master
   1/*-
   2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
   3 *
   4 * Copyright (c) 1991, 1993
   5 *	The Regents of the University of California.  All rights reserved.
   6 *
   7 * This code is derived from software contributed to Berkeley by
   8 * The Mach Operating System project at Carnegie-Mellon University.
   9 *
  10 * Redistribution and use in source and binary forms, with or without
  11 * modification, are permitted provided that the following conditions
  12 * are met:
  13 * 1. Redistributions of source code must retain the above copyright
  14 *    notice, this list of conditions and the following disclaimer.
  15 * 2. Redistributions in binary form must reproduce the above copyright
  16 *    notice, this list of conditions and the following disclaimer in the
  17 *    documentation and/or other materials provided with the distribution.
  18 * 3. Neither the name of the University nor the names of its contributors
  19 *    may be used to endorse or promote products derived from this software
  20 *    without specific prior written permission.
  21 *
  22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  32 * SUCH DAMAGE.
  33 *
  34 *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
  35 *
  36 *
  37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
  38 * All rights reserved.
  39 *
  40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
  41 *
  42 * Permission to use, copy, modify and distribute this software and
  43 * its documentation is hereby granted, provided that both the copyright
  44 * notice and this permission notice appear in all copies of the
  45 * software, derivative works or modified versions, and any portions
  46 * thereof, and that both notices appear in supporting documentation.
  47 *
  48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
  49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
  50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
  51 *
  52 * Carnegie Mellon requests users of this software to return to
  53 *
  54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
  55 *  School of Computer Science
  56 *  Carnegie Mellon University
  57 *  Pittsburgh PA 15213-3890
  58 *
  59 * any improvements or extensions that they make and grant Carnegie the
  60 * rights to redistribute these changes.
  61 */
  62
  63/*
  64 *	Resident memory system definitions.
  65 */
  66
  67#ifndef	_VM_PAGE_
  68#define	_VM_PAGE_
  69
  70#include <vm/pmap.h>
  71#include <vm/_vm_phys.h>
  72
  73/*
  74 *	Management of resident (logical) pages.
  75 *
  76 *	A small structure is kept for each resident
  77 *	page, indexed by page number.  Each structure
  78 *	is an element of several collections:
  79 *
  80 *		A radix tree used to quickly
  81 *		perform object/offset lookups
  82 *
  83 *		A list of all pages for a given object,
  84 *		so they can be quickly deactivated at
  85 *		time of deallocation.
  86 *
  87 *		An ordered list of pages due for pageout.
  88 *
  89 *	In addition, the structure contains the object
  90 *	and offset to which this page belongs (for pageout),
  91 *	and sundry status bits.
  92 *
  93 *	In general, operations on this structure's mutable fields are
  94 *	synchronized using either one of or a combination of locks.  If a
  95 *	field is annotated with two of these locks then holding either is
  96 *	sufficient for read access but both are required for write access.
  97 *	The queue lock for a page depends on the value of its queue field and is
  98 *	described in detail below.
  99 *
 100 *	The following annotations are possible:
 101 *	(A) the field must be accessed using atomic(9) and may require
 102 *	    additional synchronization.
 103 *	(B) the page busy lock.
 104 *	(C) the field is immutable.
 105 *	(F) the per-domain lock for the free queues.
 106 *	(M) Machine dependent, defined by pmap layer.
 107 *	(O) the object that the page belongs to.
 108 *	(Q) the page's queue lock.
 109 *
 110 *	The busy lock is an embedded reader-writer lock that protects the
 111 *	page's contents and identity (i.e., its <object, pindex> tuple) as
 112 *	well as certain valid/dirty modifications.  To avoid bloating the
 113 *	the page structure, the busy lock lacks some of the features available
 114 *	the kernel's general-purpose synchronization primitives.  As a result,
 115 *	busy lock ordering rules are not verified, lock recursion is not
 116 *	detected, and an attempt to xbusy a busy page or sbusy an xbusy page
 117 *	results will trigger a panic rather than causing the thread to block.
 118 *	vm_page_sleep_if_busy() can be used to sleep until the page's busy
 119 *	state changes, after which the caller must re-lookup the page and
 120 *	re-evaluate its state.  vm_page_busy_acquire() will block until
 121 *	the lock is acquired.
 122 *
 123 *	The valid field is protected by the page busy lock (B) and object
 124 *	lock (O).  Transitions from invalid to valid are generally done
 125 *	via I/O or zero filling and do not require the object lock.
 126 *	These must be protected with the busy lock to prevent page-in or
 127 *	creation races.  Page invalidation generally happens as a result
 128 *	of truncate or msync.  When invalidated, pages must not be present
 129 *	in pmap and must hold the object lock to prevent concurrent
 130 *	speculative read-only mappings that do not require busy.  I/O
 131 *	routines may check for validity without a lock if they are prepared
 132 *	to handle invalidation races with higher level locks (vnode) or are
 133 *	unconcerned with races so long as they hold a reference to prevent
 134 *	recycling.  When a valid bit is set while holding a shared busy
 135 *	lock (A) atomic operations are used to protect against concurrent
 136 *	modification.
 137 *
 138 *	In contrast, the synchronization of accesses to the page's
 139 *	dirty field is a mix of machine dependent (M) and busy (B).  In
 140 *	the machine-independent layer, the page busy must be held to
 141 *	operate on the field.  However, the pmap layer is permitted to
 142 *	set all bits within the field without holding that lock.  If the
 143 *	underlying architecture does not support atomic read-modify-write
 144 *	operations on the field's type, then the machine-independent
 145 *	layer uses a 32-bit atomic on the aligned 32-bit word that
 146 *	contains the dirty field.  In the machine-independent layer,
 147 *	the implementation of read-modify-write operations on the
 148 *	field is encapsulated in vm_page_clear_dirty_mask().  An
 149 *	exclusive busy lock combined with pmap_remove_{write/all}() is the
 150 *	only way to ensure a page can not become dirty.  I/O generally
 151 *	removes the page from pmap to ensure exclusive access and atomic
 152 *	writes.
