1/*	$NetBSD: tree.h,v 1.8 2004/03/28 19:38:30 provos Exp $	*/
   2/*	$OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $	*/
   3
   4/*-
   5 * SPDX-License-Identifier: BSD-2-Clause
   6 *
   7 * Copyright 2002 Niels Provos <provos@citi.umich.edu>
   8 * All rights reserved.
   9 *
  10 * Redistribution and use in source and binary forms, with or without
  11 * modification, are permitted provided that the following conditions
  12 * are met:
  13 * 1. Redistributions of source code must retain the above copyright
  14 *    notice, this list of conditions and the following disclaimer.
  15 * 2. Redistributions in binary form must reproduce the above copyright
  16 *    notice, this list of conditions and the following disclaimer in the
  17 *    documentation and/or other materials provided with the distribution.
  18 *
  19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  29 */
  30
  31#ifndef	_SYS_TREE_H_
  32#define	_SYS_TREE_H_
  33
  34#include <sys/cdefs.h>
  35
  36/*
  37 * This file defines data structures for different types of trees:
  38 * splay trees and rank-balanced trees.
  39 *
  40 * A splay tree is a self-organizing data structure.  Every operation
  41 * on the tree causes a splay to happen.  The splay moves the requested
  42 * node to the root of the tree and partly rebalances it.
  43 *
  44 * This has the benefit that request locality causes faster lookups as
  45 * the requested nodes move to the top of the tree.  On the other hand,
  46 * every lookup causes memory writes.
  47 *
  48 * The Balance Theorem bounds the total access time for m operations
  49 * and n inserts on an initially empty tree as O((m + n)lg n).  The
  50 * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
  51 *
  52 * A rank-balanced tree is a binary search tree with an integer
  53 * rank-difference as an attribute of each pointer from parent to child.
  54 * The sum of the rank-differences on any path from a node down to null is
  55 * the same, and defines the rank of that node. The rank of the null node
  56 * is -1.
  57 *
  58 * Different additional conditions define different sorts of balanced trees,
  59 * including "red-black" and "AVL" trees.  The set of conditions applied here
  60 * are the "weak-AVL" conditions of Haeupler, Sen and Tarjan presented in in
  61 * "Rank Balanced Trees", ACM Transactions on Algorithms Volume 11 Issue 4 June
  62 * 2015 Article No.: 30pp 1–26 https://doi.org/10.1145/2689412 (the HST paper):
  63 *	- every rank-difference is 1 or 2.
  64 *	- the rank of any leaf is 1.
  65 *
  66 * For historical reasons, rank differences that are even are associated
  67 * with the color red (Rank-Even-Difference), and the child that a red edge
  68 * points to is called a red child.
  69 *
  70 * Every operation on a rank-balanced tree is bounded as O(lg n).
  71 * The maximum height of a rank-balanced tree is 2lg (n+1).
  72 */
  73
  74#define SPLAY_HEAD(name, type)						\
  75struct name {								\
  76	struct type *sph_root; /* root of the tree */			\
  77}
  78
  79#define SPLAY_INITIALIZER(root)						\
  80	{ NULL }
  81
  82#define SPLAY_INIT(root) do {						\
  83	(root)->sph_root = NULL;					\
  84} while (/*CONSTCOND*/ 0)
  85
  86#define SPLAY_ENTRY(type)						\
  87struct {								\
  88	struct type *spe_left; /* left element */			\
  89	struct type *spe_right; /* right element */			\
  90}
  91
  92#define SPLAY_LEFT(elm, field)		(elm)->field.spe_left
  93#define SPLAY_RIGHT(elm, field)		(elm)->field.spe_right
  94#define SPLAY_ROOT(head)		(head)->sph_root
  95#define SPLAY_EMPTY(head)		(SPLAY_ROOT(head) == NULL)
  96
  97/* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
  98#define SPLAY_ROTATE_RIGHT(head, tmp, field) do {			\
  99	SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field);	\
 100	SPLAY_RIGHT(tmp, field) = (head)->sph_root;			\
 101	(head)->sph_root = tmp;						\
 102} while (/*CONSTCOND*/ 0)
 103
 104#define SPLAY_ROTATE_LEFT(head, tmp, field) do {			\
 105	SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field);	\
 106	SPLAY_LEFT(tmp, field) = (head)->sph_root;			\
 107	(head)->sph_root = tmp;						\
 108} while (/*CONSTCOND*/ 0)
 109
 110#define SPLAY_LINKLEFT(head, tmp, field) do {				\
 111	SPLAY_LEFT(tmp, field) = (head)->sph_root;			\
 112	tmp = (head)->sph_root;						\
 113	(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);		\
 114} while (/*CONSTCOND*/ 0)
 115
 116#define SPLAY_LINKRIGHT(head, tmp, field) do {				\
 117	SPLAY_RIGHT(tmp, field) = (head)->sph_root;			\
 118	tmp = (head)->sph_root;						\
 119	(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);	\
 120} while (/*CONSTCOND*/ 0)
 121
 122#define SPLAY_ASSEMBLE(head, node, left, right, field) do {		\
 123	SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field);	\
 124	SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
 125	SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field);	\
 126	SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field);	\
 127} while (/*CONSTCOND*/ 0)
 128
 129/* Generates prototypes and inline functions */
 130
 131#define SPLAY_PROTOTYPE(name, type, field, cmp)				\
 132void name##_SPLAY(struct name *, struct type *);			\
 133void name##_SPLAY_MINMAX(struct name *, int);				\
 134struct type *name##_SPLAY_INSERT(struct name *, struct type *);		\
 135struct type *name##_SPLAY_REMOVE(struct name *, struct type *);		\
 136									\
 137/* Finds the node with the same key as elm */				\
 138static __unused __inline struct type *					\
 139name##_SPLAY_FIND(struct name *head, struct type *elm)			\
 140{									\
 141	if (SPLAY_EMPTY(head))						\
 142		return(NULL);						\
 143	name##_SPLAY(head, elm);					\
 144	if ((cmp)(elm, (head)->sph_root) == 0)				\
 145		return (head->sph_root);				\
 146	return (NULL);							\
 147}									\
 148									\
 149static __unused __inline struct type *					\
 150name##_SPLAY_NEXT(struct name *head, struct type *elm)			\
 151{									\
 152	name##_SPLAY(head, elm);					\
 153	if (SPLAY_RIGHT(elm, field) != NULL) {				\
 154		elm = SPLAY_RIGHT(elm, field);				\
 155		while (SPLAY_LEFT(elm, field) != NULL) {		\
 156			elm = SPLAY_LEFT(elm, field);			\
 157		}							\
 158	} else								\
 159		elm = NULL;						\
 160	return (elm);							\
 161}									\
 162									\
 163static __unused __inline struct type *					\
 164name##_SPLAY_MIN_MAX(struct name *head, int val)			\
 165{									\
 166	name##_SPLAY_MINMAX(head, val);					\
 167	return (SPLAY_ROOT(head));					\
 168}
 169
 170/* Main splay operation.
