
424
425        return (vmd->vmd_free_min > vmd->vmd_free_count);
426}
427
428/*
429 * Returns TRUE if the domain is below the severe paging target.
430 */
431static inline int
432vm_paging_severe(struct vm_domain *vmd)
433{
434
435        return (vmd->vmd_free_severe > vmd->vmd_free_count);
436}
437
438/*
439 * Return the number of pages we need to launder.
440 * A positive number indicates that we have a shortfall of clean pages.
441 */
442static inline int
443vm_laundry_target(struct vm_domain *vmd)
444{
445
446	return (vm_paging_target(vmd));
447}
448
449void pagedaemon_wakeup(int domain);
450
451static inline void
452vm_domain_freecnt_inc(struct vm_domain *vmd, int adj)
453{
454	u_int old, new;
455
456	old = atomic_fetchadd_int(&vmd->vmd_free_count, adj);
457	new = old + adj;
458	/*
459	 * Only update bitsets on transitions.  Notice we short-circuit the
460	 * rest of the checks if we're above min already.
461	 */
462	if (old < vmd->vmd_free_min && (new >= vmd->vmd_free_min ||
463	    (old < vmd->vmd_free_severe && new >= vmd->vmd_free_severe) ||
464	    (old < vmd->vmd_pageout_free_min &&
465	    new >= vmd->vmd_pageout_free_min)))
466		vm_domain_clear(vmd);
467}
468
469#endif	/* _KERNEL */
470#endif				/* !_VM_PAGEQUEUE_ */