 153 *
 154 *	The ref_count field tracks references to the page.  References that
 155 *	prevent the page from being reclaimable are called wirings and are
 156 *	counted in the low bits of ref_count.  The containing object's
 157 *	reference, if one exists, is counted using the VPRC_OBJREF bit in the
 158 *	ref_count field.  Additionally, the VPRC_BLOCKED bit is used to
 159 *	atomically check for wirings and prevent new wirings via
 160 *	pmap_extract_and_hold().  When a page belongs to an object, it may be
 161 *	wired only when the object is locked, or the page is busy, or by
 162 *	pmap_extract_and_hold().  As a result, if the object is locked and the
 163 *	page is not busy (or is exclusively busied by the current thread), and
 164 *	the page is unmapped, its wire count will not increase.  The ref_count
 165 *	field is updated using atomic operations in most cases, except when it
 166 *	is known that no other references to the page exist, such as in the page
 167 *	allocator.  A page may be present in the page queues, or even actively
 168 *	scanned by the page daemon, without an explicitly counted referenced.
 169 *	The page daemon must therefore handle the possibility of a concurrent
 170 *	free of the page.
 171 *
 172 *	The queue state of a page consists of the queue and act_count fields of
 173 *	its atomically updated state, and the subset of atomic flags specified
 174 *	by PGA_QUEUE_STATE_MASK.  The queue field contains the page's page queue
 175 *	index, or PQ_NONE if it does not belong to a page queue.  To modify the
 176 *	queue field, the page queue lock corresponding to the old value must be
 177 *	held, unless that value is PQ_NONE, in which case the queue index must
 178 *	be updated using an atomic RMW operation.  There is one exception to
 179 *	this rule: the page daemon may transition the queue field from
 180 *	PQ_INACTIVE to PQ_NONE immediately prior to freeing the page during an
 181 *	inactive queue scan.  At that point the page is already dequeued and no
 182 *	other references to that vm_page structure can exist.  The PGA_ENQUEUED
 183 *	flag, when set, indicates that the page structure is physically inserted
 184 *	into the queue corresponding to the page's queue index, and may only be
 185 *	set or cleared with the corresponding page queue lock held.
 186 *
 187 *	To avoid contention on page queue locks, page queue operations (enqueue,
 188 *	dequeue, requeue) are batched using fixed-size per-CPU queues.  A
 189 *	deferred operation is requested by setting one of the flags in
 190 *	PGA_QUEUE_OP_MASK and inserting an entry into a batch queue.  When a
 191 *	queue is full, an attempt to insert a new entry will lock the page
 192 *	queues and trigger processing of the pending entries.  The
 193 *	type-stability of vm_page structures is crucial to this scheme since the
 194 *	processing of entries in a given batch queue may be deferred
 195 *	indefinitely.  In particular, a page may be freed with pending batch
 196 *	queue entries.  The page queue operation flags must be set using atomic
 197 *	RWM operations.
 198 */
 199
 200#if PAGE_SIZE == 4096
 201#define VM_PAGE_BITS_ALL 0xffu
 202typedef uint8_t vm_page_bits_t;
 203#elif PAGE_SIZE == 8192
 204#define VM_PAGE_BITS_ALL 0xffffu
 205typedef uint16_t vm_page_bits_t;
 206#elif PAGE_SIZE == 16384
 207#define VM_PAGE_BITS_ALL 0xffffffffu
 208typedef uint32_t vm_page_bits_t;
 209#elif PAGE_SIZE == 32768
 210#define VM_PAGE_BITS_ALL 0xfffffffffffffffflu
 211typedef uint64_t vm_page_bits_t;
 212#endif
 213
 214typedef union vm_page_astate {
 215	struct {
 216		uint16_t flags;
 217		uint8_t	queue;
 218		uint8_t act_count;
 219	};
 220	uint32_t _bits;
 221} vm_page_astate_t;
 222
 223struct vm_page {
 224	union {
 225		TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */
 226		struct {
 227			SLIST_ENTRY(vm_page) ss; /* private slists */
 228		} s;
 229		struct {
 230			u_long p;
 231			u_long v;
 232		} memguard;
 233		struct {
 234			void *slab;
 235			void *zone;
 236		} uma;
 237	} plinks;
 238	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) */
 239	vm_object_t object;		/* which object am I in (O) */
 240	vm_pindex_t pindex;		/* offset into object (O,P) */
 241	vm_paddr_t phys_addr;		/* physical address of page (C) */
 242	struct md_page md;		/* machine dependent stuff */
 243	u_int ref_count;		/* page references (A) */
 244	u_int busy_lock;		/* busy owners lock (A) */
 245	union vm_page_astate a;		/* state accessed atomically (A) */
 246	uint8_t order;			/* index of the buddy queue (F) */
 247	uint8_t pool;			/* vm_phys freepool index (F) */
 248	uint8_t flags;			/* page PG_* flags (P) */
 249	uint8_t oflags;			/* page VPO_* flags (O) */
 250	int8_t psind;			/* pagesizes[] index (O) */
 251	int8_t segind;			/* vm_phys segment index (C) */
 252	/* NOTE that these must support one bit per DEV_BSIZE in a page */
 253	/* so, on normal X86 kernels, they must be at least 8 bits wide */
 254	vm_page_bits_t valid;		/* valid DEV_BSIZE chunk map (O,B) */
 255	vm_page_bits_t dirty;		/* dirty DEV_BSIZE chunk map (M,B) */
 256};
 257
 258/*
 259 * Special bits used in the ref_count field.