 171 * Moves node close to the key of elm to top
 172 */
 173#define SPLAY_GENERATE(name, type, field, cmp)				\
 174struct type *								\
 175name##_SPLAY_INSERT(struct name *head, struct type *elm)		\
 176{									\
 177    if (SPLAY_EMPTY(head)) {						\
 178	    SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL;	\
 179    } else {								\
 180	    __typeof(cmp(NULL, NULL)) __comp;				\
 181	    name##_SPLAY(head, elm);					\
 182	    __comp = (cmp)(elm, (head)->sph_root);			\
 183	    if (__comp < 0) {						\
 184		    SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
 185		    SPLAY_RIGHT(elm, field) = (head)->sph_root;		\
 186		    SPLAY_LEFT((head)->sph_root, field) = NULL;		\
 187	    } else if (__comp > 0) {					\
 188		    SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
 189		    SPLAY_LEFT(elm, field) = (head)->sph_root;		\
 190		    SPLAY_RIGHT((head)->sph_root, field) = NULL;	\
 191	    } else							\
 192		    return ((head)->sph_root);				\
 193    }									\
 194    (head)->sph_root = (elm);						\
 195    return (NULL);							\
 196}									\
 197									\
 198struct type *								\
 199name##_SPLAY_REMOVE(struct name *head, struct type *elm)		\
 200{									\
 201	struct type *__tmp;						\
 202	if (SPLAY_EMPTY(head))						\
 203		return (NULL);						\
 204	name##_SPLAY(head, elm);					\
 205	if ((cmp)(elm, (head)->sph_root) == 0) {			\
 206		if (SPLAY_LEFT((head)->sph_root, field) == NULL) {	\
 207			(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
 208		} else {						\
 209			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
 210			(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
 211			name##_SPLAY(head, elm);			\
 212			SPLAY_RIGHT((head)->sph_root, field) = __tmp;	\
 213		}							\
 214		return (elm);						\
 215	}								\
 216	return (NULL);							\
 217}									\
 218									\
 219void									\
 220name##_SPLAY(struct name *head, struct type *elm)			\
 221{									\
 222	struct type __node, *__left, *__right, *__tmp;			\
 223	__typeof(cmp(NULL, NULL)) __comp;				\
 224\
 225	SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
 226	__left = __right = &__node;					\
 227\
 228	while ((__comp = (cmp)(elm, (head)->sph_root)) != 0) {		\
 229		if (__comp < 0) {					\
 230			__tmp = SPLAY_LEFT((head)->sph_root, field);	\
 231			if (__tmp == NULL)				\
 232				break;					\
 233			if ((cmp)(elm, __tmp) < 0){			\
 234				SPLAY_ROTATE_RIGHT(head, __tmp, field);	\
 235				if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
 236					break;				\
 237			}						\
 238			SPLAY_LINKLEFT(head, __right, field);		\
 239		} else if (__comp > 0) {				\
 240			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
 241			if (__tmp == NULL)				\
 242				break;					\
 243			if ((cmp)(elm, __tmp) > 0){			\
 244				SPLAY_ROTATE_LEFT(head, __tmp, field);	\
 245				if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
 246					break;				\
 247			}						\
 248			SPLAY_LINKRIGHT(head, __left, field);		\
 249		}							\
 250	}								\
 251	SPLAY_ASSEMBLE(head, &__node, __left, __right, field);		\
 252}									\
 253									\
 254/* Splay with either the minimum or the maximum element			\
 255 * Used to find minimum or maximum element in tree.			\
 256 */									\
 257void name##_SPLAY_MINMAX(struct name *head, int __comp) \
 258{									\
 259	struct type __node, *__left, *__right, *__tmp;			\
 260\
 261	SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
 262	__left = __right = &__node;					\
 263\
 264	while (1) {							\
 265		if (__comp < 0) {					\
 266			__tmp = SPLAY_LEFT((head)->sph_root, field);	\
 267			if (__tmp == NULL)				\
 268				break;					\
 269			if (__comp < 0){				\
 270				SPLAY_ROTATE_RIGHT(head, __tmp, field);	\
 271				if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
 272					break;				\
 273			}						\
 274			SPLAY_LINKLEFT(head, __right, field);		\
 275		} else if (__comp > 0) {				\
 276			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
 277			if (__tmp == NULL)				\
 278				break;					\
 279			if (__comp > 0) {				\
 280				SPLAY_ROTATE_LEFT(head, __tmp, field);	\
 281				if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
 282					break;				\
 283			}						\
 284			SPLAY_LINKRIGHT(head, __left, field);		\
 285		}							\
 286	}								\
 287	SPLAY_ASSEMBLE(head, &__node, __left, __right, field);		\
 288}
 289
 290#define SPLAY_NEGINF	-1
 291#define SPLAY_INF	1
 292
 293#define SPLAY_INSERT(name, x, y)	name##_SPLAY_INSERT(x, y)
 294#define SPLAY_REMOVE(name, x, y)	name##_SPLAY_REMOVE(x, y)
 295#define SPLAY_FIND(name, x, y)		name##_SPLAY_FIND(x, y)
 296#define SPLAY_NEXT(name, x, y)		name##_SPLAY_NEXT(x, y)
 297#define SPLAY_MIN(name, x)		(SPLAY_EMPTY(x) ? NULL	\
 298					: name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
 299#define SPLAY_MAX(name, x)		(SPLAY_EMPTY(x) ? NULL	\
 300					: name##_SPLAY_MIN_MAX(x, SPLAY_INF))
 301
 302#define SPLAY_FOREACH(x, name, head)					\
 303	for ((x) = SPLAY_MIN(name, head);				\
 304	     (x) != NULL;						\
 305	     (x) = SPLAY_NEXT(name, head, x))
 306
 307/* Macros that define a rank-balanced tree */
 308#define RB_HEAD(name, type)						\
 309struct name {								\
 310	struct type *rbh_root; /* root of the tree */			\
 311}
 312
 313#define RB_INITIALIZER(root)						\
 314	{ NULL }
 315
 316#define RB_INIT(root) do {						\
 317	(root)->rbh_root = NULL;					\
 318} while (/*CONSTCOND*/ 0)
 319
 320#define RB_ENTRY(type)							\
 321struct {								\
 322	struct type *rbe_link[3];					\
 323}
 324
 325/*
 326 * With the expectation that any object of struct type has an
 327 * address that is a multiple of 4, and that therefore the
 328 * 2 least significant bits of a pointer to struct type are
 329 * always zero, this implementation sets those bits to indicate
 330 * that the left or right child of the tree node is "red".
 331 */
 332#define _RB_LINK(elm, dir, field)	(elm)->field.rbe_link[dir]
 333#define _RB_UP(elm, field)		_RB_LINK(elm, 0, field)
 334#define _RB_L				((__uintptr_t)1)
 335#define _RB_R				((__uintptr_t)2)
 336#define _RB_LR				((__uintptr_t)3)
 337#define _RB_BITS(elm)			(*(__uintptr_t *)&elm)
 338#define _RB_BITSUP(elm, field)		_RB_BITS(_RB_UP(elm, field))
 339#define _RB_PTR(elm)			(__typeof(elm))			\
 340					((__uintptr_t)elm & ~_RB_LR)
 341
 342#define RB_PARENT(elm, field)		_RB_PTR(_RB_UP(elm, field))
 343#define RB_LEFT(elm, field)		_RB_LINK(elm, _RB_L, field)
 344#define RB_RIGHT(elm, field)		_RB_LINK(elm, _RB_R, field)
 345#define RB_ROOT(head)			(head)->rbh_root
 346#define RB_EMPTY(head)			(RB_ROOT(head) == NULL)
 347
 348#define RB_SET_PARENT(dst, src, field) do {				\
 349	_RB_BITSUP(dst, field) = (__uintptr_t)src |			\
 350	    (_RB_BITSUP(dst, field) & _RB_LR);				\
 351} while (/*CONSTCOND*/ 0)
 352
 353#define RB_SET(elm, parent, field) do {					\
 354	_RB_UP(elm, field) = parent;					\
 355	RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL;		\
 356} while (/*CONSTCOND*/ 0)
 357
 358/*
 359 * Either RB_AUGMENT or RB_AUGMENT_CHECK is invoked in a loop at the root of
 360 * every modified subtree, from the bottom up to the root, to update augmented
 361 * node data.  RB_AUGMENT_CHECK returns true only when the update changes the
 362 * node data, so that updating can be stopped short of the root when it returns
 363 * false.
 364 */
 365#ifndef RB_AUGMENT_CHECK
 366#ifndef RB_AUGMENT
 367#define RB_AUGMENT_CHECK(x) 0
 368#else
 369#define RB_AUGMENT_CHECK(x) (RB_AUGMENT(x), 1)
 370#endif
 371#endif
 372
 373#define RB_UPDATE_AUGMENT(elm, field) do {				\
 374	__typeof(elm) rb_update_tmp = (elm);				\
 375	while (RB_AUGMENT_CHECK(rb_update_tmp) &&			\
 376	    (rb_update_tmp = RB_PARENT(rb_update_tmp, field)) != NULL)	\
 377		;							\
 378} while (0)
 379
 380#define RB_SWAP_CHILD(head, par, out, in, field) do {			\
 381	if (par == NULL)						\
 382		RB_ROOT(head) = (in);					\
 383	else if ((out) == RB_LEFT(par, field))				\
 384		RB_LEFT(par, field) = (in);				\
 385	else								\
 386		RB_RIGHT(par, field) = (in);				\
 387} while (/*CONSTCOND*/ 0)
 388
 389/*
 390 * RB_ROTATE macro partially restructures the tree to improve balance. In the
 391 * case when dir is _RB_L, tmp is a right child of elm.  After rotation, elm
 392 * is a left child of tmp, and the subtree that represented the items between
 393 * them, which formerly hung to the left of tmp now hangs to the right of elm.
 394 * The parent-child relationship between elm and its former parent is not
 395 * changed; where this macro once updated those fields, that is now left to the
 396 * caller of RB_ROTATE to clean up, so that a pair of rotations does not twice
 397 * update the same pair of pointer fields with distinct values.