 260 *
 261 * ref_count is normally used to count wirings that prevent the page from being
 262 * reclaimed, but also supports several special types of references that do not
 263 * prevent reclamation.  Accesses to the ref_count field must be atomic unless
 264 * the page is unallocated.
 265 *
 266 * VPRC_OBJREF is the reference held by the containing object.  It can set or
 267 * cleared only when the corresponding object's write lock is held.
 268 *
 269 * VPRC_BLOCKED is used to atomically block wirings via pmap lookups while
 270 * attempting to tear down all mappings of a given page.  The page busy lock and
 271 * object write lock must both be held in order to set or clear this bit.
 272 */
 273#define	VPRC_BLOCKED	0x40000000u	/* mappings are being removed */
 274#define	VPRC_OBJREF	0x80000000u	/* object reference, cleared with (O) */
 275#define	VPRC_WIRE_COUNT(c)	((c) & ~(VPRC_BLOCKED | VPRC_OBJREF))
 276#define	VPRC_WIRE_COUNT_MAX	(~(VPRC_BLOCKED | VPRC_OBJREF))
 277
 278/*
 279 * Page flags stored in oflags:
 280 *
 281 * Access to these page flags is synchronized by the lock on the object
 282 * containing the page (O).
 283 *
 284 * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG)
 285 * 	 indicates that the page is not under PV management but
 286 * 	 otherwise should be treated as a normal page.  Pages not
 287 * 	 under PV management cannot be paged out via the
 288 * 	 object/vm_page_t because there is no knowledge of their pte
 289 * 	 mappings, and such pages are also not on any PQ queue.
 290 *
 291 */
 292#define	VPO_KMEM_EXEC	0x01		/* kmem mapping allows execution */
 293#define	VPO_SWAPSLEEP	0x02		/* waiting for swap to finish */
 294#define	VPO_UNMANAGED	0x04		/* no PV management for page */
 295#define	VPO_SWAPINPROG	0x08		/* swap I/O in progress on page */
 296
 297/*
 298 * Busy page implementation details.
 299 * The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation,
 300 * even if the support for owner identity is removed because of size
 301 * constraints.  Checks on lock recursion are then not possible, while the
 302 * lock assertions effectiveness is someway reduced.
 303 */
 304#define	VPB_BIT_SHARED		0x01
 305#define	VPB_BIT_EXCLUSIVE	0x02
 306#define	VPB_BIT_WAITERS		0x04
 307#define	VPB_BIT_FLAGMASK						\
 308	(VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS)
 309
 310#define	VPB_SHARERS_SHIFT	3
 311#define	VPB_SHARERS(x)							\
 312	(((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT)
 313#define	VPB_SHARERS_WORD(x)	((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED)
 314#define	VPB_ONE_SHARER		(1 << VPB_SHARERS_SHIFT)
 315
 316#define	VPB_SINGLE_EXCLUSIVE	VPB_BIT_EXCLUSIVE
 317#ifdef INVARIANTS
 318#define	VPB_CURTHREAD_EXCLUSIVE						\
 319	(VPB_BIT_EXCLUSIVE | ((u_int)(uintptr_t)curthread & ~VPB_BIT_FLAGMASK))
 320#else
 321#define	VPB_CURTHREAD_EXCLUSIVE	VPB_SINGLE_EXCLUSIVE
 322#endif
 323
 324#define	VPB_UNBUSIED		VPB_SHARERS_WORD(0)
 325
 326/* Freed lock blocks both shared and exclusive. */
 327#define	VPB_FREED		(0xffffffff - VPB_BIT_SHARED)
 328
 329#define	PQ_NONE		255
 330#define	PQ_INACTIVE	0
 331#define	PQ_ACTIVE	1
 332#define	PQ_LAUNDRY	2
 333#define	PQ_UNSWAPPABLE	3
 334#define	PQ_COUNT	4
 335
 336#ifndef VM_PAGE_HAVE_PGLIST
 337TAILQ_HEAD(pglist, vm_page);
 338#define VM_PAGE_HAVE_PGLIST
 339#endif
 340SLIST_HEAD(spglist, vm_page);
 341
 342#ifdef _KERNEL
 343extern vm_page_t bogus_page;
 344#endif	/* _KERNEL */
 345
 346extern struct mtx_padalign pa_lock[];
 347
 348#if defined(__arm__)
 349#define	PDRSHIFT	PDR_SHIFT
 350#elif !defined(PDRSHIFT)
 351#define PDRSHIFT	21
 352#endif
 353
 354#define	pa_index(pa)	((pa) >> PDRSHIFT)
 355#define	PA_LOCKPTR(pa)	((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT]))
 356#define	PA_LOCKOBJPTR(pa)	((struct lock_object *)PA_LOCKPTR((pa)))
 357#define	PA_LOCK(pa)	mtx_lock(PA_LOCKPTR(pa))
 358#define	PA_TRYLOCK(pa)	mtx_trylock(PA_LOCKPTR(pa))
 359#define	PA_UNLOCK(pa)	mtx_unlock(PA_LOCKPTR(pa))
 360#define	PA_UNLOCK_COND(pa) 			\
 361	do {		   			\
 362		if ((pa) != 0) {		\
 363			PA_UNLOCK((pa));	\
 364			(pa) = 0;		\
 365		}				\
 366	} while (0)
 367
 368#define	PA_LOCK_ASSERT(pa, a)	mtx_assert(PA_LOCKPTR(pa), (a))
 369
 370#if defined(KLD_MODULE) && !defined(KLD_TIED)
 371#define	vm_page_lock(m)		vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE)
 372#define	vm_page_unlock(m)	vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE)
 373#define	vm_page_trylock(m)	vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE)
 374#else	/* !KLD_MODULE */
 375#define	vm_page_lockptr(m)	(PA_LOCKPTR(VM_PAGE_TO_PHYS((m))))
 376#define	vm_page_lock(m)		mtx_lock(vm_page_lockptr((m)))
 377#define	vm_page_unlock(m)	mtx_unlock(vm_page_lockptr((m)))
 378#define	vm_page_trylock(m)	mtx_trylock(vm_page_lockptr((m)))
 379#endif
 380#if defined(INVARIANTS)
 381#define	vm_page_assert_locked(m)		\
 382    vm_page_assert_locked_KBI((m), __FILE__, __LINE__)
 383#define	vm_page_lock_assert(m, a)		\
 384    vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__)
 385#else
 386#define	vm_page_assert_locked(m)
 387#define	vm_page_lock_assert(m, a)
 388#endif
 389
 390/*
 391 * The vm_page's aflags are updated using atomic operations.  To set or clear
 392 * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear()
 393 * must be used.  Neither these flags nor these functions are part of the KBI.