 398 */
 399#define RB_ROTATE(elm, tmp, dir, field) do {				\
 400	if ((_RB_LINK(elm, dir ^ _RB_LR, field) =			\
 401	    _RB_LINK(tmp, dir, field)) != NULL)				\
 402		RB_SET_PARENT(_RB_LINK(tmp, dir, field), elm, field);	\
 403	_RB_LINK(tmp, dir, field) = (elm);				\
 404	RB_SET_PARENT(elm, tmp, field);					\
 405} while (/*CONSTCOND*/ 0)
 406
 407/* Generates prototypes and inline functions */
 408#define	RB_PROTOTYPE(name, type, field, cmp)				\
 409	RB_PROTOTYPE_INTERNAL(name, type, field, cmp,)
 410#define	RB_PROTOTYPE_STATIC(name, type, field, cmp)			\
 411	RB_PROTOTYPE_INTERNAL(name, type, field, cmp, __unused static)
 412#define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr)		\
 413	RB_PROTOTYPE_RANK(name, type, attr)				\
 414	RB_PROTOTYPE_INSERT_COLOR(name, type, attr);			\
 415	RB_PROTOTYPE_REMOVE_COLOR(name, type, attr);			\
 416	RB_PROTOTYPE_INSERT_FINISH(name, type, attr);			\
 417	RB_PROTOTYPE_INSERT(name, type, attr);				\
 418	RB_PROTOTYPE_REMOVE(name, type, attr);				\
 419	RB_PROTOTYPE_FIND(name, type, attr);				\
 420	RB_PROTOTYPE_NFIND(name, type, attr);				\
 421	RB_PROTOTYPE_NEXT(name, type, attr);				\
 422	RB_PROTOTYPE_INSERT_NEXT(name, type, attr);			\
 423	RB_PROTOTYPE_PREV(name, type, attr);				\
 424	RB_PROTOTYPE_INSERT_PREV(name, type, attr);			\
 425	RB_PROTOTYPE_MINMAX(name, type, attr);				\
 426	RB_PROTOTYPE_REINSERT(name, type, attr);
 427#ifdef _RB_DIAGNOSTIC
 428#define RB_PROTOTYPE_RANK(name, type, attr)				\
 429	attr int name##_RB_RANK(struct type *);
 430#else
 431#define RB_PROTOTYPE_RANK(name, type, attr)
 432#endif
 433#define RB_PROTOTYPE_INSERT_COLOR(name, type, attr)			\
 434	attr struct type *name##_RB_INSERT_COLOR(struct name *,		\
 435	    struct type *, struct type *)
 436#define RB_PROTOTYPE_REMOVE_COLOR(name, type, attr)			\
 437	attr struct type *name##_RB_REMOVE_COLOR(struct name *,		\
 438	    struct type *, struct type *)
 439#define RB_PROTOTYPE_REMOVE(name, type, attr)				\
 440	attr struct type *name##_RB_REMOVE(struct name *, struct type *)
 441#define RB_PROTOTYPE_INSERT_FINISH(name, type, attr)			\
 442	attr struct type *name##_RB_INSERT_FINISH(struct name *,	\
 443	    struct type *, struct type **, struct type *)
 444#define RB_PROTOTYPE_INSERT(name, type, attr)				\
 445	attr struct type *name##_RB_INSERT(struct name *, struct type *)
 446#define RB_PROTOTYPE_FIND(name, type, attr)				\
 447	attr struct type *name##_RB_FIND(struct name *, struct type *)
 448#define RB_PROTOTYPE_NFIND(name, type, attr)				\
 449	attr struct type *name##_RB_NFIND(struct name *, struct type *)
 450#define RB_PROTOTYPE_NEXT(name, type, attr)				\
 451	attr struct type *name##_RB_NEXT(struct type *)
 452#define RB_PROTOTYPE_INSERT_NEXT(name, type, attr)			\
 453	attr struct type *name##_RB_INSERT_NEXT(struct name *,		\
 454	    struct type *, struct type *)
 455#define RB_PROTOTYPE_PREV(name, type, attr)				\
 456	attr struct type *name##_RB_PREV(struct type *)
 457#define RB_PROTOTYPE_INSERT_PREV(name, type, attr)			\
 458	attr struct type *name##_RB_INSERT_PREV(struct name *,		\
 459	    struct type *, struct type *)
 460#define RB_PROTOTYPE_MINMAX(name, type, attr)				\
 461	attr struct type *name##_RB_MINMAX(struct name *, int)
 462#define RB_PROTOTYPE_REINSERT(name, type, attr)			\
 463	attr struct type *name##_RB_REINSERT(struct name *, struct type *)
 464
 465/* Main rb operation.
 466 * Moves node close to the key of elm to top
 467 */
 468#define	RB_GENERATE(name, type, field, cmp)				\
 469	RB_GENERATE_INTERNAL(name, type, field, cmp,)
 470#define	RB_GENERATE_STATIC(name, type, field, cmp)			\
 471	RB_GENERATE_INTERNAL(name, type, field, cmp, __unused static)
 472#define RB_GENERATE_INTERNAL(name, type, field, cmp, attr)		\
 473	RB_GENERATE_RANK(name, type, field, attr)			\
 474	RB_GENERATE_INSERT_COLOR(name, type, field, attr)		\
 475	RB_GENERATE_REMOVE_COLOR(name, type, field, attr)		\
 476	RB_GENERATE_INSERT_FINISH(name, type, field, attr)		\
 477	RB_GENERATE_INSERT(name, type, field, cmp, attr)		\
 478	RB_GENERATE_REMOVE(name, type, field, attr)			\
 479	RB_GENERATE_FIND(name, type, field, cmp, attr)			\
 480	RB_GENERATE_NFIND(name, type, field, cmp, attr)			\
 481	RB_GENERATE_NEXT(name, type, field, attr)			\
 482	RB_GENERATE_INSERT_NEXT(name, type, field, cmp, attr)		\
 483	RB_GENERATE_PREV(name, type, field, attr)			\
 484	RB_GENERATE_INSERT_PREV(name, type, field, cmp, attr)		\
 485	RB_GENERATE_MINMAX(name, type, field, attr)			\
 486	RB_GENERATE_REINSERT(name, type, field, cmp, attr)
 487
 488#ifdef _RB_DIAGNOSTIC
 489#ifndef RB_AUGMENT
 490#define _RB_AUGMENT_VERIFY(x) RB_AUGMENT_CHECK(x)
 491#else
 492#define _RB_AUGMENT_VERIFY(x) 0
 493#endif
 494#define RB_GENERATE_RANK(name, type, field, attr)			\
 495/*									\
 496 * Return the rank of the subtree rooted at elm, or -1 if the subtree	\
 497 * is not rank-balanced, or has inconsistent augmentation data.