 394 *
 395 * PGA_REFERENCED may be cleared only if the page is locked.  It is set by
 396 * both the MI and MD VM layers.  However, kernel loadable modules should not
 397 * directly set this flag.  They should call vm_page_reference() instead.
 398 *
 399 * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter().
 400 * When it does so, the object must be locked, or the page must be
 401 * exclusive busied.  The MI VM layer must never access this flag
 402 * directly.  Instead, it should call pmap_page_is_write_mapped().
 403 *
 404 * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has
 405 * at least one executable mapping.  It is not consumed by the MI VM layer.
 406 *
 407 * PGA_NOSYNC must be set and cleared with the page busy lock held.
 408 *
 409 * PGA_ENQUEUED is set and cleared when a page is inserted into or removed
 410 * from a page queue, respectively.  It determines whether the plinks.q field
 411 * of the page is valid.  To set or clear this flag, page's "queue" field must
 412 * be a valid queue index, and the corresponding page queue lock must be held.
 413 *
 414 * PGA_DEQUEUE is set when the page is scheduled to be dequeued from a page
 415 * queue, and cleared when the dequeue request is processed.  A page may
 416 * have PGA_DEQUEUE set and PGA_ENQUEUED cleared, for instance if a dequeue
 417 * is requested after the page is scheduled to be enqueued but before it is
 418 * actually inserted into the page queue.
 419 *
 420 * PGA_REQUEUE is set when the page is scheduled to be enqueued or requeued
 421 * in its page queue.
 422 *
 423 * PGA_REQUEUE_HEAD is a special flag for enqueuing pages near the head of
 424 * the inactive queue, thus bypassing LRU.
 425 *
 426 * The PGA_DEQUEUE, PGA_REQUEUE and PGA_REQUEUE_HEAD flags must be set using an
 427 * atomic RMW operation to ensure that the "queue" field is a valid queue index,
 428 * and the corresponding page queue lock must be held when clearing any of the
 429 * flags.
 430 *
 431 * PGA_SWAP_FREE is used to defer freeing swap space to the pageout daemon
 432 * when the context that dirties the page does not have the object write lock
 433 * held.
 434 */
 435#define	PGA_WRITEABLE	0x0001		/* page may be mapped writeable */
 436#define	PGA_REFERENCED	0x0002		/* page has been referenced */
 437#define	PGA_EXECUTABLE	0x0004		/* page may be mapped executable */
 438#define	PGA_ENQUEUED	0x0008		/* page is enqueued in a page queue */
 439#define	PGA_DEQUEUE	0x0010		/* page is due to be dequeued */
 440#define	PGA_REQUEUE	0x0020		/* page is due to be requeued */
 441#define	PGA_REQUEUE_HEAD 0x0040		/* page requeue should bypass LRU */
 442#define	PGA_NOSYNC	0x0080		/* do not collect for syncer */
 443#define	PGA_SWAP_FREE	0x0100		/* page with swap space was dirtied */
 444#define	PGA_SWAP_SPACE	0x0200		/* page has allocated swap space */
 445
 446#define	PGA_QUEUE_OP_MASK	(PGA_DEQUEUE | PGA_REQUEUE | PGA_REQUEUE_HEAD)
 447#define	PGA_QUEUE_STATE_MASK	(PGA_ENQUEUED | PGA_QUEUE_OP_MASK)
 448
 449/*
 450 * Page flags.  Updates to these flags are not synchronized, and thus they must
 451 * be set during page allocation or free to avoid races.
 452 *
 453 * The PG_PCPU_CACHE flag is set at allocation time if the page was
 454 * allocated from a per-CPU cache.  It is cleared the next time that the
 455 * page is allocated from the physical memory allocator.
 456 */
 457#define	PG_PCPU_CACHE	0x01		/* was allocated from per-CPU caches */
 458#define	PG_FICTITIOUS	0x02		/* physical page doesn't exist */
 459#define	PG_ZERO		0x04		/* page is zeroed */
 460#define	PG_MARKER	0x08		/* special queue marker page */
 461#define	PG_NODUMP	0x10		/* don't include this page in a dump */
 462
 463/*
 464 * Misc constants.
 465 */
 466#define ACT_DECLINE		1
 467#define ACT_ADVANCE		3
 468#define ACT_INIT		5
 469#define ACT_MAX			64
 470
 471#ifdef _KERNEL
 472
 473#include <sys/kassert.h>
 474#include <machine/atomic.h>
 475
 476/*
 477 * Each pageable resident page falls into one of five lists:
 478 *
 479 *	free
 480 *		Available for allocation now.
 481 *
 482 *	inactive
 483 *		Low activity, candidates for reclamation.
 484 *		This list is approximately LRU ordered.
 485 *
 486 *	laundry
 487 *		This is the list of pages that should be
 488 *		paged out next.
 489 *
 490 *	unswappable
 491 *		Dirty anonymous pages that cannot be paged
 492 *		out because no swap device is configured.