 498 */									\
 499attr int								\
 500name##_RB_RANK(struct type *elm)					\
 501{									\
 502	struct type *left, *right, *up;					\
 503	int left_rank, right_rank;					\
 504									\
 505	if (elm == NULL)						\
 506		return (0);						\
 507	up = _RB_UP(elm, field);					\
 508	left = RB_LEFT(elm, field);					\
 509	left_rank = ((_RB_BITS(up) & _RB_L) ? 2 : 1) +			\
 510	    name##_RB_RANK(left);					\
 511	right = RB_RIGHT(elm, field);					\
 512	right_rank = ((_RB_BITS(up) & _RB_R) ? 2 : 1) +			\
 513	    name##_RB_RANK(right);					\
 514	if (left_rank != right_rank ||					\
 515	    (left_rank == 2 && left == NULL && right == NULL) ||	\
 516	    _RB_AUGMENT_VERIFY(elm))					\
 517		return (-1);						\
 518	return (left_rank);						\
 519}
 520#else
 521#define RB_GENERATE_RANK(name, type, field, attr)
 522#endif
 523
 524#define RB_GENERATE_INSERT_COLOR(name, type, field, attr)		\
 525attr struct type *							\
 526name##_RB_INSERT_COLOR(struct name *head,				\
 527    struct type *parent, struct type *elm)				\
 528{									\
 529	/*								\
 530	 * Initially, elm is a leaf.  Either its parent was previously	\
 531	 * a leaf, with two black null children, or an interior node	\
 532	 * with a black non-null child and a red null child. The        \
 533	 * balance criterion "the rank of any leaf is 1" precludes the  \
 534	 * possibility of two red null children for the initial parent. \
 535	 * So the first loop iteration cannot lead to accessing an      \
 536	 * uninitialized 'child', and a later iteration can only happen \
 537	 * when a value has been assigned to 'child' in the previous    \
 538	 * one.								\
 539	 */								\
 540	struct type *child, *child_up, *gpar;				\
 541	__uintptr_t elmdir, sibdir;					\
 542									\
 543	do {								\
 544		/* the rank of the tree rooted at elm grew */		\
 545		gpar = _RB_UP(parent, field);				\
 546		elmdir = RB_RIGHT(parent, field) == elm ? _RB_R : _RB_L; \
 547		if (_RB_BITS(gpar) & elmdir) {				\
 548			/* shorten the parent-elm edge to rebalance */	\
 549			_RB_BITSUP(parent, field) ^= elmdir;		\
 550			return (NULL);					\
 551		}							\
 552		sibdir = elmdir ^ _RB_LR;				\
 553		/* the other edge must change length */			\
 554		_RB_BITSUP(parent, field) ^= sibdir;			\
 555		if ((_RB_BITS(gpar) & _RB_LR) == 0) {			\
 556			/* both edges now short, retry from parent */	\
 557			child = elm;					\
 558			elm = parent;					\
 559			continue;					\
 560		}							\
 561		_RB_UP(parent, field) = gpar = _RB_PTR(gpar);		\
 562		if (_RB_BITSUP(elm, field) & elmdir) {			\
 563			/*						\
 564			 * Exactly one of the edges descending from elm \
 565			 * is long. The long one is in the same		\
 566			 * direction as the edge from parent to elm,	\
 567			 * so change that by rotation.  The edge from	\
 568			 * parent to z was shortened above.  Shorten	\
 569			 * the long edge down from elm, and adjust	\
 570			 * other edge lengths based on the downward	\
 571			 * edges from 'child'.				\
 572			 *						\
 573			 *	     par		 par		\
 574			 *	    /	\		/   \		\
 575			 *	  elm	 z	       /     z		\
 576			 *	 /  \		     child		\
 577			 *	/  child	     /	 \		\
 578			 *     /   /  \		   elm	  \		\
 579			 *    w	  /    \	  /   \    y		\
 580			 *	 x      y	 w     \		\
 581			 *				x		\
 582			 */						\
 583			RB_ROTATE(elm, child, elmdir, field);		\
 584			child_up = _RB_UP(child, field);		\
 585			if (_RB_BITS(child_up) & sibdir)		\
 586				_RB_BITSUP(parent, field) ^= elmdir;	\
 587			if (_RB_BITS(child_up) & elmdir)		\
 588				_RB_BITSUP(elm, field) ^= _RB_LR;	\
 589			else						\
 590				_RB_BITSUP(elm, field) ^= elmdir;	\
 591			/* if child is a leaf, don't augment elm,	\
 592			 * since it is restored to be a leaf again. */	\
 593			if ((_RB_BITS(child_up) & _RB_LR) == 0)		\
 594				elm = child;				\
 595		} else							\
 596			child = elm;					\
 597									\
 598		/*							\
 599		 * The long edge descending from 'child' points back	\
 600		 * in the direction of 'parent'. Rotate to make		\
 601		 * 'parent' a child of 'child', then make both edges	\
 602		 * of 'child' short to rebalance.			\
 603		 *							\
 604		 *	     par		 child			\
 605		 *	    /	\		/     \			\
 606		 *	   /	 z	       x       par		\
 607		 *	child			      /	  \		\
 608		 *	 /  \			     /	   z		\
 609		 *	x    \			    y			\
 610		 *	      y						\
 611		 */							\
 612		RB_ROTATE(parent, child, sibdir, field);		\
 613		_RB_UP(child, field) = gpar;				\
 614		RB_SWAP_CHILD(head, gpar, parent, child, field);	\
 615		/*							\
 616		 * Elements rotated down have new, smaller subtrees,	\
 617		 * so update augmentation for them.			\
 618		 */							\
 619		if (elm != child)					\
 620			(void)RB_AUGMENT_CHECK(elm);			\
 621		(void)RB_AUGMENT_CHECK(parent);				\
 622		return (child);						\
 623	} while ((parent = gpar) != NULL);				\
 624	return (NULL);							\
 625}
 626
 627#ifndef RB_STRICT_HST
 628/*
 629 * In REMOVE_COLOR, the HST paper, in figure 3, in the single-rotate case, has
 630 * 'parent' with one higher rank, and then reduces its rank if 'parent' has
 631 * become a leaf.  This implementation always has the parent in its new position
 632 * with lower rank, to avoid the leaf check.  Define RB_STRICT_HST to 1 to get
 633 * the behavior that HST describes.
 634 */
 635#define RB_STRICT_HST 0
 636#endif
 637
 638#define RB_GENERATE_REMOVE_COLOR(name, type, field, attr)		\
 639attr struct type *							\
 640name##_RB_REMOVE_COLOR(struct name *head,				\
 641    struct type *parent, struct type *elm)				\
 642{									\
 643	struct type *gpar, *sib, *up;					\
 644	__uintptr_t elmdir, sibdir;					\
 645									\
 646	if (RB_RIGHT(parent, field) == elm &&				\
 647	    RB_LEFT(parent, field) == elm) {				\
 648		/* Deleting a leaf that is an only-child creates a	\
 649		 * rank-2 leaf. Demote that leaf. */			\
 650		_RB_UP(parent, field) = _RB_PTR(_RB_UP(parent, field));	\
 651		elm = parent;						\
 652		if ((parent = _RB_UP(elm, field)) == NULL)		\
 653			return (NULL);					\
 654	}								\
 655	do {								\
 656		/* the rank of the tree rooted at elm shrank */		\
 657		gpar = _RB_UP(parent, field);				\
 658		elmdir = RB_RIGHT(parent, field) == elm ? _RB_R : _RB_L; \
 659		_RB_BITS(gpar) ^= elmdir;				\
 660		if (_RB_BITS(gpar) & elmdir) {				\
 661			/* lengthen the parent-elm edge to rebalance */	\
 662			_RB_UP(parent, field) = gpar;			\
 663			return (NULL);					\
 664		}							\
 665		if (_RB_BITS(gpar) & _RB_LR) {				\
 666			/* shorten other edge, retry from parent */	\
 667			_RB_BITS(gpar) ^= _RB_LR;			\
 668			_RB_UP(parent, field) = gpar;			\
 669			gpar = _RB_PTR(gpar);				\
 670			continue;					\
 671		}							\
 672		sibdir = elmdir ^ _RB_LR;				\
 673		sib = _RB_LINK(parent, sibdir, field);			\
 674		up = _RB_UP(sib, field);				\
 675		_RB_BITS(up) ^= _RB_LR;					\
 676		if ((_RB_BITS(up) & _RB_LR) == 0) {			\
 677			/* shorten edges descending from sib, retry */	\
 678			_RB_UP(sib, field) = up;			\
 679			continue;					\
 680		}							\
 681		if ((_RB_BITS(up) & sibdir) == 0) {			\
 682			/*						\
 683			 * The edge descending from 'sib' away from	\
 684			 * 'parent' is long.  The short edge descending	\
 685			 * from 'sib' toward 'parent' points to 'elm*'	\
 686			 * Rotate to make 'sib' a child of 'elm*'	\
 687			 * then adjust the lengths of the edges		\
 688			 * descending from 'sib' and 'elm*'.		\
 689			 *						\
 690			 *	     par		 par		\
 691			 *	    /	\		/   \		\
 692			 *	   /	sib	      elm    \		\
 693			 *	  /	/ \	            elm*	\
 694			 *	elm   elm* \	            /  \	\
 695			 *	      /	\   \		   /    \	\
 696			 *	     /   \   z		  /      \	\
 697			 *	    x	  y		 x      sib	\
 698			 *				        /  \	\
 699			 *				       /    z	\
 700			 *				      y		\
 701			 */						\
 702			elm = _RB_LINK(sib, elmdir, field);		\
 703			/* elm is a 1-child.  First rotate at elm. */	\
 704			RB_ROTATE(sib, elm, sibdir, field);		\
 705			up = _RB_UP(elm, field);			\
 706			_RB_BITSUP(parent, field) ^=			\
 707			    (_RB_BITS(up) & elmdir) ? _RB_LR : elmdir;	\
 708			_RB_BITSUP(sib, field) ^=			\
 709			    (_RB_BITS(up) & sibdir) ? _RB_LR : sibdir;	\
 710			_RB_BITSUP(elm, field) |= _RB_LR;		\
 711		} else {						\
 712			if ((_RB_BITS(up) & elmdir) == 0 &&		\
 713			    RB_STRICT_HST && elm != NULL) {		\
 714				/* if parent does not become a leaf,	\
 715				   do not demote parent yet. */		\
 716				_RB_BITSUP(parent, field) ^= sibdir;	\
 717				_RB_BITSUP(sib, field) ^= _RB_LR;	\
 718			} else if ((_RB_BITS(up) & elmdir) == 0) {	\
 719				/* demote parent. */			\
 720				_RB_BITSUP(parent, field) ^= elmdir;	\
 721				_RB_BITSUP(sib, field) ^= sibdir;	\
 722			} else						\
 723				_RB_BITSUP(sib, field) ^= sibdir;	\
 724			elm = sib;					\
 725		}							\
 726									\
 727		/*							\
 728		 * The edge descending from 'elm' away from 'parent'	\
 729		 * is short.  Rotate to make 'parent' a child of 'elm', \
 730		 * then lengthen the short edges descending from	\
 731		 * 'parent' and 'elm' to rebalance.			\
 732		 *							\
 733		 *	     par		 elm			\
 734		 *	    /	\		/   \			\
 735		 *	   e	 \	       /     \			\
 736		 *		 elm	      /	      \			\
 737		 *		/  \	    par	       s		\
 738		 *	       /    \	   /   \			\
 739		 *	      /	     \	  e	\			\
 740		 *	     x	      s		 x			\
 741		 */							\
 742		RB_ROTATE(parent, elm, elmdir, field);			\
 743		RB_SET_PARENT(elm, gpar, field);			\
 744		RB_SWAP_CHILD(head, gpar, parent, elm, field);		\
 745		/*							\
 746		 * An element rotated down, but not into the search	\
 747		 * path has a new, smaller subtree, so update		\
 748		 * augmentation for it.					\
 749		 */							\
 750		if (sib != elm)						\
 751			(void)RB_AUGMENT_CHECK(sib);			\
 752		return (parent);					\
 753	} while (elm = parent, (parent = gpar) != NULL);		\
 754	return (NULL);							\
 755}
 756
 757#define _RB_AUGMENT_WALK(elm, match, field)				\
 758do {									\
 759	if (match == elm)						\
 760		match = NULL;						\
 761} while (RB_AUGMENT_CHECK(elm) &&					\
 762    (elm = RB_PARENT(elm, field)) != NULL)
 763
 764#define RB_GENERATE_REMOVE(name, type, field, attr)			\
 765attr struct type *							\
 766name##_RB_REMOVE(struct name *head, struct type *out)			\
 767{									\
 768	struct type *child, *in, *opar, *parent;			\
 769									\
 770	child = RB_LEFT(out, field);					\
 771	in = RB_RIGHT(out, field);					\
 772	opar = _RB_UP(out, field);					\