 493 *
 494 *	active
 495 *		Pages that are "active", i.e., they have been
 496 *		recently referenced.
 497 *
 498 */
 499
 500extern vm_page_t vm_page_array;		/* First resident page in table */
 501extern long vm_page_array_size;		/* number of vm_page_t's */
 502extern long first_page;			/* first physical page number */
 503
 504#define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
 505
 506/*
 507 * PHYS_TO_VM_PAGE() returns the vm_page_t object that represents a memory
 508 * page to which the given physical address belongs. The correct vm_page_t
 509 * object is returned for addresses that are not page-aligned.
 510 */
 511vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa);
 512
 513/*
 514 * Page allocation parameters for vm_page for the functions
 515 * vm_page_alloc(), vm_page_grab(), vm_page_alloc_contig() and
 516 * vm_page_alloc_freelist().  Some functions support only a subset
 517 * of the flags, and ignore others, see the flags legend.
 518 *
 519 * The meaning of VM_ALLOC_ZERO differs slightly between the vm_page_alloc*()
 520 * and the vm_page_grab*() functions.  See these functions for details.
 521 *
 522 * Bits 0 - 1 define class.
 523 * Bits 2 - 15 dedicated for flags.
 524 * Legend:
 525 * (a) - vm_page_alloc() supports the flag.
 526 * (c) - vm_page_alloc_contig() supports the flag.
 527 * (g) - vm_page_grab() supports the flag.
 528 * (n) - vm_page_alloc_noobj() and vm_page_alloc_freelist() support the flag.
 529 * (p) - vm_page_grab_pages() supports the flag.
 530 * Bits above 15 define the count of additional pages that the caller
 531 * intends to allocate.
 532 */
 533#define VM_ALLOC_NORMAL		0
 534#define VM_ALLOC_INTERRUPT	1
 535#define VM_ALLOC_SYSTEM		2
 536#define	VM_ALLOC_CLASS_MASK	3
 537#define	VM_ALLOC_WAITOK		0x0008	/* (acn) Sleep and retry */
 538#define	VM_ALLOC_WAITFAIL	0x0010	/* (acn) Sleep and return error */
 539#define	VM_ALLOC_WIRED		0x0020	/* (acgnp) Allocate a wired page */
 540#define	VM_ALLOC_ZERO		0x0040	/* (acgnp) Allocate a zeroed page */
 541#define	VM_ALLOC_NORECLAIM	0x0080	/* (c) Do not reclaim after failure */
 542#define	VM_ALLOC_AVAIL0		0x0100
 543#define	VM_ALLOC_NOBUSY		0x0200	/* (acgp) Do not excl busy the page */
 544#define	VM_ALLOC_NOCREAT	0x0400	/* (gp) Don't create a page */
 545#define	VM_ALLOC_AVAIL1		0x0800
 546#define	VM_ALLOC_IGN_SBUSY	0x1000	/* (gp) Ignore shared busy flag */
 547#define	VM_ALLOC_NODUMP		0x2000	/* (ag) don't include in dump */
 548#define	VM_ALLOC_SBUSY		0x4000	/* (acgp) Shared busy the page */
 549#define	VM_ALLOC_NOWAIT		0x8000	/* (acgnp) Do not sleep */
 550#define	VM_ALLOC_COUNT_MAX	0xffff
 551#define	VM_ALLOC_COUNT_SHIFT	16
 552#define	VM_ALLOC_COUNT_MASK	(VM_ALLOC_COUNT(VM_ALLOC_COUNT_MAX))
 553#define	VM_ALLOC_COUNT(count)	({				\
 554	KASSERT((count) <= VM_ALLOC_COUNT_MAX,			\
 555	    ("%s: invalid VM_ALLOC_COUNT value", __func__));	\
 556	(count) << VM_ALLOC_COUNT_SHIFT;			\
 557})
 558
 559#ifdef M_NOWAIT
 560static inline int
 561malloc2vm_flags(int malloc_flags)
 562{
 563	int pflags;
 564
 565	KASSERT((malloc_flags & M_USE_RESERVE) == 0 ||
 566	    (malloc_flags & M_NOWAIT) != 0,
 567	    ("M_USE_RESERVE requires M_NOWAIT"));
 568	pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT :
 569	    VM_ALLOC_SYSTEM;
 570	if ((malloc_flags & M_ZERO) != 0)
 571		pflags |= VM_ALLOC_ZERO;
 572	if ((malloc_flags & M_NODUMP) != 0)
 573		pflags |= VM_ALLOC_NODUMP;
 574	if ((malloc_flags & M_NOWAIT))
 575		pflags |= VM_ALLOC_NOWAIT;
 576	if ((malloc_flags & M_WAITOK))
 577		pflags |= VM_ALLOC_WAITOK;
 578	if ((malloc_flags & M_NORECLAIM))
 579		pflags |= VM_ALLOC_NORECLAIM;
 580	return (pflags);
 581}
 582#endif
 583
 584/*
 585 * Predicates supported by vm_page_ps_test():
 586 *
 587 *	PS_ALL_DIRTY is true only if the entire (super)page is dirty.
 588 *	However, it can be spuriously false when the (super)page has become
 589 *	dirty in the pmap but that information has not been propagated to the
 590 *	machine-independent layer.
 591 */
 592#define	PS_ALL_DIRTY	0x1
 593#define	PS_ALL_VALID	0x2
 594#define	PS_NONE_BUSY	0x4
 595
 596bool vm_page_busy_acquire(vm_page_t m, int allocflags);
 597void vm_page_busy_downgrade(vm_page_t m);
 598int vm_page_busy_tryupgrade(vm_page_t m);
 599bool vm_page_busy_sleep(vm_page_t m, const char *msg, int allocflags);
 600void vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m,
 601    vm_pindex_t pindex, const char *wmesg, int allocflags);
 602void vm_page_free(vm_page_t m);
 603void vm_page_free_zero(vm_page_t m);
 604
 605void vm_page_activate (vm_page_t);
 606void vm_page_advise(vm_page_t m, int advice);
 607vm_page_t vm_page_alloc(vm_object_t, vm_pindex_t, int);
 608vm_page_t vm_page_alloc_domain(vm_object_t, vm_pindex_t, int, int);
 609vm_page_t vm_page_alloc_after(vm_object_t, vm_pindex_t, int, vm_page_t);
 610vm_page_t vm_page_alloc_domain_after(vm_object_t, vm_pindex_t, int, int,
 611    vm_page_t);
 612vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
 613    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
 614    vm_paddr_t boundary, vm_memattr_t memattr);
 615vm_page_t vm_page_alloc_contig_domain(vm_object_t object,
 616    vm_pindex_t pindex, int domain, int req, u_long npages, vm_paddr_t low,
 617    vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
 618    vm_memattr_t memattr);
 619vm_page_t vm_page_alloc_freelist(int, int);
 620vm_page_t vm_page_alloc_freelist_domain(int, int, int);
 621vm_page_t vm_page_alloc_noobj(int);
 622vm_page_t vm_page_alloc_noobj_domain(int, int);
 623vm_page_t vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
 624    vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
 625    vm_memattr_t memattr);
 626vm_page_t vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
 627    vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
 628    vm_memattr_t memattr);
 629void vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set);
 630bool vm_page_blacklist_add(vm_paddr_t pa, bool verbose);
 631vm_page_t vm_page_grab(vm_object_t, vm_pindex_t, int);
 632vm_page_t vm_page_grab_unlocked(vm_object_t, vm_pindex_t, int);
 633int vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
 634    vm_page_t *ma, int count);
 635int vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
 636    int allocflags, vm_page_t *ma, int count);
 637int vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
 638    int allocflags);
 639int vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
 640    vm_pindex_t pindex, int allocflags);
 641void vm_page_deactivate(vm_page_t);
 642void vm_page_deactivate_noreuse(vm_page_t);
 643void vm_page_dequeue(vm_page_t m);
 644void vm_page_dequeue_deferred(vm_page_t m);
 645vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t);
 646void vm_page_free_invalid(vm_page_t);
 647vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
 648void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
 649void vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags);
 650void vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind);
 651int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
 652void vm_page_invalid(vm_page_t m);
 653void vm_page_launder(vm_page_t m);
 654vm_page_t vm_page_lookup(vm_object_t, vm_pindex_t);
 655vm_page_t vm_page_lookup_unlocked(vm_object_t, vm_pindex_t);
 656vm_page_t vm_page_next(vm_page_t m);
 657void vm_page_pqbatch_drain(void);
 658void vm_page_pqbatch_submit(vm_page_t m, uint8_t queue);
 659bool vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old,
 660    vm_page_astate_t new);
 661vm_page_t vm_page_prev(vm_page_t m);
 662bool vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m);
 663void vm_page_putfake(vm_page_t m);
 664void vm_page_readahead_finish(vm_page_t m);
 665bool vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low,
 666    vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
 667bool vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
 668    vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
 669bool vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
 670    vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
 671    int desired_runs);
 672void vm_page_reference(vm_page_t m);
 673#define	VPR_TRYFREE	0x01
 674#define	VPR_NOREUSE	0x02
 675void vm_page_release(vm_page_t m, int flags);
 676void vm_page_release_locked(vm_page_t m, int flags);
 677vm_page_t vm_page_relookup(vm_object_t, vm_pindex_t);
 678bool vm_page_remove(vm_page_t);
 679bool vm_page_remove_xbusy(vm_page_t);
 680int vm_page_rename(vm_page_t, vm_object_t, vm_pindex_t);
 681void vm_page_replace(vm_page_t mnew, vm_object_t object,
 682    vm_pindex_t pindex, vm_page_t mold);
 683int vm_page_sbusied(vm_page_t m);
 684vm_page_bits_t vm_page_set_dirty(vm_page_t m);
 685void vm_page_set_valid_range(vm_page_t m, int base, int size);
 686vm_offset_t vm_page_startup(vm_offset_t vaddr);
 687void vm_page_sunbusy(vm_page_t m);
 688bool vm_page_try_remove_all(vm_page_t m);
 689bool vm_page_try_remove_write(vm_page_t m);
 690int vm_page_trysbusy(vm_page_t m);
 691int vm_page_tryxbusy(vm_page_t m);
 692void vm_page_unhold_pages(vm_page_t *ma, int count);
 693void vm_page_unswappable(vm_page_t m);
 694void vm_page_unwire(vm_page_t m, uint8_t queue);
 695bool vm_page_unwire_noq(vm_page_t m);
 696void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
 697void vm_page_wire(vm_page_t);
 698bool vm_page_wire_mapped(vm_page_t m);