 773	if (in == NULL || child == NULL) {				\
 774		in = child = (in == NULL ? child : in);			\
 775		parent = opar = _RB_PTR(opar);				\
 776	} else {							\
 777		parent = in;						\
 778		while (RB_LEFT(in, field))				\
 779			in = RB_LEFT(in, field);			\
 780		RB_SET_PARENT(child, in, field);			\
 781		RB_LEFT(in, field) = child;				\
 782		child = RB_RIGHT(in, field);				\
 783		if (parent != in) {					\
 784			RB_SET_PARENT(parent, in, field);		\
 785			RB_RIGHT(in, field) = parent;			\
 786			parent = RB_PARENT(in, field);			\
 787			RB_LEFT(parent, field) = child;			\
 788		}							\
 789		_RB_UP(in, field) = opar;				\
 790		opar = _RB_PTR(opar);					\
 791	}								\
 792	RB_SWAP_CHILD(head, opar, out, in, field);			\
 793	if (child != NULL)						\
 794		_RB_UP(child, field) = parent;				\
 795	if (parent != NULL) {						\
 796		opar = name##_RB_REMOVE_COLOR(head, parent, child);	\
 797		/* if rotation has made 'parent' the root of the same	\
 798		 * subtree as before, don't re-augment it. */		\
 799		if (parent == in && RB_LEFT(parent, field) == NULL) {	\
 800			opar = NULL;					\
 801			parent = RB_PARENT(parent, field);		\
 802		}							\
 803		_RB_AUGMENT_WALK(parent, opar, field);			\
 804		if (opar != NULL) {					\
 805			/*						\
 806			 * Elements rotated into the search path have	\
 807			 * changed subtrees, so update augmentation for	\
 808			 * them if AUGMENT_WALK didn't.			\
 809			 */						\
 810			(void)RB_AUGMENT_CHECK(opar);			\
 811			(void)RB_AUGMENT_CHECK(RB_PARENT(opar, field));	\
 812		}							\
 813	}								\
 814	return (out);							\
 815}
 816
 817#define RB_GENERATE_INSERT_FINISH(name, type, field, attr)		\
 818/* Inserts a node into the RB tree */					\
 819attr struct type *							\
 820name##_RB_INSERT_FINISH(struct name *head, struct type *parent,		\
 821    struct type **pptr, struct type *elm)				\
 822{									\
 823	struct type *tmp = NULL;					\
 824									\
 825	RB_SET(elm, parent, field);					\
 826	*pptr = elm;							\
 827	if (parent != NULL)						\
 828		tmp = name##_RB_INSERT_COLOR(head, parent, elm);	\
 829	_RB_AUGMENT_WALK(elm, tmp, field);				\
 830	if (tmp != NULL)						\
 831		/*							\
 832		 * An element rotated into the search path has a	\
 833		 * changed subtree, so update augmentation for it if	\
 834		 * AUGMENT_WALK didn't.					\
 835		 */							\
 836		(void)RB_AUGMENT_CHECK(tmp);				\
 837	return (NULL);							\
 838}
 839
 840#define RB_GENERATE_INSERT(name, type, field, cmp, attr)		\
 841/* Inserts a node into the RB tree */					\
 842attr struct type *							\
 843name##_RB_INSERT(struct name *head, struct type *elm)			\
 844{									\
 845	struct type *tmp;						\
 846	struct type **tmpp = &RB_ROOT(head);				\
 847	struct type *parent = NULL;					\
 848									\
 849	while ((tmp = *tmpp) != NULL) {					\
 850		parent = tmp;						\
 851		__typeof(cmp(NULL, NULL)) comp = (cmp)(elm, parent);	\
 852		if (comp < 0)						\
 853			tmpp = &RB_LEFT(parent, field);			\
 854		else if (comp > 0)					\
 855			tmpp = &RB_RIGHT(parent, field);		\
 856		else							\
 857			return (parent);				\
 858	}								\
 859	return (name##_RB_INSERT_FINISH(head, parent, tmpp, elm));	\
 860}
 861
 862#define RB_GENERATE_FIND(name, type, field, cmp, attr)			\
 863/* Finds the node with the same key as elm */				\
 864attr struct type *							\
 865name##_RB_FIND(struct name *head, struct type *elm)			\
 866{									\
 867	struct type *tmp = RB_ROOT(head);				\
 868	__typeof(cmp(NULL, NULL)) comp;					\
 869	while (tmp) {							\
 870		comp = cmp(elm, tmp);					\
 871		if (comp < 0)						\
 872			tmp = RB_LEFT(tmp, field);			\
 873		else if (comp > 0)					\
 874			tmp = RB_RIGHT(tmp, field);			\
 875		else							\
 876			return (tmp);					\
 877	}								\
 878	return (NULL);							\
 879}
 880
 881#define RB_GENERATE_NFIND(name, type, field, cmp, attr)			\
 882/* Finds the first node greater than or equal to the search key */	\
 883attr struct type *							\
 884name##_RB_NFIND(struct name *head, struct type *elm)			\
 885{									\
 886	struct type *tmp = RB_ROOT(head);				\
 887	struct type *res = NULL;					\
 888	__typeof(cmp(NULL, NULL)) comp;					\
 889	while (tmp) {							\
 890		comp = cmp(elm, tmp);					\
 891		if (comp < 0) {						\
 892			res = tmp;					\
 893			tmp = RB_LEFT(tmp, field);			\
 894		}							\
 895		else if (comp > 0)					\
 896			tmp = RB_RIGHT(tmp, field);			\
 897		else							\
 898			return (tmp);					\
 899	}								\
 900	return (res);							\
 901}
 902
 903#define RB_GENERATE_NEXT(name, type, field, attr)			\
 904/* ARGSUSED */								\
 905attr struct type *							\
 906name##_RB_NEXT(struct type *elm)					\
 907{									\
 908	if (RB_RIGHT(elm, field)) {					\
 909		elm = RB_RIGHT(elm, field);				\
 910		while (RB_LEFT(elm, field))				\
 911			elm = RB_LEFT(elm, field);			\
 912	} else {							\
 913		while (RB_PARENT(elm, field) &&				\
 914		    (elm == RB_RIGHT(RB_PARENT(elm, field), field)))	\
 915			elm = RB_PARENT(elm, field);			\
 916		elm = RB_PARENT(elm, field);				\
 917	}								\
 918	return (elm);							\
 919}
 920