 699void vm_page_xunbusy_hard(vm_page_t m);
 700void vm_page_xunbusy_hard_unchecked(vm_page_t m);
 701void vm_page_set_validclean (vm_page_t, int, int);
 702void vm_page_clear_dirty(vm_page_t, int, int);
 703void vm_page_set_invalid(vm_page_t, int, int);
 704void vm_page_valid(vm_page_t m);
 705int vm_page_is_valid(vm_page_t, int, int);
 706void vm_page_test_dirty(vm_page_t);
 707vm_page_bits_t vm_page_bits(int base, int size);
 708void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
 709int vm_page_free_pages_toq(struct spglist *free, bool update_wire_count);
 710
 711void vm_page_dirty_KBI(vm_page_t m);
 712void vm_page_lock_KBI(vm_page_t m, const char *file, int line);
 713void vm_page_unlock_KBI(vm_page_t m, const char *file, int line);
 714int vm_page_trylock_KBI(vm_page_t m, const char *file, int line);
 715#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
 716void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line);
 717void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line);
 718#endif
 719
 720#define	vm_page_busy_fetch(m)	atomic_load_int(&(m)->busy_lock)
 721
 722#define	vm_page_assert_busied(m)					\
 723	KASSERT(vm_page_busied(m),					\
 724	    ("vm_page_assert_busied: page %p not busy @ %s:%d", \
 725	    (m), __FILE__, __LINE__))
 726
 727#define	vm_page_assert_sbusied(m)					\
 728	KASSERT(vm_page_sbusied(m),					\
 729	    ("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \
 730	    (m), __FILE__, __LINE__))
 731
 732#define	vm_page_assert_unbusied(m)					\
 733	KASSERT((vm_page_busy_fetch(m) & ~VPB_BIT_WAITERS) !=		\
 734	    VPB_CURTHREAD_EXCLUSIVE,					\
 735	    ("vm_page_assert_xbusied: page %p busy_lock %#x owned"	\
 736            " by me @ %s:%d",						\
 737	    (m), (m)->busy_lock, __FILE__, __LINE__));			\
 738
 739#define	vm_page_assert_xbusied_unchecked(m) do {			\
 740	KASSERT(vm_page_xbusied(m),					\
 741	    ("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \
 742	    (m), __FILE__, __LINE__));					\
 743} while (0)
 744#define	vm_page_assert_xbusied(m) do {					\
 745	vm_page_assert_xbusied_unchecked(m);				\
 746	KASSERT((vm_page_busy_fetch(m) & ~VPB_BIT_WAITERS) ==		\
 747	    VPB_CURTHREAD_EXCLUSIVE,					\
 748	    ("vm_page_assert_xbusied: page %p busy_lock %#x not owned"	\
 749            " by me @ %s:%d",						\
 750	    (m), (m)->busy_lock, __FILE__, __LINE__));			\
 751} while (0)
 752
 753#define	vm_page_busied(m)						\
 754	(vm_page_busy_fetch(m) != VPB_UNBUSIED)
 755
 756#define	vm_page_xbusied(m)						\
 757	((vm_page_busy_fetch(m) & VPB_SINGLE_EXCLUSIVE) != 0)
 758
 759#define	vm_page_busy_freed(m)						\
 760	(vm_page_busy_fetch(m) == VPB_FREED)
 761
 762/* Note: page m's lock must not be owned by the caller. */
 763#define	vm_page_xunbusy(m) do {						\
 764	if (!atomic_cmpset_rel_int(&(m)->busy_lock,			\
 765	    VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED))			\
 766		vm_page_xunbusy_hard(m);				\
 767} while (0)
 768#define	vm_page_xunbusy_unchecked(m) do {				\
 769	if (!atomic_cmpset_rel_int(&(m)->busy_lock,			\
 770	    VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED))			\
 771		vm_page_xunbusy_hard_unchecked(m);			\
 772} while (0)
 773
 774#ifdef INVARIANTS
 775void vm_page_object_busy_assert(vm_page_t m);
 776#define	VM_PAGE_OBJECT_BUSY_ASSERT(m)	vm_page_object_busy_assert(m)
 777void vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits);
 778#define	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits)				\
 779	vm_page_assert_pga_writeable(m, bits)
 780/*
 781 * Claim ownership of a page's xbusy state.  In non-INVARIANTS kernels this
 782 * operation is a no-op since ownership is not tracked.  In particular
 783 * this macro does not provide any synchronization with the previous owner.
 784 */
 785#define	vm_page_xbusy_claim(m) do {					\
 786	u_int _busy_lock;						\
 787									\
 788	vm_page_assert_xbusied_unchecked((m));				\
 789	do {								\
 790		_busy_lock = vm_page_busy_fetch(m);			\
 791	} while (!atomic_cmpset_int(&(m)->busy_lock, _busy_lock,	\
 792	    (_busy_lock & VPB_BIT_FLAGMASK) | VPB_CURTHREAD_EXCLUSIVE)); \
 793} while (0)
 794#else
 795#define	VM_PAGE_OBJECT_BUSY_ASSERT(m)	(void)0
 796#define	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits)	(void)0
 797#define	vm_page_xbusy_claim(m)
 798#endif
 799
 800#if BYTE_ORDER == BIG_ENDIAN
 801#define	VM_PAGE_AFLAG_SHIFT	16
 802#else
 803#define	VM_PAGE_AFLAG_SHIFT	0
 804#endif
 805
 806/*
 807 *	Load a snapshot of a page's 32-bit atomic state.
 808 */
 809static inline vm_page_astate_t
 810vm_page_astate_load(vm_page_t m)
 811{
 812	vm_page_astate_t a;
 813
 814	a._bits = atomic_load_32(&m->a._bits);
 815	return (a);
 816}
 817
 818/*
 819 *	Atomically compare and set a page's atomic state.
 820 */
 821static inline bool
 822vm_page_astate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
 823{
 824
 825	KASSERT(new.queue == PQ_INACTIVE || (new.flags & PGA_REQUEUE_HEAD) == 0,
 826	    ("%s: invalid head requeue request for page %p", __func__, m));
 827	KASSERT((new.flags & PGA_ENQUEUED) == 0 || new.queue != PQ_NONE,
 828	    ("%s: setting PGA_ENQUEUED with PQ_NONE in page %p", __func__, m));
 829	KASSERT(new._bits != old->_bits,
 830	    ("%s: bits are unchanged", __func__));
 831
 832	return (atomic_fcmpset_32(&m->a._bits, &old->_bits, new._bits) != 0);
 833}
 834
 835/*
 836 *	Clear the given bits in the specified page.