 921#if defined(_KERNEL) && defined(DIAGNOSTIC)
 922#define _RB_ORDER_CHECK(cmp, lo, hi) do {				\
 923	KASSERT((cmp)(lo, hi) < 0, ("out of order insertion"));		\
 924} while (0)
 925#else
 926#define _RB_ORDER_CHECK(cmp, lo, hi) do {} while (0)
 927#endif
 928
 929#define RB_GENERATE_INSERT_NEXT(name, type, field, cmp, attr)		\
 930/* Inserts a node into the next position in the RB tree */		\
 931attr struct type *							\
 932name##_RB_INSERT_NEXT(struct name *head,				\
 933    struct type *elm, struct type *next)				\
 934{									\
 935	struct type *tmp;						\
 936	struct type **tmpp = &RB_RIGHT(elm, field);			\
 937									\
 938	_RB_ORDER_CHECK(cmp, elm, next);				\
 939	if (name##_RB_NEXT(elm) != NULL)				\
 940		_RB_ORDER_CHECK(cmp, next, name##_RB_NEXT(elm));	\
 941	while ((tmp = *tmpp) != NULL) {					\
 942		elm = tmp;						\
 943		tmpp = &RB_LEFT(elm, field);				\
 944	}								\
 945	return (name##_RB_INSERT_FINISH(head, elm, tmpp, next));	\
 946}
 947
 948#define RB_GENERATE_PREV(name, type, field, attr)			\
 949/* ARGSUSED */								\
 950attr struct type *							\
 951name##_RB_PREV(struct type *elm)					\
 952{									\
 953	if (RB_LEFT(elm, field)) {					\
 954		elm = RB_LEFT(elm, field);				\
 955		while (RB_RIGHT(elm, field))				\
 956			elm = RB_RIGHT(elm, field);			\
 957	} else {							\
 958		while (RB_PARENT(elm, field) &&				\
 959		    (elm == RB_LEFT(RB_PARENT(elm, field), field)))	\
 960			elm = RB_PARENT(elm, field);			\
 961		elm = RB_PARENT(elm, field);				\
 962	}								\
 963	return (elm);							\
 964}
 965
 966#define RB_GENERATE_INSERT_PREV(name, type, field, cmp, attr)		\
 967/* Inserts a node into the prev position in the RB tree */		\
 968attr struct type *							\
 969name##_RB_INSERT_PREV(struct name *head,				\
 970    struct type *elm, struct type *prev)				\
 971{									\
 972	struct type *tmp;						\
 973	struct type **tmpp = &RB_LEFT(elm, field);			\
 974									\
 975	_RB_ORDER_CHECK(cmp, prev, elm);				\
 976	if (name##_RB_PREV(elm) != NULL)				\
 977		_RB_ORDER_CHECK(cmp, name##_RB_PREV(elm), prev);	\
 978	while ((tmp = *tmpp) != NULL) {					\
 979		elm = tmp;						\
 980		tmpp = &RB_RIGHT(elm, field);				\
 981	}								\
 982	return (name##_RB_INSERT_FINISH(head, elm, tmpp, prev));	\
 983}
 984
 985#define RB_GENERATE_MINMAX(name, type, field, attr)			\
 986attr struct type *							\
 987name##_RB_MINMAX(struct name *head, int val)				\
 988{									\
 989	struct type *tmp = RB_ROOT(head);				\
 990	struct type *parent = NULL;					\
 991	while (tmp) {							\
 992		parent = tmp;						\
 993		if (val < 0)						\
 994			tmp = RB_LEFT(tmp, field);			\
 995		else							\
 996			tmp = RB_RIGHT(tmp, field);			\
 997	}								\
 998	return (parent);						\
 999}
1000
1001#define	RB_GENERATE_REINSERT(name, type, field, cmp, attr)		\
1002attr struct type *							\
1003name##_RB_REINSERT(struct name *head, struct type *elm)			\
1004{									\
1005	struct type *cmpelm;						\
1006	if (((cmpelm = RB_PREV(name, head, elm)) != NULL &&		\
1007	    cmp(cmpelm, elm) >= 0) ||					\
1008	    ((cmpelm = RB_NEXT(name, head, elm)) != NULL &&		\
1009	    cmp(elm, cmpelm) >= 0)) {					\
1010		/* XXXLAS: Remove/insert is heavy handed. */		\
1011		RB_REMOVE(name, head, elm);				\
1012		return (RB_INSERT(name, head, elm));			\
1013	}								\
1014	return (NULL);							\
1015}									\
1016
1017#define RB_NEGINF	-1
1018#define RB_INF	1
1019
1020#define RB_INSERT(name, x, y)	name##_RB_INSERT(x, y)
1021#define RB_INSERT_NEXT(name, x, y, z)	name##_RB_INSERT_NEXT(x, y, z)
1022#define RB_INSERT_PREV(name, x, y, z)	name##_RB_INSERT_PREV(x, y, z)
1023#define RB_REMOVE(name, x, y)	name##_RB_REMOVE(x, y)
1024#define RB_FIND(name, x, y)	name##_RB_FIND(x, y)
1025#define RB_NFIND(name, x, y)	name##_RB_NFIND(x, y)
1026#define RB_NEXT(name, x, y)	name##_RB_NEXT(y)
1027#define RB_PREV(name, x, y)	name##_RB_PREV(y)
1028#define RB_MIN(name, x)		name##_RB_MINMAX(x, RB_NEGINF)
1029#define RB_MAX(name, x)		name##_RB_MINMAX(x, RB_INF)
1030#define RB_REINSERT(name, x, y)	name##_RB_REINSERT(x, y)
1031
1032#define RB_FOREACH(x, name, head)					\
1033	for ((x) = RB_MIN(name, head);					\
1034	     (x) != NULL;						\
1035	     (x) = name##_RB_NEXT(x))
1036
1037#define RB_FOREACH_FROM(x, name, y)					\
1038	for ((x) = (y);							\
1039	    ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL);	\
1040	     (x) = (y))
1041
1042#define RB_FOREACH_SAFE(x, name, head, y)				\
1043	for ((x) = RB_MIN(name, head);					\
1044	    ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL);	\
1045	     (x) = (y))
1046
1047#define RB_FOREACH_REVERSE(x, name, head)				\
1048	for ((x) = RB_MAX(name, head);					\
1049	     (x) != NULL;						\
1050	     (x) = name##_RB_PREV(x))
1051
1052#define RB_FOREACH_REVERSE_FROM(x, name, y)				\
1053	for ((x) = (y);							\
1054	    ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL);	\
1055	     (x) = (y))
1056
1057#define RB_FOREACH_REVERSE_SAFE(x, name, head, y)			\
1058	for ((x) = RB_MAX(name, head);					\
1059	    ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL);	\
1060	     (x) = (y))
1061
1062#endif	/* _SYS_TREE_H_ */