 837 */
 838static inline void
 839vm_page_aflag_clear(vm_page_t m, uint16_t bits)
 840{
 841	uint32_t *addr, val;
 842
 843	/*
 844	 * Access the whole 32-bit word containing the aflags field with an
 845	 * atomic update.  Parallel non-atomic updates to the other fields
 846	 * within this word are handled properly by the atomic update.
 847	 */
 848	addr = (void *)&m->a;
 849	val = bits << VM_PAGE_AFLAG_SHIFT;
 850	atomic_clear_32(addr, val);
 851}
 852
 853/*
 854 *	Set the given bits in the specified page.
 855 */
 856static inline void
 857vm_page_aflag_set(vm_page_t m, uint16_t bits)
 858{
 859	uint32_t *addr, val;
 860
 861	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits);
 862
 863	/*
 864	 * Access the whole 32-bit word containing the aflags field with an
 865	 * atomic update.  Parallel non-atomic updates to the other fields
 866	 * within this word are handled properly by the atomic update.
 867	 */
 868	addr = (void *)&m->a;
 869	val = bits << VM_PAGE_AFLAG_SHIFT;
 870	atomic_set_32(addr, val);
 871}
 872
 873/*
 874 *	vm_page_dirty:
 875 *
 876 *	Set all bits in the page's dirty field.
 877 *
 878 *	The object containing the specified page must be locked if the
 879 *	call is made from the machine-independent layer.
 880 *
 881 *	See vm_page_clear_dirty_mask().
 882 */
 883static __inline void
 884vm_page_dirty(vm_page_t m)
 885{
 886
 887	/* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */
 888#if (defined(KLD_MODULE) && !defined(KLD_TIED)) || defined(INVARIANTS)
 889	vm_page_dirty_KBI(m);
 890#else
 891	m->dirty = VM_PAGE_BITS_ALL;
 892#endif
 893}
 894
 895/*
 896 *	vm_page_undirty:
 897 *
 898 *	Set page to not be dirty.  Note: does not clear pmap modify bits
 899 */
 900static __inline void
 901vm_page_undirty(vm_page_t m)
 902{
 903
 904	VM_PAGE_OBJECT_BUSY_ASSERT(m);
 905	m->dirty = 0;
 906}
 907
 908static inline uint8_t
 909_vm_page_queue(vm_page_astate_t as)
 910{
 911
 912	if ((as.flags & PGA_DEQUEUE) != 0)
 913		return (PQ_NONE);
 914	return (as.queue);
 915}
 916
 917/*
 918 *	vm_page_queue:
 919 *
 920 *	Return the index of the queue containing m.
 921 */
 922static inline uint8_t
 923vm_page_queue(vm_page_t m)
 924{
 925
 926	return (_vm_page_queue(vm_page_astate_load(m)));
 927}
 928
 929static inline bool
 930vm_page_active(vm_page_t m)
 931{
 932
 933	return (vm_page_queue(m) == PQ_ACTIVE);
 934}
 935
 936static inline bool
 937vm_page_inactive(vm_page_t m)
 938{
 939
 940	return (vm_page_queue(m) == PQ_INACTIVE);
 941}
 942
 943static inline bool
 944vm_page_in_laundry(vm_page_t m)
 945{
 946	uint8_t queue;
 947
 948	queue = vm_page_queue(m);
 949	return (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE);
 950}
 951
 952static inline void
 953vm_page_clearref(vm_page_t m)
 954{
 955	u_int r;
 956
 957	r = m->ref_count;
 958	while (atomic_fcmpset_int(&m->ref_count, &r, r & (VPRC_BLOCKED |
 959	    VPRC_OBJREF)) == 0)
 960		;
 961}
 962
 963/*
 964 *	vm_page_drop:
 965 *
 966 *	Release a reference to a page and return the old reference count.
 967 */
 968static inline u_int
 969vm_page_drop(vm_page_t m, u_int val)
 970{
 971	u_int old;
 972
 973	/*
 974	 * Synchronize with vm_page_free_prep(): ensure that all updates to the
 975	 * page structure are visible before it is freed.
 976	 */
 977	atomic_thread_fence_rel();
 978	old = atomic_fetchadd_int(&m->ref_count, -val);
 979	KASSERT(old != VPRC_BLOCKED,
 980	    ("vm_page_drop: page %p has an invalid refcount value", m));
 981	return (old);
 982}
 983
 984/*
 985 *	vm_page_wired:
 986 *
 987 *	Perform a racy check to determine whether a reference prevents the page
 988 *	from being reclaimable.  If the page's object is locked, and the page is
 989 *	unmapped and exclusively busied by the current thread, no new wirings
 990 *	may be created.
 991 */
 992static inline bool
 993vm_page_wired(vm_page_t m)
 994{
 995
 996	return (VPRC_WIRE_COUNT(m->ref_count) > 0);
 997}
 998
 999static inline bool
1000vm_page_all_valid(vm_page_t m)
1001{
1002
1003	return (m->valid == VM_PAGE_BITS_ALL);
1004}
1005
1006static inline bool
1007vm_page_any_valid(vm_page_t m)
1008{
1009
1010	return (m->valid != 0);
1011}
1012
1013static inline bool
1014vm_page_none_valid(vm_page_t m)
1015{
1016
1017	return (m->valid == 0);
1018}
1019
1020static inline int
1021vm_page_domain(vm_page_t m)
1022{
1023#ifdef NUMA
1024	int domn, segind;
1025
1026	segind = m->segind;
1027	KASSERT(segind < vm_phys_nsegs, ("segind %d m %p", segind, m));
1028	domn = vm_phys_segs[segind].domain;
1029	KASSERT(domn >= 0 && domn < vm_ndomains, ("domain %d m %p", domn, m));
1030	return (domn);
1031#else
1032	return (0);
1033#endif
1034}
1035
1036#endif				/* _KERNEL */
1037#endif				/* !_VM_PAGE_ */